
Robust and Communication-Efficient

Collaborative Learning

Amirhossein Reisizadeh

ECE Department
University of California, Santa Barbara

reisizadeh@ucsb.edu

Hossein Taheri

ECE Department
University of California, Santa Barbara

hossein@ucsb.edu

Aryan Mokhtari

ECE Department
The University of Texas at Austin
mokhtari@austin.utexas.edu

Hamed Hassani

ESE Department
University of Pennsylvania
hassani@seas.upenn.edu

Ramtin Pedarsani

ECE Department
University of California, Santa Barbara

ramtin@ece.ucsb.edu

Abstract

We consider a decentralized learning problem, where a set of computing nodes aim
at solving a non-convex optimization problem collaboratively. It is well-known that
decentralized optimization schemes face two major system bottlenecks: stragglers’
delay and communication overhead. In this paper, we tackle these bottlenecks by
proposing a novel decentralized and gradient-based optimization algorithm named
as QuanTimed-DSGD. Our algorithm stands on two main ideas: (i) we impose a
deadline on the local gradient computations of each node at each iteration of the
algorithm, and (ii) the nodes exchange quantized versions of their local models. The
first idea robustifies to straggling nodes and the second alleviates communication
efficiency. The key technical contribution of our work is to prove that with non-
vanishing noises for quantization and stochastic gradients, the proposed method
exactly converges to the global optimal for convex loss functions, and finds a
first-order stationary point in non-convex scenarios. Our numerical evaluations
of the QuanTimed-DSGD on training benchmark datasets, MNIST and CIFAR-
10, demonstrate speedups of up to 3⇥ in run-time, compared to state-of-the-art
decentralized optimization methods.

1 Introduction

Collaborative learning refers to the task of learning a common objective among multiple computing
agents without any central node and by using on-device computation and local communication
among neighboring agents. Such tasks have recently gained considerable attention in the context of
machine learning and optimization as they are foundational to several computing paradigms such as
scalability to larger datasets and systems, data locality, ownership and privacy. As such, collaborative
learning naturally arises in various applications such as distributed deep learning (LeCun et al., 2015;
Dean et al., 2012), multi-agent robotics and path planning (Choi and How, 2010; Jha et al., 2016),
distributed resource allocation in wireless networks (Ribeiro, 2010), to name a few.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

While collaborative learning has recently drawn significant attention due its decentralized imple-
mentation, it faces major challenges at the system level as well as algorithm design. The decentral-
ized implementation of collaborative learning faces two major systems challenges: (i) significant
slow-down due to straggling nodes, where a subset of nodes can be largely delayed in their local
computation which slows down the wall-clock time convergence of the decentralized algorithm;
(ii) large communication overhead due to the message passing algorithm as the dimension of the
parameter vector increases, which can further slow down the algorithm’s convergence time. Moreover,
in the presence of these system bottlenecks, the efficacy of classical consensus optimization methods
is not clear and needs to be revisited.

In this work we consider the general data-parallel setting where the data is distributed across different
computing nodes, and develop decentralized optimization methods that do not rely on a central
coordinator but instead only require local computation and communication among neighboring nodes.
As the main contribution of this paper, we propose a straggler-robust and communication-efficient
algorithm for collaborative learning called QuanTimed-DSGD, which is a quantized and deadline-
based decentralized stochastic gradient descent method. We show that the proposed scheme provably
improves upon on the convergence time of vanilla synchronous decentralized optimization methods.
The key theoretical contribution of the paper is to develop the first quantized decentralized non-convex
optimization algorithm with provable and exact convergence to a first-order optimal solution.

There are two key ideas in our proposed algorithm. To provide robustness against stragglers, we
impose a deadline time Td for the computation of each node. In a synchronous implementation of
the proposed algorithm, at every iteration all the nodes simultaneously start computing stochastic
gradients by randomly picking data points from their local batches and evaluating the gradient
function on the picked data point. By Td, each node has computed a random number of stochastic
gradients from which it aggregates and generates a stochastic gradient for its local objective. By
doing so, each iteration takes a constant computation time as opposed to deadline-free methods in
which each node has to wait for all their neighbours to complete their gradient computation tasks. To
tackle the communication bottleneck in collaborative learning, we only allow the decentralized nodes
to share with neighbours a quantized version of their local models. Quantizing the exchanged models
reduces the communication load which is critical for large and dense networks.

We analyze the convergence of the proposed QuanTimed-DSGD for strongly convex and non-convex
loss functions and under standard assumptions for the network, quantizer and stochastic gradients. In
the strongly convex case, we show that QuanTimed-DSGD exactly finds the global optimal for every
node with a rate arbitrarily close to O(1/

p
T). In the non-convex setting, QuanTimed-DSGD provably

finds first-order optimal solutions as fast as O(T�1/3). Moreover, the consensus error decays with
the same rate which guarantees an exact convergence by choosing large enough T . Furthermore,
we numerically evaluate QuanTimed-DSGD on benchmark datasets CIFAR-10 and MNIST, where it
demonstrates speedups of up to 3⇥ in the run-time compared to state-of-the-art baselines.

Related Work. Decentralized consensus optimization has been studied extensively. The most popular
first-order choices for the convex setting are distributed gradient descent-type methods (Nedic and
Ozdaglar, 2009; Jakovetic et al., 2014; Yuan et al., 2016; Qu and Li, 2017), augmented Lagrangian
algorithms (Shi et al., 2015a,b; Mokhtari and Ribeiro, 2016), distributed variants of the alternating
direction method of multipliers (ADMM) (Schizas et al., 2008; Boyd et al., 2011; Shi et al., 2014;
Chang et al., 2015; Mokhtari et al., 2016), dual averaging (Duchi et al., 2012; Tsianos et al., 2012),
and several dual based strategies (Seaman et al., 2017; Scaman et al., 2018; Uribe et al., 2018).
Recently, there have been some works which study non-convex decentralized consensus optimization
and establish convergence to a stationary point (Zeng and Yin, 2018; Hong et al., 2017, 2018; Sun
and Hong, 2018; Scutari et al., 2017; Scutari and Sun, 2018; Jiang et al., 2017; Lian et al., 2017a).

The idea of improving communication-efficiency of distributed optimization procedures via message-
compression schemes goes a few decades back (Tsitsiklis and Luo, 1987), however, it has recently
gained considerable attention due to the growing importance of distributed applications. In particular,
efficient gradient-compression methods are provided in (Alistarh et al., 2017; Seide et al., 2014;
Bernstein et al., 2018) and deployed in the distributed master-worker setting. In the decentralized
setting, quantization methods were proposed in different convex optimization contexts with non-
vanishing errors (Yuksel and Basar, 2003; Rabbat and Nowak, 2005; Kashyap et al., 2006; El Chamie
et al., 2016; Aysal et al., 2007; Nedic et al., 2008). The first exact decentralized optimization
method with quantized messages was given in (Reisizadeh et al., 2018; Zhang et al., 2018), and more

2

recently, new techniques have been developed in this context for convex problems (Doan et al., 2018;
Koloskova et al., 2019; Berahas et al., 2019; Lee et al., 2018a,b).

