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Abstract

Inverse reinforcement learning (IRL) enables an agent to learn complex behavior
by observing demonstrations from a (near-)optimal policy. The typical assumption
is that the learner’s goal is to match the teacher’s demonstrated behavior. In this
paper, we consider the setting where the learner has its own preferences that it
additionally takes into consideration. These preferences can for example capture
behavioral biases, mismatched worldviews, or physical constraints. We study
two teaching approaches: learner-agnostic teaching, where the teacher provides
demonstrations from an optimal policy ignoring the learner’s preferences, and
learner-aware teaching, where the teacher accounts for the learner’s preferences.
We design learner-aware teaching algorithms and show that significant performance
improvements can be achieved over learner-agnostic teaching.

1 Introduction

Inverse reinforcement learning (IRL) enables a learning agent (learner) to acquire skills from
observations of a teacher’s demonstrations. The learner infers a reward function explain-
ing the demonstrated behavior and optimizes its own behavior accordingly. IRL has been
studied extensively [Abbeel and Ng, 2004, Ratliff et al., 2006, Ziebart, 2010, Boularias et al., 2011,
Osa et al., 2018] under the premise that the learner can and is willing to imitate the teacher’s behavior.

In real-world settings, however, a learner typically does not blindly follow the teacher’s demonstra-
tions, but also has its own preferences and constraints. For instance, consider demonstrating to an
auto-pilot of a self-driving car how to navigate from A to B by taking the most fuel-efficient route.
These demonstrations might conflict with the preference of the auto-pilot to drive on highways in
order to ensure maximum safety. Similarly, in robot-human interaction with the goal of teaching
people how to cook, a teaching robot might demonstrate to a human user how to cook “roast chicken”,
which could conflict with the preferences of the learner who is “vegetarian”. To give yet another
example, consider a surgical training simulator which provides virtual demonstrations of expert
behavior; a novice learner might not be confident enough to imitate a difficult procedure because of
safety concerns. In all these examples, the learner might not be able to acquire useful skills from the
teacher’s demonstrations.

In this paper, we formalize the problem of teaching a learner with preferences and constraints. First,
we are interested in understanding the suboptimality of learner-agnostic teaching, i.e., ignoring the
learner’s preferences. Second, we are interested in designing learner-aware teachers who account
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for the learner’s preferences and thus enable more efficient learning. To this end, we study a learner
model with preferences and constraints in the context of the Maximum Causal Entropy (MCE) IRL
framework [Ziebart, 2010, Ziebart et al., 2013, Zhou et al., 2018]. This enables us to formulate the
teaching problem as an optimization problem, and to derive and analyze algorithms for learner-aware
teaching. Our main contributions are:

I We formalize the problem of IRL under preference constraints (Section 2 and Section 3).
II We analyze the problem of optimizing demonstrations for the learner when preferences are

known to the teacher, and we propose a bilevel optimization approach to the problem (Section 4).
III We propose strategies for adaptively teaching a learner with preferences unknown to the teacher,

and we provide theoretical guarantees under natural assumptions (Section 5).
IV We empirically show that significant performance improvements can be achieved by learner-

aware teachers as compared to learner-agnostic teachers (Section 6).

2 Problem Setting

Environment. Our environment is described by a Markov decision process (MDP) M :=
(S,A, T, γ, P0, R). Here S and A denote finite sets of states and actions. T : S × S × A → [0, 1]
describes the state transition dynamics, i.e., T (s′|s, a) is the probability of landing in state s′ by
taking action a from state s. γ ∈ (0, 1) is the discounting factor. P0 : S → [0, 1] is an initial
distribution over states. R : S → R is the reward function. We assume that there exists a feature
map φr : S → [0, 1]dr such that the reward function is linear, i.e., R(s) = 〈w∗r , φr(s)〉 for some
w∗r ∈ Rdr . Note that a bound of ‖w∗r‖1 ≤ 1 ensures that |R(s)| ≤ 1 for all s.

Basic definitions. A policy is a map π : S×A → [0, 1] such that π( · | s) is a probability distribution
over actions for every state s. We denote by Π the set of all such policies. The performance measure
for policies we are interested in is the expected discounted reward R(π) := E (

∑∞
t=0 γ

tR(st)), where
the expectation is taken with respect to the distribution over trajectories ξ = (s0, s1, s2, . . .) induced
by π together with the transition probabilities T and the initial state distribution P0. A policy π is
optimal for the reward function R if π ∈ arg maxπ′∈ΠR(π′), and we denote an optimal policy by π∗.
Note that R(π) = 〈w∗r , µr(π)〉, where µr : Π→ Rdr , π 7→ E (

∑∞
t=0 γ

tφr(st)), is the map taking a
policy to its vector of (discounted) feature expectations. We denote by Ωr = {µr(π) : π ∈ Π} the
image µr(Π) of this map. Note that the set Ωr ∈ Rdr is convex (see [Ziebart, 2010, Theorem 2.8]
and [Abbeel and Ng, 2004]), and also bounded due to the discounting factor γ ∈ (0, 1). For a finite
collection of trajectories Ξ = {si0, si1, si2, . . .}i=1,2,... obtained by executing a policy π in the MDP
M, we denote the empirical counterpart of µr(π) by µ̂r(Ξ) := 1

|Ξ|
∑
i

∑
t γ

tφr(s
i
t).