The straggler problem has been widely observed in distributed computing clusters (Dean and Barroso,
2013; Ananthanarayanan et al., 2010). A common approach to mitigate stragglers is to replicate the
computing task of the slow nodes to other computing nodes (Ananthanarayanan et al., 2013; Wang
et al., 2014), but this is clearly not feasible in collaborative learning. Another line of work proposed
using coding theoretic ideas for speeding up distributed machine learning (Lee et al., 2018c; Tandon
et al., 2016; Yu et al., 2017; Reisizadeh et al., 2019b,c), but they work mostly for master-worker
setup and particular computation types such as linear computations or full gradient aggregation. The
closest work to ours is (Ferdinand et al., 2019) that considers decentralized optimization for convex
functions with deadline for local computations without considering communication bottlenecks
and quantization as well as non-convex functions. Another line of work proposes asynchronous
decentralized SGD, where the workers update their models based on the last iterates received by their
neighbors (Recht et al., 2011; Lian et al., 2017b; Lan and Zhou, 2018; Peng et al., 2016; Wu et al.,
2017; Dutta et al., 2018). While asynchronous methods are inherently robust to stragglers, they can
suffer from slow convergence due to using stale models.

2 Problem Setup

In this paper, we focus on a stochastic learning model in which we aim to solve the problem

min
x

L(x) := min
x

E✓⇠P [`(x, ✓)], (1)

where ` : Rp
⇥Rq

! R is a stochastic loss function, x 2 Rp is our optimization variable, and ✓ 2 Rq

is a random variable with probability distribution P and L : Rp
! R is the expected loss function

also called population risk. We assume that the underlying distribution P of the random variable
✓ is unknown and we have access only to N = mn realizations of it. Our goal is to solve the loss
associated with N = mn realizations of the random variable ✓, which is also known as empirical risk
minimization. To be more precise, we aim to solve the empirical risk minimization (ERM) problem

min
x

LN (x) := min
x

1

N

NX

k=1

`(x, ✓k), (2)

where LN is the empirical loss associated with the sample of random variables D = {✓1, . . . , ✓N}.

Collaborative Learning Perspective. Our goal is to solve the ERM problem in (2) in a decentralized
manner over n nodes. This setting arises in a plethora of applications where either the total number
of samples N is massive and data cannot be stored or processed over a single node or the samples are
available in parts at different nodes and, due to privacy or communication constraints, exchanging
raw data points is not possible among the nodes. Hence, we assume that each node i has access to m
samples and its local objective is

fi(x) =
1

m

mX

j=1

`(x, ✓j
i), (3)

where Di = {✓1
i , · · · , ✓m

i } is the set of samples available at node i. Nodes aim to collaboratively
minimize the average of all local objective functions, denoted by f , which is given by

min
x

f(x) = min
x

1

n

nX

i=1

fi(x) = min
x

1

mn

nX

i=1

mX

j=1

`(x, ✓j
i). (4)

Indeed, the objective functions f and LN are equivalent if D := D1 [· · · [Dn. Therefore, by
minimizing the global objective function f we also obtain the solution of the ERM problem in (2).

We can rewrite the optimization problem in (4) as a classical decentralized optimization problem as
follows. Let xi be the decision variable of node i. Then, (4) is equivalent to

min
x1,...,xn

1

n

nX

i=1

fi(xi), subject to x1 = · · · = xn, (5)

3

as the objective function value of (4) and (5) are the same when the iterates of all nodes are the same
and we have consensus. The challenge in distributed learning is to solve the global loss only by
exchanging information with neighboring nodes and ensuring that nodes’ variables stay close to each
other. We consider a network of computing nodes characterized by an undirected connected graph
G = (V, E) with nodes V = [n] = {1, · · · , n} and edges E ✓ V ⇥ V , and each node i is allowed to
exchange information only with its neighboring nodes in the graph G, which we denote by Ni.

In a stochastic optimization setting, where the true objective is defined as an expectation, there is
a limit to the accuracy with which we can minimize L(x) given only N = nm samples, even if
we have access to the optimal solution of the empirical risk LN . In particular, it has been shown
that when the loss function ` is convex, the difference between the population risk L and the
empirical risk LN corresponding to N = mn samples with high probability is uniformly bounded
by supx |L(x) � LN (x)| O(1/

p
N) = O(1/

p
nm); see (Bottou and Bousquet, 2008). Thus,

without collaboration, each node can minimize its local cost fi to reach an estimate for the optimal
solution with an error of O(1/

p
m). By minimizing the aggregate loss collaboratively, nodes

reach an approximate solution of the expected risk problem with a smaller error of O(1/
p

nm).
Based on this formulation, our goal in the convex setting is to find a point xi for each node i that
attains the statistical accuracy, i.e., E

⇥
LN (xi)� LN (x̂⇤)

⇤
 O(1/

p
mn), which further implies

E
⇥
L(xi)� L(x⇤)

⇤
 O(1/

p
mn).

For a non-convex loss function `, however, LN is also non-convex and solving the problem in (4) is
hard, in general. Therefore, we only focus on finding a point that satisfies the first-order optimality
condition for (4) up to some accuracy ⇢, i.e., finding a point x̃ such that krLN (x̃)k = krf(x̃)k

⇢. Under the assumption that the gradient of loss is sub-Gaussian, it has been shown that with
high probability the gap between the gradients of expected risk and empirical risk is bounded by
supx krL(x) � rLN (x)k2 O(1/

p
nm); see (Mei et al., 2018). As in the convex setting, by

solving the aggregate loss instead of local loss, each node finds a better approximate for a first-order
stationary point of the expected risk L. Therefore, our goal in the non-convex setting is to find a point
that satisfies krLN (x)k O(1/

p
mn) which also implies krL(x)k O(1/

p
mn).

3 Proposed QuanTimed-DSGD Method

In this section, we present our proposed QuanTimed-DSGD algorithm that takes into account robust-
ness to stragglers and communication efficiency in decentralized optimization. To ensure robustness
to stragglers’ delay, we introduce a deadline-based protocol for updating the iterates in which nodes
compute their local gradients estimation only for a specific amount time and then use their gradient
estimates to update their iterates. This is in contrast to the mini-batch setting, in which nodes have to
wait for the slowest machine to finish its local gradient computation. To reduce the communication
load, we assume that nodes only exchange a quantized version of their local iterates. However, using
quantized messages induces extra noise in the decision making process which makes the analysis of
our algorithm more challenging. A detailed description of the proposed algorithm is as follows.

Deadline-Based Gradient Computation. Consider the current model xi,t available at node i at
iteration t. Recall the definition of the local objective function fi at node i defined in (3). The cost of
computing the local gradient rfi scales linearly by the number of samples m assigned to the i-th
node. A common solution to reduce the computation cost at each node for the case that m is large is
using a mini-batch approximate of the gradient, i.e., each node i picks a subset of its local samples
Bi,t ✓ Di to compute the stochastic gradient 1

|Bi,t|
P

✓2Bi,t
r`(xi,t, ✓). A major challenge for this

procedure is the presence of stragglers in the network: given mini-batch size b, all nodes have to
compute the average of exactly b stochastic gradients. Thus, all the nodes have to wait for the slowest
machine to finish its computation and exchange its new model with the neighbors.