An IRL learner and a teacher. We consider a learner L implementing an inverse reinforcement
learning (IRL) algorithm and a teacher T. The teacher has access to the full MDPM; the learner
knows the MDP and the parametric form of reward function R(s) = 〈wr, φr(s)〉 but does not know
the true reward parameter w∗r . The learner, upon receiving demonstrations from the teacher, outputs
a policy πL using its algorithm. The teacher’s objective is to provide a set of demonstrations ΞT to
the learner that ensures that the learner’s output policy πL achieves high reward R(πL).

The standard IRL algorithms are based on the idea of feature matching [Abbeel and Ng, 2004,
Ziebart, 2010, Osa et al., 2018]: The learner’s algorithm finds a policy πL that matches the feature
expectations of the received demonstrations, ensuring that ‖µr(πL) − µ̂r(Ξ

T)‖2 ≤ ε where ε
specifies a desired level of accuracy. In this standard setting, the learner’s primary goal is to imitate
the teacher (via feature matching) and this makes the teaching process easy. In fact, the teacher just
needs to provide a sufficiently rich pool of demonstrations ΞT obtained by executing π∗, ensuring
‖µ̂r(ΞT)−µr(π∗)‖2 ≤ ε. This guarantees that ‖µr(πL)−µr(π∗)‖2 ≤ 2ε. Furthermore, the linearity
of rewards and ‖w∗r‖1 ≤ 1 ensures that the learner’s output policy πL satisfies R(πL) ≥ R(π∗)− 2ε.

Key challenges in teaching a learner with preference constraints. In this paper, we study a novel
setting where the learner has its own preferences which it additionally takes into consideration when
learning a policy πL using teacher’s demonstrations. We formally specify our learner model in the
next section; here we highlight the key challenges that arise in teaching such a learner. Given that
the learner’s primary goal is no longer just imitating the teacher via feature matching, the learner’s
output policy can be suboptimal with respect to the true reward even if it had access to µr(π∗), i.e.,

2



(a) Environment

𝜇𝑟(𝜋
∗)𝜇𝑟(𝜋2)

𝜇𝑟(𝜋3)

𝜖

(b) Set of µr(π) vectors

Figure 1: An illustrative example to showcase the suboptimality of teaching when the learner
has preferences and constraints. Environment: Figure 1a shows a grid-world environment in-
spired by the object-world and gathering game environments [Levine et al., 2010, Leibo et al., 2017,
Mendez et al., 2018]. Each cell represents a state, there are five actions given by “left", “up", “right",
"down", “stay", the transitions are deterministic, and the starting state is the top-left cell. The agent’s
goal is to collect objects in the environment: Collecting a “star" provides a reward of 1.0 and a “plus"
a reward of 0.9; objects immediately appear again upon collection, and the rewards are discounted
with γ close to 1. The optimal policy π∗ is to go to the nearest “star" and then “stay" there. Pref-
erences: A small number of states in the environment are distractors, depicted by colored cells in
Figure 1a. We consider a learner who prefers to avoid “green" distractors: it has a hard constraint that
the probability of having a “green" distractor within a 3x3 neighborhood, i.e., 1-cell distance, is at
most ε = 0.1. Feature expectation vectors: Figure 1b shows the set of feature expectation vectors
{µr(π) : π ∈ Π}. The x-axis and the y-axis represent the discounted feature count for collecting
“star" and “plus" objects, respectively. The striped region represents policies that are feasible w.r.t. the
learner’s constraint. Suboptimality of teaching: Upon receiving demonstrations from an optimal
policy π∗ with feature vector µr(π∗), the learner under its preference constraint can best match the
teacher’s demonstrations (in a sense of minimizing ‖µr(πL)− µr(π∗)‖2) by outputting a policy with
µr(π2), which is clearly suboptimal w.r.t. the true rewards. Policy π3 with feature vector µr(π3)
represents an alternate teaching policy which would have led to higher reward for the learner.

the feature expectation vector of an optimal policy π∗. Figure 1 provides an illustrative example
to showcase the suboptimality of teaching when the learner has preferences and constraints. The
key challenge that we address in this paper is that of designing a teaching algorithm that selects
demonstrations while accounting for the learner’s preferences.

3 Learner Model
In this section we describe the learner models we consider, including different ways of defining
preferences and constraints. First, we introduce some notation and definitions that will be helpful.
We capture learner’s preferences via a feature map φc : S → [0, 1]dc . We define φ(s) as a con-
catenation of the two feature maps φr(s) and φc(s) given by [φr(s)

†, φc(s)
†]† and let d = dr + dc.

Similar to the map µr, we define µc : Π → Rdc , π 7→ E (
∑∞
t=0 γ

tφc(st)) and µ : Π → Rd,
π 7→ E (

∑∞
t=0 γ

tφ(st)). Similar to Ωr, we define Ωc ⊆ Rdc and Ω ⊆ Rd as the images of the maps
µc(Π) and µ(Π). Note that for any policy π ∈ Π, we have µ(π) = [µr(π)†, µc(π)†]†.

Standard (discounted) MCE-IRL. Our learner models build on the (discounted) Maximum
Causal Entropy (MCE) IRL framework [Ziebart et al., 2008, Ziebart, 2010, Ziebart et al., 2013,
Zhou et al., 2018]. In the standard (discounted) MCE-IRL framework, a learning agent aims to iden-
tify a policy that matches the feature expectations of the teacher’s demonstrations while simultaneously
maximizing the (discounted) causal entropy given by H(π) := H({at}t=0,1,...‖{st}t=0,1,...) :=∑∞
t=0 γ

tE
[
− log π(at | st)

]
. More background is provided in Appendix D.

Including preference constraints. The standard framework can be readily extended to include
learner’s preferences in the form of constraints on the preference features φc. Clearly, the learner’s
preferences can render exact matching of the teacher’s demonstrations infeasible and hence we relax
this condition. To this end, we consider the following generic learner model:

max
π, δsoft

r ≥0, δsoft
c ≥0

H(π)− Cr · ‖δsoft
r ‖p − Cc · ‖δsoft

c ‖p (1)

s.t. |µr(π)[i]− µ̂r(ΞT)[i]| ≤ δhard
r [i] + δsoft

r [i] ∀i ∈ {1, 2, . . . , dr}
gj(µc(π)) ≤ δhard

c [j] + δsoft
c [j] ∀j ∈ {1, 2, . . . ,m},
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Here, g : Rdc 7→ R are m convex functions representing preference constraints. The coefficients Cr
and Cc are the learner’s parameters which quantify the relative importance of matching the teacher’s
demonstrations and satisfying the learner’s preferences. The learner model is further characterized
by parameters δhard

r [i] and δhard
c [j] (we will use the vector notation as δhard

r ∈ Rdr≥0 and δhard
c ∈ Rm≥0).

The optimization variables for the learner are given by π, δsoft
r [i], and δsoft

c [j] (we will use the vector
notation as δsoft

r ∈ Rdr≥0 and δsoft
c ∈ Rm≥0). These parameters (δhard

r , δhard
c ) and optimization variables

(δsoft
r , δsoft

c ) characterize the following behavior:

• While a mismatch of up to δhard
r between the learner’s and teacher’s reward feature expecta-

tions incurs no cost regarding the optimization objective, a mismatch larger than δhard
r incurs

a cost of Cr · ‖δsoft
r ‖p.

• Similarly, while a violation of up to δhard
c of the learner’s preference constraints incurs

no cost regarding the optimization objective, a violation larger than δhard
c incurs a cost of

Cc · ‖δsoft
c ‖p.

Next, we discuss two special instances of this generic learner model.

3.1 Learner Model with Hard Preference Constraints

It is instructive to study a special case of the above-mentioned generic learner model. Let us consider
the model in Eq. 1 with δhard

r = 0, δhard
c = 0, and a limiting case with Cr, Cc � 0 such that the term

H(π) can be neglected. Now, if we additionally assume that Cc � Cr, the learner’s objective can be
thought of as finding a policy π that minimizes theLp norm distance to the reward feature expectations
of the teacher’s demonstration while satisfying the constraints gj(µc(π)) ≤ 0 ∀j ∈ {1, 2, . . . ,m}.
More formally, we study the following learner model given in Eq. 2 below:

min
π

‖µr(π)− µ̂r(ΞT)‖p (2)

s.t. gj(µc(π)) ≤ 0 ∀j ∈ {1, 2, . . . ,m}.

To get a better understanding of the model, we can define the learner’s constraint set as ΩL := {µ :
µ ∈ Ω s.t. gj(µc) ≤ 0 ∀j ∈ {1, 2, . . . ,m}}. Similar to ΩL, we define ΩL

r ⊆ Ωr where ΩL
r is the

projection of the set ΩL to the subspaces Rdr . We can now rewrite the above optimization problem as
minπ : µr(π)∈ΩL

r
‖µr(π)− µ̂r(ΞT)‖p. Hence, the learner’s behavior is given by:

(i) Learner can match: When µ̂r(ΞT) ∈ ΩL
r , the learner outputs a policy πL s.t. µr(πL) = µ̂r(Ξ

T).

(ii) Learner cannot match: Otherwise, the learner outputs a policy πL such that µr(πL) is given by
the Lp norm projection of the vector µ̂r(ΞT) onto the set ΩL

r .

Figure 1 provides an illustration of the behavior of this learner model. We will design learner-aware
teaching algorithms for this learner model in Section 4.1 and Section 5.

3.2 Learner Model with Soft Preference Constraints

Another interesting learner model that we study in this paper arises from the generic learner when
we consider m = dc number of box-type linear constraints with gj(µc(π)) = µc(π)[j] ∀j ∈
{1, 2, . . . , dc}. We consider an L1 norm penalty on violation, and for simplicity we consider
δhard
r [i] = 0 ∀i ∈ {1, 2, . . . , dr}. In this case, the learner’s model is given by

max
π, δsoft

r ≥0, δsoft
c ≥0

H(π)− Cr · ‖δsoft
r ‖1 − Cc · ‖δsoft

c ‖1 (3)

s.t. |µr(π)[i]− µ̂r(ΞT)[i]| ≤ δsoft
r [i] ∀i ∈ {1, 2, . . . , dr}

µc(π)[j] ≤ δhard
c [j] + δsoft

c [j] ∀j ∈ {1, 2, . . . , dc},

The solution to the above problem corresponds to a softmax policy with a reward function Rλ(s) =
〈wλ, φ(s)〉 where wλ ∈ Rd is parametrized by λ. The optimal parameters λ can be computed
efficiently and the corresponding softmax policy is then obtained by Soft-Value-Iteration procedure
(see [Ziebart, 2010, Algorithm. 9.1], [Zhou et al., 2018]). Details are provided in Appendix E. We
will design learner-aware teaching algorithms for this learner model in Section 4.2.
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4 Learner-aware Teaching under Known Constraints

In this section, we analyze the setting when the teacher has full knowledge of the learner’s constraints.