To resolve this issue, we propose a deadline-based approach in which we set a fixed deadline Td for
the time that each node can spend computing its local stochastic gradient estimate. Once the deadline
is reached, nodes find their gradient estimate using whatever computation (mini-batch size) they
could perform. Thus, with this deadline-based procedure, nodes do not need to wait for the slowest
machine to update their iterates. However, their mini-batch size and consequently the noise of their
gradient approximation will be different. To be more specific, let Si,t ✓ Di denote the set of random

4

Algorithm 1 QuanTimed-DSGD at node i

Require: Weights {wij}
n
j=1, total iterations T , deadline Td

1: Set xi,0 = 0 and compute zi,0 = Q(xi,0)
2: for t = 0, · · · , T � 1 do

3: Send zi,t = Q(xi,t) to j 2 Ni and receive zj,t

4: Pick and evaluate stochastic gradients {r`(xi,t; ✓) : ✓ 2 Si,t} till reaching the deadline Td

and generate erfi(xi,t) according to (6)
5: Update xi,t+1 as follows: xi,t+1 = (1� " + "wii)xi,t + "

P
j2Ni

wijzj,t � ↵"erfi(xi,t)
6: end for

samples chosen at time t by node i. Define erfi(xi,t) as the stochastic gradient of node i at time t as

erfi(xi,t) =
1

|Si,t|

X

✓2Si,t

r`(xi,t; ✓), (6)

for 1 |Si,t|m. If there are not any gradients computed by Td, i.e., |Si,t| = 0, we set erfi(xi,t)=0.

Computation Model. To illustrate the advantage of our deadline-based scheme over the fixed
mini-batch scheme, we formally state the model that we use for the processing time of nodes in
the network. We remark that our algorithms are oblivious to the choice of the computation model
which is merely used for analysis. We define the processing speed of each machine as the number
of stochastic gradients r`(x, ✓) that it computes per second. We assume that the processing speed
of each machine i and iteration t is a random variable Vi,t, and Vi,t’s are i.i.d. with probability
distribution FV (v). We further assume that the domain of the random variable V is bounded and
its realizations are in [v, v̄]. If Vi,t is the number of stochastic gradient which can be computed per
second, the size of mini-batch Si,t is a random variable given by |Si,t| = Vi,tTd.

In the fixed mini-batch scheme and for any iteration t, all the nodes have to wait for the machine
with the slowest processing time before updating their iterates, and thus the overall computation
time will be b/Vmin where Vmin is defined as Vmin = min{V1,t, . . . , Vn,t}. In our deadline-based
scheme there is a fixed deadline Td which limits the computation time of the nodes, and is chosen
such that Td = E

⇥
b/V

⇤
= bE

⇥
1/V

⇤
, while the mini-batch scheme requires an expected time of

E
⇥
b/Vmin

⇤
= bE

⇥
1/Vmin

⇤
. The gap between E

⇥
1/V

⇤
and E

⇥
1/Vmin

⇤
depends on the distribution

of V , and can be unbounded in general growing with n.

Quantized Message-Passing. To reduce the communication overhead of exchanging variables
between nodes, we use quantization schemes that significantly reduces the required number of bits.
More precisely, instead of sending xi,t, the i-th node sends zi,t = Q(xi,t) which is a quantized version
of its local variable xi,t to its neighbors j 2 Ni. As an example, consider the low precision quantizer
specified by scale factor ⌘ and s bits with the representable range {�⌘ · 2s�1, · · · ,�⌘, 0, ⌘, · · · , ⌘ ·

(2s
� 1)}. For any k⌘ x < (k + 1)⌘ , the quantizer outputs

Q(⌘,b)(x) =

⇢
k⌘ w.p. 1� (x � k⌘)/⌘,
(k + 1)⌘ w.p. (x � k⌘)/⌘. (7)

Algorithm Update. Once the local variables are exchanged between neighboring nodes, each
node i uses its local stochastic gradient erfi(xi,t), its local decision variable xi,t, and the information
received from its neighbors {zj,t = Q(xj,t); j 2 Ni} to update its local decision variable. Before
formally stating the update of QuanTimed-DSGD, let us define wij as the weight that node i assigns
to the information that it receive from node j. If i and j are not neighbors wij = 0. These weights
are considered for averaging over the local decision variable xi,t and the quantized variables zj,t

received from neighbors to enforce consensus among neighboring nodes. Specifically, at time t,
node i updates its decision variable according to the update

xi,t+1 = (1� " + "wii)xi,t + "
X

j2Ni

wijzj,t � ↵"erfi(xi,t), (8)

where ↵ and " are positive scalars that behave as stepsize. Note that the update in (8) shows that
the updated iterate is a linear combination of the weighted average of node i’s neighbors’ decision

5

variable, i.e., "
P

j2Ni
wijzj,t, and its local variable xi,t and stochastic gradient erfi(xi,t). The

parameter ↵ behaves as the stepsize of the gradient descent step with respect to local objective function
and the parameter " behaves as an averaging parameter between performing the distributed gradient
update "(wiixi,t+

P
j2Ni

wijzj,t�↵erfi(xi,t)) and using the previous decision variable (1�")xi,t.
By choosing a diminishing stepsize ↵ we control the noise of stochastic gradient evaluation, and by
averaging using the parameter " we control randomness induced by exchanging quantized variables.
The description of QuanTimed-DSGD is summarized in Algorithm 1.

4 Convergence Analysis

In this section, we provide the main theoretical results for the proposed QuanTimed-DSGD algo-
rithm. We first consider strongly convex loss functions and characterize the convergence rate of
QuanTimed-DSGD for achieving the global optimal solution to the problem (4). Then, we focus on
the non-convex setting and show that the iterates generated by QuanTimed-DSGD find a stationary
point of the cost in (4) while the local models are close to each other and the consensus constraint is
asymptotically satisfied. All the proofs are provided in the supplementary material (Section 6). We
make the following assumptions on the weight matrix, the quantizer, and local objective functions.
Assumption 1. The weight matrix W 2 Rn⇥n with entries wij � 0 satisfies the following conditions:
W = W>, W1 = 1 and null(I � W) = span(1).
Assumption 2. The random quantizer Q(·) is unbiased and variance-bounded, i.e., E[Q(x)|x] = x
and E[kQ(x)� xk2

|x] �2, for any x 2 Rp; and quantizations are carried out independently.

Assumption 1 implies that W is symmetric and doubly stochastic. Moreover, all the eigenvalues
of W are in (�1, 1], i.e., 1 = �1(W) � �2(W) � · · · � �n(W) > �1 (e.g. (Yuan et al.,
2016)). We also denote by 1� � the spectral gap associated with the stochastic matrix W , where
� = max

�
|�2(W)|, |�n(W)|

.

Assumption 3. The function ` is K-smooth with respect to x, i.e., for any x, x̂ 2 Rp and any ✓ 2 D,��r`(x, ✓)�r`(x̂, ✓)
�� Kkx� x̂k.

Assumption 4. Stochastic gradients r`(x, ✓) are unbiased and variance bounded, i.e.,
E✓

⇥
r`(x, ✓)

⇤
= rL(x) and E✓

h��r`(x, ✓)�rL(x)
��2
i
 �2.

Note the condition in Assumption 4 implies that the local gradients of each node rfi(x) are also
unbiased estimators of the expected risk gradient rL(x) and their variance is bounded above by
�2/m as it is defined as an average over m realizations.

4.1 Strongly Convex Setting

This section presents the convergence guarantees of the proposed QuanTimed-DSGD method for
smooth and strongly convex functions. The following assumption formally defines strong convexity.
Assumption 5. The function ` is µ-strongly convex, i.e., for any x, x̂ 2 Rp and ✓ 2 D we have that
hr`(x, ✓)�r`(x̂, ✓),x� x̂i � µkx� x̂k2 .

Next, we characterize the convergence rate of QuanTimed-DSGD for strongly convex objectives.

Theorem 1 (Strongly Convex Losses). If the conditions in Assumptions 1–5 are satisfied and step-
sizes are picked as ↵ = T��/2 and " = T�3�/2 for arbitrary � 2 (0, 1/2), then for large enough
number of iterations T � T c

min the iterates generated by the QuanTimed-DSGD algorithm satisfy

1

n

nX

i=1

E
h��xi,T �x⇤��2

i
O

D2(K/µ)2

(1� �)2
+

�2

µ

!
1

T �
+O

�2

µ
max

⇢
E[1/V]

Td
,
1

m

�!
1

T 2�
, (9)

where D2 = 2K
Pn

i=1(fi(0)� f⇤
i), and f⇤

i = minx2Rp fi(x).

Theorem 1 guarantees the exact convergence of each local model to the global optimal even though
the noises induced by random quantizations and stochastic gradients are non-vanishing with iterations.
Moreover, such convergence rate is as close as desired to O(1/

p
T) by picking the tuning parameter

� arbitrarily close to 1/2. We would like to highlight that by choosing a parameter � closer to 1/2,

6

the lower bound on the number of required iterations T c
min becomes larger. More details are available

in the proof of Theorem 1 provided in the supplementary material.

Note that the coefficient of 1/T � in (9) characterizes the dependency of our upper bound on the
objective function condition number K/µ, graph connectivity parameter 1/(1� �), and variance �2

of error induced by quantizing our signals. Moreover, the coefficient of 1/T 2� shows the effect of
stochastic gradients variance �2 as well as our deadline-based scheme parameters Td/(E[1/V]).
Remark 1. The expression 1/beff = max{E[1/V]/Td, 1/m} represents the inverse of the effective
batch size beff used in our QuanTimed-DSGD method. To be more specific, If the deadline Td is large
enough that in expectation all local gradients are computed before the deadline, i.e., Td/E[1/V] > m,
then our effective batch size is beff = m and the term 1/m is the dominant term in the maximization.
Conversely, if Td is small and the number of computed gradients Td/E[1/V] is smaller than the total
number of local samples m, the effective batch size is beff = Td/E[1/V]. In this case, E[1/V]/Td

is dominant term in the maximization. This observation shows that �2 max{E[1/V]/Td, 1/m} =
�2/beff in (9) is the variance of mini-batch gradient in QuanTimed-DSGD.

Remark 2. Using strong convexity of the objective function, one can easily verify that the last iterates
xi,T of QuanTimed-DSGD satisfy the sub-optimality f(xi,T) � f(x̂⇤) = LN (xi,T) � LN (x̂⇤)

O(1/
p

T) with respect to the empirical risk, where x̂⇤ is the minimizer of the empirical risk LN . As
the gap between the expected risk L and the empirical risk LN is of O(1/

p
mn), the overall error of

QuanTimed-DSGD with respect to the expected risk L is O(1/
p

T + 1/
p

mn).

4.2 Non-convex Setting

In this section, we characterize the convergence rate of QuanTimed-DSGD for non-convex and smooth
objectives. As discussed in Section 2, we are interested in finding a set of local models which satisfy
first-order optimality condition approximately, while the models are close to each other and satisfy
the consensus condition up to a small error. To be more precise, we are interested in finding a set
of local models {x⇤

1, . . . ,x
⇤
n} where their average x⇤ := 1

n

Pn
i=1 x

⇤
i (approximately) satisfy first-

order optimality condition, i.e., E
��rf (x⇤)

��2
 ⌫, while the iterates are close to their average, i.e.,

Ekx⇤
� x⇤

i k
2
 ⇢. If a set of local iterates satisfies these conditions we call them (⌫, ⇢)-approximate

solutions. Next theorem characterizes both first-order optimality and consensus convergence rates
and the overall complexity for achieving an (⌫, ⇢)-approximate solutions.

Theorem 2 (Non-convex Losses). Under Assumptions 1–4, and for step-sizes ↵ = T�1/6 and
" = T�1/2, QuanTimed-DSGD guarantees the following convergence and consensus rates:

1

T

T�1X

t=0

E
��rf(xt)

��2
 O

K2

(1� �)2
�2

m
+

K�2

n

!
1

T 1/3
+O

K�2

n
max

⇢
E[1/V]

Td
,
1

m

�!
1

T 2/3
,

(10)
and

1

T

T�1X

t=0

1

n

nX

i=1

E
��xt � xi,t

��2
 O

�2

m(1� �)2

!
1

T 1/3
, (11)

for large enough number of iterations T � T nc
min. Here xt =

1
n

Pn
i=1 xi,t denotes the average models

at iteration t.

The convergence rate in (10) indicates the proposed QuanTimed-DSGD method finds first-order
stationary points with vanishing approximation error, even though the quantization and stochastic
gradient noises are non-vanishing. Also, the approximation error decays as fast as O(T�1/3) with
iterations. Theorem 2 also implies from (11) that the local models reach consensus with a rate of
O(T�1/3). Moreover, it shows that to find an (⌫, ⇢)-approximate solution QuanTimed-DSGD requires
at most O(max{⌫�3, ⇢�3

}) iterations.

5 Experimental Results

In this section, we numerically evaluate the performance of the proposed QuanTimed-DSGD method
described in Algorithm 1 for solving a class of non-convex decentralized optimization problems.

7

In particular, we compare the total run-time of QuanTimed-DSGD scheme with the ones for three
benchmarks which are briefly described below.

• Decentralized SGD (DSGD) (Yuan et al., 2016): Each worker updates its decision variable as
xi,t+1 =

P
j2Ni

wijxj,t � ↵erfi(xi,t). We note that the exchanged messages are not quantized
and the local gradients are computed for a fixed batch size.