4.1 A Learner-aware Teacher for Hard Preferences: AWARE-CMDP

Here, we design a learner-aware teaching algorithm when considering the learner from Section 3.1.
Given that the teacher has full knowledge of the learner’s preferences, it can compute an optimal
teaching policy by maximizing the reward over policies that satisfy the learner’s preference constraints,
i.e., the teacher solves a constrained-MDP problem (see [De, 1960, Altman, 1999]) given by

max
π

〈w∗r , µr(π)〉 s.t. µr(π) ∈ ΩL
r .

We refer to an optimal solution of this problem as πaware and the corresponding teacher as AWARE-
CMDP. We can make the following observation formalizing the value of learner-aware teaching:
Theorem 1. For simplicity, assume that the teacher can provide an exact feature expectation µ(π)
of a policy instead of providing demonstrations to the learner. Then, the value of learner-aware
teaching is

max
π s.t. µr(π)∈ΩL

r

〈
w∗r , µr(π)

〉
−
〈
w∗r ,ProjΩL

r

(
µr(π

∗)
)〉
≥ 0.

When the set ΩL is defined via a set of linear constraints, the above problem can be formulated as a
linear program and solved exactly. Details are provided in Appendix F.

4.2 A Learner-aware Teacher for Soft Preferences: AWARE-BIL

For the learner models in Section 3, the optimal learner-aware teaching problem can be naturally
formalized as the following bi-level optimization problem:

max
πT

R(πL) s.t. πL ∈ arg max
π

IRL(π, µ(πT)), (4)

where IRL(π, µ(πT)) stands for the IRL problem solved by the learner given demonstrations from
πT and can include preferences of the learner (see Eq. 1 in Section 3).

There are many possibilities for solving this bi-level optimization problem—see for exam-
ple [Sinha et al., 2018] for an overview. In this paper we adopted a single-level reduction approach
to simplify the above bi-level optimization problem as this results in particularly intuitive optimizia-
tion problems for the teacher. The basic idea of single-level reduction is to replace the lower-level
problem, i.e., arg maxπ IRL(π, µ(πT)), by the optimality conditions for that problem given by the
Karush-Kuhn-Tucker conditions [Boyd and Vandenberghe, 2004, Sinha et al., 2018]. For the learner
model outlined in Section 3.2, these reductions take the following form (see Appendix G for details):

max
λ:={αlow∈Rdr , αup∈Rdr , β∈Rdc}

〈w∗r , µr(πλ)〉 (5)

s.t. 0 ≤ αlow ≤ Cr
0 ≤ αup ≤ Cr

{0 ≤ β ≤ Cc AND µc(πλ) ≤ δhard
c } OR {β = Cc AND µc(πλ) ≥ δhard

c }
where πλ corresponds to a softmax policy with a reward function Rλ(s) = 〈wλ, φ(s)〉 for
wλ = [(αlow − αup)†,−β†]†. Thus, finding optimal demonstrations means optimization over
softmax teaching policies while respecting the learner’s preferences. To actually solve the above opti-
mization problem and find good teaching policies, we use an approach inspired by the Frank-Wolfe
algorithm [Jaggi, 2013] detailed in Appendix G. We refer to a teacher implementing this approach
as AWARE-BIL.

5 Learner-Aware Teaching Under Unknown Constraints

In this section, we consider the more realistic and challenging setting in which the teacher T does not
know the learner L’s constraint set ΩL

r . Without feedback from L, T can generally not do better than
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the agnostic teacher who simply ignores any constraints. We therefore assume that T and L interact
in rounds as described by Algorithm 1. The two versions of the algorithm we describe in Sections 5.1
and 5.2 are obtained by specifying how T adapts the teaching policy in each round.

Algorithm 1 Teacher-learner interaction in the adaptive teaching setting

1: Initial teaching policy πT,0 (e.g., optimal policy ignoring any constraints)
2: for round i = 0, 1, 2, . . . do
3: Teacher provides demonstrations with feature vector µT,i

r using policy πT,i

4: Learner upon receiving µT,i
r computes a policy πL,i with feature vector µL,i

r

5: Teacher observes learner’s feature vector µL,i
r and adapts the teaching policy

In this section, we assume that L is as described in Section 3.1: Given demonstrations ΞT, L
finds a policy πL such that µr(πL) matches the L2-projection of µ̂r(ΞT) onto ΩL

r . For the sake of
simplifying the presentation and the analysis, we also assume that L and T can observe the exact
feature expectations of their respective policies, e.g., µ̂r(ΞT) = µr(π

T) if ΞT is sampled from πT.

5.1 An Adaptive Learner-aware Teacher Using Volume Search: ADAWARE-VOL

In our first adaptive teaching algorithm ADAWARE-VOL, T maintains an estimate Ω̂L
r ⊃ ΩL

r of the
learner’s constraint set, which in each round gets updated by intersecting the current version with
a certain affine halfspace, thus reducing the volume of Ω̂L

r . The new teaching policy is then any
policy πT,i+1 which is optimal under the constraint that µT,i+1 ∈ Ω̂L

r . The interaction ends as soon
as ‖µL,i

r − µT,i
r ‖2 ≤ ε for a threshold ε. Details are provided in Appendix C.1.