• Quantized Decentralized SGD (Q-DSGD) (Reisizadeh et al., 2019a): Iterates are updated accord-
ing to (8). Similar to QuanTimed-DSGD scheme, Q-DSGD employs quantized message-passing,
however the gradients are computed for a fixed batch size in each iteration.

• Asynchronous DSGD: Each worker updates its model without waiting to receive the updates of its
neighbors, i.e. xi,t+1 =

P
j2Ni

wijxj,⌧j �↵erfi(xi,t) where xj,⌧j denotes the most recent model
for node j. In our implementation of this scheme, models are exchanged without quantization.

Note that the first two methods mentioned above, i.e., DSGD and Q-DSGD, operate synchronously
across the workers, as is our proposed QuanTimed-DSGD method. To be more specific, worker nodes
wait to receive the decision variables from all of the neighbor nodes and then synchronously update
according to an update rule. In QuanTimed-DSGD (Figure 1, right), this waiting time consists of a
fixed gradient computation time denoted by the deadline Td and communication time of the message
exchanges. Due to the random computation times, different workers end up computing gradients of
different and random batch-sizes Bi,t across workers i and iterations t. In DSGD (and Q-DSGD)
however (Figure 1, Left), the gradient computation time varies across the workers since computing
a fixed-batch gradient of size B takes a random time whose expected value is proportional to the
batch-size B and hence the slowest nodes (stragglers) determine the overall synchronization time
Tmax. Asynchronous-DSGD mitigates stragglers since each worker iteratively computes a gradient
of batch-size B and updates the local model using the most recent models of its neighboring nodes
available in its memory (Figure 1, middle).

Mini-batch-DSGD Asynchronous-DSGD QuanTimed-DSGD

no
de

s

B<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit>

B1,1
<latexit sha1_base64="mphjDCRZyxzgER15UFpO5De8a9E=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY+lXjxWsB/QhrLZTtqlm03Y3Qgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSK4Nq777aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GdzO//YRK81g+mkmCfkSHkoecUWOldr2feZfetF8quxV3DrJKvJyUIUejX/rqDWKWRigNE1Trrucmxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfjY/d0rOrTIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCW/9jMskNSjZYlGYCmJiMvudDLhCZsTEEsoUt7cSNqKKMmMTKtoQvOWXV0mrWvGuKtWH63KtnsdRgFM4gwvw4AZqcA8NaAKDMTzDK7w5ifPivDsfi9Y1J585gT9wPn8AWOSO6w==</latexit>

B2,1
<latexit sha1_base64="ectsgbryvmjeeCnfTNovHMEhkOs=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY+lXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dtbWNza3tgs7xd29/YPD0tFxy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtev9rHrpTfulsltx5yCrxMtJGXI0+qWv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/Nz52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjrZ0IlKXLFFovCVBKMyex3MhCaM5QTSyjTwt5K2IhqytAmVLQheMsvr5JWteJdVaoP1+VaPY+jAKdwBhfgwQ3U4B4a0AQGY3iGV3hzEufFeXc+Fq1rTj5zAn/gfP4AWmuO7A==</latexit>

B3,1
<latexit sha1_base64="SWddeQLnVPa8nHsPdvyNoo8Uh08=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuIugxxIvHCOYByRJmJ5NkyOzsMtMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPdFcRSGHTdbye3sbm1vZPfLeztHxweFY9PWiZKNONNFslIdwJquBSKN1Gg5J1YcxoGkreDyd3cbz9xbUSkHnEacz+kIyWGglG0UrveT6tX3qxfLLlldwGyTryMlCBDo1/86g0iloRcIZPUmK7nxuinVKNgks8KvcTwmLIJHfGupYqG3Pjp4twZubDKgAwjbUshWai/J1IaGjMNA9sZUhybVW8u/ud1Exze+qlQcYJcseWiYSIJRmT+OxkIzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJq1L2quXKw3WpVs/iyMMZnMMleHADNbiHBjSBwQSe4RXenNh5cd6dj2VrzslmTuEPnM8fW/KO7Q==</latexit>

B1,3
<latexit sha1_base64="eP6ISdn+2e4h9OEcKWZu10WvV/k=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuIugxxIvHCOYByRJmJ5NkyOzsMtMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPdFcRSGHTdbye3sbm1vZPfLeztHxweFY9PWiZKNONNFslIdwJquBSKN1Gg5J1YcxoGkreDyd3cbz9xbUSkHnEacz+kIyWGglG0UrveT72r6qxfLLlldwGyTryMlCBDo1/86g0iloRcIZPUmK7nxuinVKNgks8KvcTwmLIJHfGupYqG3Pjp4twZubDKgAwjbUshWai/J1IaGjMNA9sZUhybVW8u/ud1Exze+qlQcYJcseWiYSIJRmT+OxkIzRnKqSWUaWFvJWxMNWVoEyrYELzVl9dJq1L2quXKw3WpVs/iyMMZnMMleHADNbiHBjSBwQSe4RXenNh5cd6dj2VrzslmTuEPnM8fW+6O7Q==</latexit>

B1,2
<latexit sha1_base64="CQPTxQYaU3Hv0n8v66ZrFtZ+D98=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY+lXjxWsB/QhrLZbtqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dtbWNza3tgs7xd29/YPD0tFxy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpv57SeujYjVI04S7kd0qEQoGEUrtev9zLusTvulsltx5yCrxMtJGXI0+qWv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/Nz52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjrZ0IlKXLFFovCVBKMyex3MhCaM5QTSyjTwt5K2IhqytAmVLQheMsvr5JWteJdVaoP1+VaPY+jAKdwBhfgwQ3U4B4a0AQGY3iGV3hzEufFeXc+Fq1rTj5zAn/gfP4AWmmO7A==</latexit>

B<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit>

B<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit>

B<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit> B<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit>

B<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit>

B<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit>

B<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit> B<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit>

Td
<latexit sha1_base64="tnLklODrd7/V+uwdvEXzaIk/uw8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbOZtEs3m7C7EUrpT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCVHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctnWSKYZMlIlGdgGoUXGLTcCOwkyqkcSCwHYzuZn77CZXmiWyYcYp+TAeSR5xRY6XHRj/sl8puxZ2DrBIvJ2XIUe+XvnphwrIYpWGCat313NT4E6oMZwKnxV6mMaVsRAfYtVTSGLU/mZ86JedWCUmUKFvSkLn6e2JCY63HcWA7Y2qGetmbif953cxEN/6EyzQzKNliUZQJYhIy+5uEXCEzYmwJZYrbWwkbUkWZsekUbQje8surpFWteJeV6sNVuXabx1GAUziDC/DgGmpwD3VoAoMBPMMrvDnCeXHenY9F65qTz5zAHzifPyNyjbM=</latexit>

Td
<latexit sha1_base64="tnLklODrd7/V+uwdvEXzaIk/uw8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbOZtEs3m7C7EUrpT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCVHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctnWSKYZMlIlGdgGoUXGLTcCOwkyqkcSCwHYzuZn77CZXmiWyYcYp+TAeSR5xRY6XHRj/sl8puxZ2DrBIvJ2XIUe+XvnphwrIYpWGCat313NT4E6oMZwKnxV6mMaVsRAfYtVTSGLU/mZ86JedWCUmUKFvSkLn6e2JCY63HcWA7Y2qGetmbif953cxEN/6EyzQzKNliUZQJYhIy+5uEXCEzYmwJZYrbWwkbUkWZsekUbQje8surpFWteJeV6sNVuXabx1GAUziDC/DgGmpwD3VoAoMBPMMrvDnCeXHenY9F65qTz5zAHzifPyNyjbM=</latexit>

Td
<latexit sha1_base64="tnLklODrd7/V+uwdvEXzaIk/uw8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFiv6ANZbOZtEs3m7C7EUrpT/DiQRGv/iJv/hu3bQ7a+mDg8d4MM/OCVHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctnWSKYZMlIlGdgGoUXGLTcCOwkyqkcSCwHYzuZn77CZXmiWyYcYp+TAeSR5xRY6XHRj/sl8puxZ2DrBIvJ2XIUe+XvnphwrIYpWGCat313NT4E6oMZwKnxV6mMaVsRAfYtVTSGLU/mZ86JedWCUmUKFvSkLn6e2JCY63HcWA7Y2qGetmbif953cxEN/6EyzQzKNliUZQJYhIy+5uEXCEzYmwJZYrbWwkbUkWZsekUbQje8surpFWteJeV6sNVuXabx1GAUziDC/DgGmpwD3VoAoMBPMMrvDnCeXHenY9F65qTz5zAHzifPyNyjbM=</latexit>

Tmax
<latexit sha1_base64="QVjy7q2vzBIaYxKB3Q6kfETctEU=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9FLx4r9AvatWTTtA1Nsksyqy3L/g8vHhTx6n/x5r8xbfegrQ8GHu/NMDMviAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41TRhryho0FKFuB8QwwRVrAAfB2pFmRAaCtYLx7cxvPTJteKjqMI2YL8lQ8QGnBKz0UO8lXWATSCSZpGmvWHLL7hx4lXgZKaEMtV7xq9sPaSyZAiqIMR3PjcBPiAZOBUsL3diwiNAxGbKOpYpIZvxkfnWKz6zSx4NQ21KA5+rviYRIY6YysJ2SwMgsezPxP68Tw+DaT7iKYmCKLhYNYoEhxLMIcJ9rRkFMLSFUc3srpiOiCQUbVMGG4C2/vEqalbJ3Ua7cX5aqN1kceXSCTtE58tAVqqI7VEMNRJFGz+gVvTlPzovz7nwsWnNONnOM/sD5/AFfJJMU</latexit>

Tmax
<latexit sha1_base64="QVjy7q2vzBIaYxKB3Q6kfETctEU=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9FLx4r9AvatWTTtA1Nsksyqy3L/g8vHhTx6n/x5r8xbfegrQ8GHu/NMDMviAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41TRhryho0FKFuB8QwwRVrAAfB2pFmRAaCtYLx7cxvPTJteKjqMI2YL8lQ8QGnBKz0UO8lXWATSCSZpGmvWHLL7hx4lXgZKaEMtV7xq9sPaSyZAiqIMR3PjcBPiAZOBUsL3diwiNAxGbKOpYpIZvxkfnWKz6zSx4NQ21KA5+rviYRIY6YysJ2SwMgsezPxP68Tw+DaT7iKYmCKLhYNYoEhxLMIcJ9rRkFMLSFUc3srpiOiCQUbVMGG4C2/vEqalbJ3Ua7cX5aqN1kceXSCTtE58tAVqqI7VEMNRJFGz+gVvTlPzovz7nwsWnNONnOM/sD5/AFfJJMU</latexit>

Tmax
<latexit sha1_base64="QVjy7q2vzBIaYxKB3Q6kfETctEU=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqexWQY9FLx4r9AvatWTTtA1Nsksyqy3L/g8vHhTx6n/x5r8xbfegrQ8GHu/NMDMviAQ34LrfTm5tfWNzK79d2Nnd2z8oHh41TRhryho0FKFuB8QwwRVrAAfB2pFmRAaCtYLx7cxvPTJteKjqMI2YL8lQ8QGnBKz0UO8lXWATSCSZpGmvWHLL7hx4lXgZKaEMtV7xq9sPaSyZAiqIMR3PjcBPiAZOBUsL3diwiNAxGbKOpYpIZvxkfnWKz6zSx4NQ21KA5+rviYRIY6YysJ2SwMgsezPxP68Tw+DaT7iKYmCKLhYNYoEhxLMIcJ9rRkFMLSFUc3srpiOiCQUbVMGG4C2/vEqalbJ3Ua7cX5aqN1kceXSCTtE58tAVqqI7VEMNRJFGz+gVvTlPzovz7nwsWnNONnOM/sD5/AFfJJMU</latexit>

B<latexit sha1_base64="wW6OXYFoJg3RvlrYIdlxqPzQzSE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9YvltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia89adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5L1VoWRx7O4BwuwYMbqMI91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AJWvjMo=</latexit>

Figure 1: Gradient computation timeline for three methods: DSGD, Asynchronous-DSGD, QuanTimed-DSGD.

Data and Experimental Setup. We carry out two sets of experiments over CIFAR-10 and
MNIST datasets, where each worker is assigned with a sample set of size m = 200 for both
datasets. For CIFAR-10, we implement a binary classification using a fully connected neural
network with one hidden layer with 30 neurons. Each image is converted to a vector of length
1024. For MNIST, we use a fully connected neural network with one hidden layer of size
50 to classify the input image into 10 classes. In experiments over CIFAR-10, step-sizes are
fine-tuned as follows: (↵, ") = (0.08/T 1/6, 14/T 1/2) for QuanTimed-DSGD and Q-DSGD, and
↵ = 0.015 for DSGD and Asynchronous DSGD. In MNIST experiments, step-sizes are fine-tuned to
(↵, ") = (0.3/T 1/6, 15/T 1/2) for QuanTimed-DSGD and Q-DSGD, and ↵ = 0.2 for DSGD.

We implement the unbiased low precision quantizer in (7) with various quantization levels s, and
we let Tc denote the communication time of a p-vector without quantization (16-bit precision). The
communication time for a quantized vector is then proportioned according the quantization level. In
order to ensure that the expected batch size used in each node is a target positive number b, we choose
the deadline Td = b/E[V], where V ⇠ Uniform(10, 90) is the random computation speed. The
communication graph is a random Erdös-Rènyi graph with edge connectivity pc = 0.4 and n = 50
nodes. The weight matrix is designed as W = I�L/ where L is the Laplacian matrix of the graph
and > �max(L)/2.

Results. Figure 2 compares the total training run-time for the QuanTimed-DSGD and DSGD schemes.
On CIFAR-10 for instance (left), the same (effective) batch-sizes, the proposed QuanTimed-DSGD
achieves speedups of up to 3⇥ compared to DSGD.