Theorem 2. Upon termination of ADAWARE-VOL, L’s output policy πL satisfies R(πL) ≥
R(πaware)− ε for any policy πaware which is optimal under L’s constraints. For the special case that
ΩL
r is a polytope defined by m linear inequalities, the algorithm terminates in O(mdr ) iterations.

5.2 An Adaptive Learner-aware Teacher Using Line Search: ADAWARE-LIN

In our second adaptive teaching algorithm, ADAWARE-LIN, T adapts the teaching policy by per-
forming a binary search on a line segment of the form {µL,i

r + αw∗r | α ∈ [αmin, αmax]} ⊂ Rdr
to find a vector µT,i+1

r = µL,i
r + αiw

∗
r that is the vector of feature expectations of a policy; here

αmax > αmin > 0 are fixed constants. If that is not successful, the teacher finds a teaching policy with
µT,i+1
r ∈ arg minµr∈Ωr

‖µr − µL,i
r − αminw

∗
r‖2. The following theorem analyzes the convergence

of L’s performance to RL := maxµr∈Ωr R(µr) under the assumption that T’s search succeeds in
every round. The proof and further details are provided in Appendix C.2.
Theorem 3. Fix some ε > 0 and assume that there exists a constant αmin > 0 such that, as long as
RL −R(µL,i

r ) > ε, the teacher can find a teaching policy πT,i+1 satisfying µT,i+1
r = µL,i

r + αiw
∗
r

for some αi ≥ αmin. Then the learner’s performance increases monotonically in each round of
ADAWARE-LIN, i.e., R(µL,i+1

r ) > R(µL,i
r ). Moreover, after at most O( D2

εαmin
log D

ε ) teaching steps,
the learner’s performance satisfies R(µL,i

r ) > RL − 2ε. Here we abbreviate D := diam Ωr.

6 Experimental Evaluation

In this section we evaluate our teaching algorithms for different types of learners on the environment
introduced in Figure 1. The environment we consider here has three types of reward objects, i.e., a
“star" object with reward of 1.0, a “plus" object with reward of 0.9, and a “dot" object with reward of
0.2. Two objects of each type are placed randomly on the grid such that there is always only a single
object in each grid cell. The presence of an object of type “star”, “plus”, or “dot” in some state s is
encoded in the reward features φr(s) by a binary-indicator for each type such that dr = 3. We use a
discount factor of γ = 0.99. Upon collecting an object, there is a 0.1 probability of transiting to a
terminal state.

Learner models. We consider a total of 5 different learners whose preferences can be described by
distractors in the environment. Each learner prefers to avoid a certain subset of these distractors.
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There is a total of 4 of distractors: (i) two “green" distractors are randomly placed at a distance of
0-cell and 1-cell to the “star" objects, respectively; (ii) two “yellow" distractors are randomly placed
at a distance of 1-cell and 2-cells to the “plus" objects, respectively, see Figure 2a.

Through these distractors we define learners L1-L5 as follows: (L1) no preference features (dc = 0);
(L2) two preference features (dc = 2) such that φc(s)[1] and φc(s)[2] are binary indicators of whether
there is a “green" distractor at a distance of 0-cells or 1-cell, respectively; (L3) four preference features
(dc = 4) such that φc(s)[1], φc(s)[2] are as for L2, and φc(s)[3] and φc(s)[4] are binary indicators of
whether there is a “green" distractor at a distance of 2-cells or a “yellow” distractor at a distance of
0-cells, respectively; (L4) five preference features (dc = 5) such that φc(s)[1], . . . , φc(s)[4] are as
for L3, and φc(s)[5] is a binary indicator whether there is a “yellow” distractor at a distance of 1-cell;
and (L5) six preference features (dc = 6) such that φc(s)[1], . . . , φc(s)[5] are as for L4, and φc(s)[6]
is a binary indicator whether there is a “yellow” distractor at a distance of 2-cells.

The first row in Figure 2 shows an instance of the considered object-worlds and indicates the
preference of the learners to avoid certain regions by the gray area.

(a) Environments and learners’ preferences for 5 different learners L1, . . ., L5

(b) Learners’ rewards inferred from learner-agnostic teacher’s (AGNOSTIC) demonstrations

(c) Learners’ rewards inferred from learner-aware teacher’s (AWARE-BIL) demonstrations

Figure 2: Teaching in object-world environments under full knowledge of the learner’s preferences.
Green and yellow cells indicate distractors associated with either “star" or “plus" objects, respectively.
Learner’s preferences to avoid cells are indicated in gray. Learner model from Section 3.2 with
Cr = 5, Cc = 10, and δhard

c = 0 is considered for these experiments. The learner-aware teacher
enable the learner to infer reward functions that are compatible with the learner’s preferences and
achieve higher average rewards. In Figure 2b and Figure 2c, blue color represents positive reward,
red color represents negative reward, and the magnitude of the reward is indicated by color intensity.

6.1 Teaching under known constraints

In this section we consider learners with soft constraints from Section 3.2, with preference features
as described above, and parameters Cr = 5, Cc = 10, and δhard

c = 0 (more experimental results for
different values ofCr andCc are provided in Appendix B.1). Our first results are presented in Figure 2.
The second and third rows show the rewards inferred by the learners for demonstrations provided
by a learner-agnostic teacher who ignores any constraints (AGNOSTIC) and the bi-level learner-aware
teacher (AWARE-BIL), respectively. We observe that AGNOSTIC fails to teach the learner about
objects’ positive rewards in cases where the learners’ preferences conflict with the position of the
most rewarding objects (second row). In contrast, AWARE-BIL always successfully teaches the
learners about rewarding objects that are compatible with the learners’ preferences (third row).

We also compare AGNOSTIC and AWARE-BIL in terms of reward achieved by the learner after
teaching for object worlds of size 10× 10 in Table 1. The numbers show the average reward over 10
randomly generated object-worlds. Note that AWARE-BIL has to solve a non-convex optimization
problem to find the optimal teaching policy, cf. Eq. 5. Because we use a gradient-based optimization
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approach, the teaching policies found can depend on the initial point for optimization. Hence, we
always consider the following two initial points for optimization and select the teaching policy which
results in a higher objective value: (i) all optimization variables in Eq. 5 are set to zero, and (ii) the
optimization variables are initialized as αlow[i] = max{wλ[i], 0}, αup[i] = max{−wλ[i], 0}, and
β = 0, where wλ is as inferred by the learner when taught by AGNOSTIC and i ∈ {1, . . . , dr}, cf.
Section 3.2. From Table 1 we observe that a learner can learn better policies from a teacher that
accounts for the learner’s preferences.

Table 1: Learners’ average rewards after teaching. L1, . . ., L5 correspond to learners with preferences
as shown in Figure 2. Results are averaged over 10 random object-worlds, ± standard error

Learner (Cr = 5, Cc = 10)
L1 L2 L3 L4 L5

Teacher
AGNOSTIC 7.99± 0.02 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.00± 0.00

AWARE-BIL 8.00± 0.02 7.20± 0.01 4.86± 0.30 3.15± 0.27 1.30± 0.07

6.2 Teaching under unknown constraints

In this section we evaluate the teaching algorithms from Section 5. We consider the learner model
from Section 3.1 that uses L2-projection to match reward feature expectations as studied in Section 5,
cf. Eq. 2.2 For modeling the hard constraints, we consider box-type linear constraints with δhard

c [j] =
2.5 ∀j ∈ {1, 2, . . . , dc} for the preference features, cf. Eq. 3.

We study the learners L1, L2, and L3 with preferences corresponding to the first three object-worlds
shown in Figure 2a. We report the results for learner L2 below; results for learners L1 and L3 are
deferred to the Appendix B.2.

In this context it is instructive to investigate how quickly these adaptive teaching strategies converge
to the performance of a teacher who has full knowledge about the learner. Results comparing the
adaptive teaching strategies (ADAWARE-VOL and ADAWARE-LIN) are shown in Figure 3a. We can
observe that both teaching strategies get close to the best possible performance under full knowledge
about the learner (AWARE-CMDP). We also provide results showing the performance achieved by
the adaptive teaching strategies on object-worlds of varying sizes, see Figure 3b.

Note that the performance of ADAWARE-VOL decreases slightly when teaching for more rounds,
i.e., comparing the results after 3 teaching rounds and at the end of the teaching process. This is
because of approximations when learner is computing the policy via projection, which in turn leads
to errors on the teacher side when approximating Ω̂L

r (refer to discussion in Footnote 2). In contrast,
ADAWARE-LIN performance always increases when teaching for more rounds.

7 Related Work

Our work is closely related to algorithmic machine teaching [Goldman and Kearns, 1995, Zhu, 2015,
Zhu et al., 2018], whose general goal is to design teaching algorithms that optimize the data that is
provided to a learning algorithm. Most works in machine teaching so far focus on supervised learning
tasks and assume that the learning algorithm is fully known to the teacher, see e.g., [Zhu, 2013,
Singla et al., 2014, Liu and Zhu, 2016, Mac Aodha et al., 2018].

In the IRL setting, few works study how to provide maximally informative demonstrations
to the learner, e.g., [Cakmak and Lopes, 2012, Brown and Niekum, 2019]. In contrast to our
work, their teacher fully knows the learner model and provides the demonstrations without any
adaptation to the learner. The question of how a teacher should adaptively react to a learner
has been addressed by [Singla et al., 2013, Liu et al., 2018, Chen et al., 2018, Melo et al., 2018,
Yeo et al., 2019, Hunziker et al., 2019], but only in the supervised setting. In a recent work,
[Kamalaruban et al., 2019] have studied the problem of adaptively teaching an IRL agent by pro-

2To implement the learner in Eq. 2, we approximated the learner’s projection onto the set ΩL
r as follows: We

implemented the learner based on the optimization problem given in Eq. 3 with a hard constraint on preferences
and L2 norm penalty on reward mismatch scaled with a large value of Cr = 20.