8

Figure 2: Comparison of QuanTimed-DSGD and vanilla DSGD methods for training a neural network on
CIFAR-10 (left) and MNIST (right) datasets (Tc = 3).

Figure 3: Comparison of QuanTimed-DSGD, QDSGD, and vanilla DSGD methods for training a neural network
on CIFAR-10 (left) and MNIST (right) datasets (Tc = 3).

Figure 4: Left: Comparison of QuanTimed-DSGD with Asynchronous DSGD and DSGD for training a neural
network on CIFAR-10 (Tc = 3). Right: Effect of Td on the loss for CIFAR-10 (Tc = 1).

In Figure 3, we further compare these two schemes to Q-DSGD benchmark. Although Q-SGD im-
proves upon the vanilla DSGD by employing quantization, however, the proposed QuanTimed-DSGD
illustrates 2⇥ speedup in training time over Q-DSGD (left).

To evaluate the straggler mitigation in the QuanTimed-DSGD, we compare its run-time with Asyn-
chronous DSGD benchmark in Figure 4 (left). While Asynchronous DSGD outperforms DSGD in
training run-time by avoiding slow nodes, the proposed QuanTimed-DSGD scheme improves upon
Asynchronous DSGD by up to 30%. These plots further illustrate that QuanTimed-DSGD significantly
reduces the training time by simultaneously handling the communication load by quantization and
mitigating stragglers through a deadline-based computation. The deadline time Td indeed can be
optimized for the minimum training run-time, as illustrated in Figure 4 (right). Additional numer-
ical results on neural networks with four hidden layers and ImageNet dataset are provided in the
supplementary materials.

6 Acknowledgments

The authors acknowledge supports from National Science Foundation (NSF) under grant CCF-
1909320 and UC Office of President under Grant LFR-18-548175. The research of H. Hassani is
supported by NSF grants 1755707 and 1837253.

9

References

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic, M. (2017). QSGD: Communication-efficient SGD
via gradient quantization and encoding. In Advances in Neural Information Processing Systems, pages
1707–1718.

Ananthanarayanan, G., Ghodsi, A., Shenker, S., and Stoica, I. (2013). Effective straggler mitigation: Attack
of the clones. In Presented as part of the 10th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 13), pages 185–198.

Ananthanarayanan, G., Kandula, S., Greenberg, A. G., Stoica, I., Lu, Y., Saha, B., and Harris, E. (2010). Reining
in the outliers in map-reduce clusters using mantri. In Osdi, volume 10, page 24.

Aysal, T. C., Coates, M., and Rabbat, M. (2007). Distributed average consensus using probabilistic quantization.
In Statistical Signal Processing, 2007. SSP’07. IEEE/SP 14th Workshop on, pages 640–644. IEEE.

Berahas, A. S., Iakovidou, C., and Wei, E. (2019). Nested distributed gradient methods with adaptive quantized
communication. arXiv preprint arXiv:1903.08149.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anandkumar, A. (2018). signsgd: Compressed optimisation
for non-convex problems. arXiv preprint arXiv:1802.04434.

Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. In Advances in neural information
processing systems, pages 161–168.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends R� in Machine Learning,
3(1):1–122.

Chang, T.-H., Hong, M., and Wang, X. (2015). Multi-agent distributed optimization via inexact consensus admm.
Signal Processing, IEEE Transactions on, 63(2):482–497.

Choi, H.-L. and How, J. P. (2010). Continuous trajectory planning of mobile sensors for informative forecasting.
Automatica, 46(8):1266–1275.

Dean, J. and Barroso, L. A. (2013). The tail at scale. Communications of the ACM, 56(2):74–80.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A., Tucker, P., Yang, K., Le, Q. V.,
et al. (2012). Large scale distributed deep networks. In Advances in neural information processing systems,
pages 1223–1231.

Doan, T. T., Maguluri, S. T., and Romberg, J. (2018). Accelerating the convergence rates of distributed
subgradient methods with adaptive quantization. arXiv preprint arXiv:1810.13245.

Duchi, J. C., Agarwal, A., and Wainwright, M. J. (2012). Dual averaging for distributed optimization: conver-
gence analysis and network scaling. Automatic Control, IEEE Trans. on, 57(3):592–606.

Dutta, S., Joshi, G., Ghosh, S., Dube, P., and Nagpurkar, P. (2018). Slow and stale gradients can win the race:
Error-runtime trade-offs in distributed sgd. arXiv preprint arXiv:1803.01113.

El Chamie, M., Liu, J., and Başar, T. (2016). Design and analysis of distributed averaging with quantized
communication. IEEE Transactions on Automatic Control, 61(12):3870–3884.

Ferdinand, N., Al-Lawati, H., Draper, S., and Nokleby, M. (2019). Anytime minibatch: Exploiting stragglers in
online distributed optimization. International Conference on Learning Representations.

Hong, M., Hajinezhad, D., and Zhao, M.-M. (2017). Prox-pda: The proximal primal-dual algorithm for fast
distributed nonconvex optimization and learning over networks. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17, pages 1529–1538. JMLR.org.

Hong, M., Lee, J. D., and Razaviyayn, M. (2018). Gradient primal-dual algorithm converges to second-order
stationary solutions for nonconvex distributed optimization. arXiv preprint arXiv:1802.08941.

Jakovetic, D., Xavier, J., and Moura, J. M. (2014). Fast distributed gradient methods. Automatic Control, IEEE
Transactions on, 59(5):1131–1146.

Jha, D. K., Chattopadhyay, P., Sarkar, S., and Ray, A. (2016). Path planning in gps-denied environments via
collective intelligence of distributed sensor networks. International Journal of Control, 89(5):984–999.

10

Jiang, Z., Balu, A., Hegde, C., and Sarkar, S. (2017). Collaborative deep learning in fixed topology networks. In
Advances in Neural Information Processing Systems, pages 5904–5914.

Kashyap, A., Basar, T., and Srikant, R. (2006). Quantized consensus. 2006 IEEE International Symposium on
Information Theory, pages 635–639.

Koloskova, A., Stich, S. U., and Jaggi, M. (2019). Decentralized stochastic optimization and gossip algorithms
with compressed communication. arXiv preprint arXiv:1902.00340.

Lan, G. and Zhou, Y. (2018). Asynchronous decentralized accelerated stochastic gradient descent. arXiv preprint
arXiv:1809.09258.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

Lee, C.-S., Michelusi, N., and Scutari, G. (2018a). Distributed quantized weight-balancing and average consensus
over digraphs. In 2018 IEEE Conference on Decision and Control (CDC), pages 5857–5862. IEEE.

Lee, C.-S., Michelusi, N., and Scutari, G. (2018b). Finite rate quantized distributed optimization with geometric
convergence. In 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pages 1876–1880.
IEEE.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., and Ramchandran, K. (2018c). Speeding up distributed
machine learning using codes. IEEE Transactions on Information Theory, 64(3):1514–1529.

Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. (2017a). Can decentralized algorithms
outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In
Advances in Neural Information Processing Systems, pages 5330–5340.

Lian, X., Zhang, W., Zhang, C., and Liu, J. (2017b). Asynchronous decentralized parallel stochastic gradient
descent. arXiv preprint arXiv:1710.06952.

Mei, S., Bai, Y., Montanari, A., et al. (2018). The landscape of empirical risk for nonconvex losses. The Annals
of Statistics, 46(6A):2747–2774.

Mokhtari, A. and Ribeiro, A. (2016). Dsa: Decentralized double stochastic averaging gradient algorithm. The
Journal of Machine Learning Research, 17(1):2165–2199.

Mokhtari, A., Shi, W., Ling, Q., and Ribeiro, A. (2016). Dqm: Decentralized quadratically approximated
alternating direction method of multipliers. IEEE Transactions on Signal Processing, 64(19):5158–5173.

Nedic, A., Olshevsky, A., Ozdaglar, A., and Tsitsiklis, J. N. (2008). Distributed subgradient methods and
quantization effects. In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 4177–4184.
IEEE.

Nedic, A. and Ozdaglar, A. (2009). Distributed subgradient methods for multi-agent optimization. Automatic
Control, IEEE Transactions on, 54(1):48–61.

Peng, Z., Xu, Y., Yan, M., and Yin, W. (2016). On the convergence of asynchronous parallel iteration with
unbounded delays. Journal of the Operations Research Society of China, pages 1–38.

Qu, G. and Li, N. (2017). Accelerated distributed nesterov gradient descent. arXiv preprint arXiv:1705.07176.

Rabbat, M. G. and Nowak, R. D. (2005). Quantized incremental algorithms for distributed optimization. IEEE
Journal on Selected Areas in Communications, 23(4):798–808.

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In Proc. of the 25th Annual Conference on Neural Information Processing (NIPS), pages
693–701.

Reisizadeh, A., Mokhtari, A., Hassani, H., and Pedarsani, R. (2018). Quantized decentralized consensus
optimization. In 2018 IEEE Conference on Decision and Control (CDC), pages 5838–5843. IEEE.

Reisizadeh, A., Mokhtari, A., Hassani, H., and Pedarsani, R. (2019a). An exact quantized decentralized gradient
descent algorithm. IEEE Transactions on Signal Processing, 67(19):4934–4947.

Reisizadeh, A., Prakash, S., Pedarsani, R., and Avestimehr, A. S. (2019b). Coded computation over heterogeneous
clusters. IEEE Transactions on Information Theory.

Reisizadeh, A., Prakash, S., Pedarsani, R., and Avestimehr, A. S. (2019c). Codedreduce: A fast and robust
framework for gradient aggregation in distributed learning. arXiv preprint arXiv:1902.01981.

11

Ribeiro, A. (2010). Ergodic stochastic optimization algorithms for wireless communication and networking.
IEEE Transactions on Signal Processing, 58(12):6369–6386.

Scaman, K., Bach, F., Bubeck, S., Massoulié, L., and Lee, Y. T. (2018). Optimal algorithms for non-smooth
distributed optimization in networks. In Advances in Neural Information Processing Systems, pages 2740–
2749.

Schizas, I. D., Ribeiro, A., and Giannakis, G. B. (2008). Consensus in ad hoc wsns with noisy links–part i:
Distributed estimation of deterministic signals. Signal Processing, IEEE Transactions on, 56(1):350–364.

Scutari, G., Facchinei, F., and Lampariello, L. (2017). Parallel and distributed methods for constrained nonconvex
optimization?part i: Theory. IEEE Transactions on Signal Processing, 65(8):1929–1944.

Scutari, G. and Sun, Y. (2018). Distributed nonconvex constrained optimization over time-varying digraphs.
arXiv preprint arXiv:1809.01106.

Seaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Massoulié, L. (2017). Optimal algorithms for smooth and
strongly convex distributed optimization in networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 3027–3036. JMLR. org.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). 1-bit stochastic gradient descent and its application to
data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of the International Speech
Communication Association.

Shi, W., Ling, Q., Wu, G., and Yin, W. (2015a). Extra: An exact first-order algorithm for decentralized consensus
optimization. SIAM Journal on Optimization, 25(2):944–966.

Shi, W., Ling, Q., Wu, G., and Yin, W. (2015b). A proximal gradient algorithm for decentralized composite
optimization. IEEE Transactions on Signal Processing, 63(22):6013–6023.

Shi, W., Ling, Q., Yuan, K., Wu, G., and Yin, W. (2014). On the linear convergence of the admm in decentralized
consensus optimization. IEEE Trans. on Signal Processing, 62(7):1750–1761.

Sun, H. and Hong, M. (2018). Distributed non-convex first-order optimization and information processing:
Lower complexity bounds and rate optimal algorithms. arXiv preprint arXiv:1804.02729.

Tandon, R., Lei, Q., Dimakis, A. G., and Karampatziakis, N. (2016). Gradient coding. arXiv preprint
arXiv:1612.03301.

Tsianos, K. I., Lawlor, S., and Rabbat, M. G. (2012). Push-sum distributed dual averaging for convex optimization.
CDC, pages 5453–5458.

Tsitsiklis, J. N. and Luo, Z.-Q. (1987). Communication complexity of convex optimization. Journal of
Complexity, 3(3):231–243.

Uribe, C. A., Lee, S., Gasnikov, A., and Nedić, A. (2018). A dual approach for optimal algorithms in distributed
optimization over networks. arXiv preprint arXiv:1809.00710.

Wang, D., Joshi, G., and Wornell, G. (2014). Efficient task replication for fast response times in parallel
computation. In ACM SIGMETRICS Performance Evaluation Review, volume 42, pages 599–600. ACM.

Wu, T., Yuan, K., Ling, Q., Yin, W., and Sayed, A. H. (2017). Decentralized consensus optimization with
asynchrony and delays. IEEE Transactions on Signal and Information Processing over Networks, 4(2):293–
307.

Yu, Q., Maddah-Ali, M. A., and Avestimehr, A. S. (2017). Polynomial codes: an optimal design for high-
dimensional coded matrix multiplication. arXiv preprint arXiv:1705.10464.

Yuan, K., Ling, Q., and Yin, W. (2016). On the convergence of decentralized gradient descent. SIAM Journal on
Optimization, 26(3):1835–1854.

Yuksel, S. and Basar, T. (2003). Quantization and coding for decentralized lti systems. In 42nd IEEE International
Conference on Decision and Control (IEEE Cat. No. 03CH37475), volume 3, pages 2847–2852. IEEE.

Zeng, J. and Yin, W. (2018). On nonconvex decentralized gradient descent. IEEE Transactions on signal
processing, 66(11):2834–2848.

Zhang, X., Liu, J., Zhu, Z., and Bentley, E. S. (2018). Compressed distributed gradient descent: Communication-
efficient consensus over networks. arXiv preprint arXiv:1812.04048.

12