8



0 1 2 3 4 5 6 7 8 9 10
Adaptive teaching: Round i

1

3

5

7

9
L

ea
rn

er
’s

re
w

ar
d

Aw
Ag
Co

AdA-Vol
AdA-Lin

AdA-Vol:T
AdA-Lin:T

(a) Reward over teaching rounds

XXXXXXXXXTeacher
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10× 10 15× 15 20× 20

AWARE-CMDP 7.62± 0.02 7.44± 0.04 7.19± 0.04

AGNOSTIC 3.94± 0.09 3.84± 0.06 3.95± 0.06

CONSERV 1.68± 0.01 1.67± 0.012 1.62± 0.02

ADAWARE-VOL (3rd) 7.50± 0.14 7.50± 0.04 7.29± 0.05

ADAWARE-VOL (end) 6.85± 0.33 7.06± 0.06 6.77± 0.08

ADAWARE-LIN (3rd) 6.14± 0.08 6.28± 0.10 6.37± 0.08

ADAWARE-LIN (end) 7.64± 0.02 7.53± 0.03 7.29± 0.06

(b) Varying grid-size

Figure 3: Performance of adaptive teaching strategies ADAWARE-VOL and ADAWARE-LIN. (left)
Figure 3a shows the reward for learner’s policy over number of teaching interactions. The horizontal
lines indicate the performance of learner’s policy for the learner-aware teacher with full knowledge
of the learner’s constraints AWARE-CMDP, the learner-agnostic teacher AGNOSTIC who ignores
any constraints, and a conservative teacher CONSERV who considers all 6 constraints (assuming the
learner model L5 in Figure 2). Our adaptive teaching strategies ADAWARE-VOL and ADAWARE-LIN
significantly outperform baselines (AGNOSTIC and CONSERV) and quickly converge towards the
optimal performance of AWARE-CMDP. The dotted lines ADAWARE-VOL:T and ADAWARE-LIN:T
show the rewards corresponding to teacher’s policy at a round and are shown to highlight the very
different behavior of two adaptive teaching strategies. (right) Table 3b shows results for varying
grid-size of the environment. Results are reported at i = 3rd round and at the “end" round when
algorithm reaches it’s stopping criterion. Results are reported as average over 10 runs ± standard
error, where each run corresponds to a random environment.

viding an informative sequence of demonstrations. However, they assume that the teacher has full
knowlege of the learner’s dynamics.

Within the area of IRL, there is a line of work on active learning approaches [Cohn et al., 2011,
Brown et al., 2018, Brown and Niekum, 2018, Amin et al., 2017, Cui and Niekum, 2018], which is
related to our work. In contrast to us, they take the perspective of the learner who actively influences
the demonstrations it receives. A few papers have addressed the problem that arises when the learner
does not have full access to the reward features, e.g., [Levine et al., 2010] and [Haug et al., 2018].

Our work is also loosely related to multi-agent reinforcement learning. [Dimitrakakis et al., 2017]
studied the interaction between agents with misaligned models with a focus on the question of how to
jointly optimize a policy. [Ghosh et al., 2019] studied the problem of designing robust AI agent that
can interact with another agent of unknown type. However, these works do not tackle the problem of
teaching an agent by demonstrations. Another related work is [Hadfield-Menell et al., 2016] which
studied the cooperation of agents who do not perfectly understand each other.

8 Conclusions and Outlook
In this paper we considered inverse reinforcement learning in the context of learners with preferences
and constraints. In this setting, the learner does not only focus on matching the teacher’s demonstrated
behavior but also takes its own preferences, e.g., behavioral biases or physical constraints, into
account. We developed a theoretical framework for this setting, and proposed and studied algorithms
for learner-aware teaching in which the teacher accounts for the learner’s preferences for the cases of
known and unknown preference constraints. We demonstrated significant performance improvements
of our learner-aware teaching strategies as compared to learner-agnostic teaching both theoretically
and empirically. Our theoretical framework and our proposed algorithms foster the application of
IRL in real-world settings in which the learner does not blindly follow a teacher’s demonstrations.

There are several promising directions for future work, including but not limited to: The evaluation
of our approach in machine-human and human-machine tasks; extensions of our approach to other
learner models; approaches for learning efficiently from a learner’s point of view from a fixed set of
(potentially suboptimal) demonstrations in the case of preference constraints.
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A List of Appendices

In this section we provide a brief description of the content provided in the appendices of the paper.

• Appendix B provides additional experimental results (Section 6).
• Appendix C provides additional details on the adaptive teaching strategies (Section 5).
• Appendix D provides background on the (discounted) MCE-IRL problem (Section 3).
• Appendix E provides additional details on the (discounted) MCE-IRL problem with prefer-

ences (Section 3.2).
• Appendix F provides the LP formulation for the teacher AWARE-CMDP (Section 4.1).
• Appendix G provides additional details on the bi-level optimization approach for the teacher

AWARE-BIL (Section 4.2).
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B Experimental Evaluation: Additional Results (Section 6)

B.1 Teaching under known constraints (Section 6.1)

Additional results for teaching under known constraints are presented in Table 2. We observe
that AWARE-BIL clearly outperforms AGNOSTIC for most combinations of Cr and Cc. Only for
Cr = 10, Cc = 1, the teachers AWARE-BIL and AGNOSTIC achieve similar performance because
Cr � Cc, and hence the learner values achieving higher reward more than satisfying its preferences.

Table 2: Learners’ average rewards after teaching. L1, . . ., L5 correspond to learners with preferences
as shown in Figure 2. Results are averaged over 10 random object-worlds, ± standard error

Learner (Cr = 5, Cc = 10)
L1 L2 L3 L4 L5

Teacher
AGNOSTIC 7.99± 0.02 0.01± 0.00 0.01± 0.00 0.01± 0.00 0.00± 0.00

AWARE-BIL 8.00± 0.02 7.20± 0.01 4.86± 0.30 3.15± 0.27 1.30± 0.07

Learner (Cr = 10, Cc = 10)
L1 L2 L3 L4 L5

Teacher
AGNOSTIC 8.34± 0.01 0.17± 0.02 0.01± 0.00 0.01± 0.00 0.00± 0.00

AWARE-BIL 8.33± 0.01 6.90± 0.17 5.03± 0.31 3.27± 0.28 1.35± 0.07

Learner (Cr = 10, Cc = 5)
L1 L2 L3 L4 L5

Teacher
AGNOSTIC 8.36± 0.01 8.14± 0.03 0.01± 0.00 0.01± 0.00 0.00± 0.00

AWARE-BIL 8.34± 0.01 8.13± 0.03 5.20± 0.29 3.43± 0.27 1.69± 0.0

Learner (Cr = 5, Cc = 5)

L1 L2 L3 L4 L5

Teacher
AGNOSTIC 7.99± 0.02 0.17± 0.02 0.01± 0.00 0.01± 0.00 0.00± 0.00

AWARE-BIL 8.00± 0.02 6.64± 0.17 4.87± 0.30 3.16± 0.27 1.31± 0.06

Learner (Cr = 10, Cc = 1)
L1 L2 L3 L4 L5

Teacher
AGNOSTIC 8.36± 0.01 8.39± 0.02 8.46± 0.02 8.46± 0.02 8.49± 0.02

AWARE-BIL 8.33± 0.01 8.36± 0.03 8.44± 0.02 8.44± 0.02 8.46± 0.02

Learner (Cr = 1, Cc = 10)
L1 L2 L3 L4 L5

Teacher
AGNOSTIC 5.67± 0.02 0.15± 0.02 0.16± 0.02 0.11± 0.01 0.08± 0.01

AWARE-BIL 5.93± 0.02 4.49± 0.15 3.56± 0.24 2.30± 0.22 0.93± 0.05
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B.2 Teaching under unknown constraints (Section 6.2)

Here, we provide additional experimental results for teaching algorithms from Section 5. In particular,
we report on the results for learner L1 and learner L3, similar to the results for learner L2 reported in
Section 6.2.
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AWARE-CMDP 8.42± 0.03 8.24± 0.05 7.84± 0.08

AGNOSTIC 8.42± 0.03 8.24± 0.05 7.84± 0.08

CONSERV 1.68± 0.1 1.66± 0.01 1.65± 0.02

ADAWARE-VOL (3rd) 8.04± 0.02 7.83± 0.04 7.46± 0.07

ADAWARE-VOL (end) 8.06± 0.02 7.80± 0.08 7.30± 0.12

ADAWARE-LIN (3rd) 8.44± 0.04 8.23± 0.07 8.08± 0.08

ADAWARE-LIN (end) 8.44± 0.04 8.23± 0.07 8.08± 0.08

(b) Varying grid-size

Figure 4: Results for learner L1
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10× 10 15× 15 20× 20

AWARE-CMDP 7.68± 0.04 7.35± 0.03 7.39± 0.09

AGNOSTIC 3.11± 0.08 3.12± 0.07 3.26± 0.14

CONSERV 1.68± 0.01 1.65± 0.01 1.62± 0.01

ADAWARE-VOL (3rd) 6.16± 0.42 5.72± 0.54 6.39± 0.32

ADAWARE-VOL (end) 5.99± 0.46 5.38± 0.56 6.16± 0.31

ADAWARE-LIN (3rd) 6.25± 0.20 5.13± 0.50 6.15± 0.11

ADAWARE-LIN (end) 7.22± 0.16 5.83± 0.62 7.09± 0.07

(b) Varying grid-size

Figure 5: Results for learner L3
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C Details for Learner-Aware Teaching under Unknown Constraints
(Section 5)

In this appendix, we provide more details on the adaptive teaching algorithms ADAWARE-VOL and
ADAWARE-LIN described in Sections 5.1 and 5.2. Recall that both teaching algorithms are obtained
from Algorithm 1 by defining the way in which the teacher T adapts the teaching policy based on the
learner L’s feature expectations µL

r in past rounds.

C.1 Details for ADAWARE-VOL (Section 5.1)

Estimation of the learner’s constraint set. In ADAWARE-VOL, T maintains an estimate Ω̂L,i
r of

L’s constraint set, starting with Ω̂L,0
r = Ωr. After observing the feature expectations µL,i

r of the policy
L found in round i, T updates this estimate as follows:

Ω̂L,i+1
r := Ω̂L,i

r ∩ {µL,i
r + ν ∈ Rdr | 〈µT,i

r − µL,i
r , ν〉 ≤ 0} (6)

The set on the right hand side of (6) with which ΩL,i
r gets intersected is a halfspace containing ΩL

r .
This is due to the fact that ΩL

r is convex by assumption, and to our assumption that L’s learning
algorithm is such that it outputs a policy whose feature expectations µL,i

r match the L2-projection of
µT,i
r to ΩL

r . Inductively, it follows that Ω̂L,i
r ⊃ ΩL

r for all i.

In practice, we implement a slightly modified version of the update step in which we intersect Ω̂L,i
r

with a halfspace that is shifted in the direction of µT,i
r − µL,i

r by a small amount, i.e., we use

{µL,i
r + (1− η)(µT,i

r − µL,i
r ) + ν ∈ Rdr | 〈µT,i

r − µL,i
r , ν〉 ≤ 0}

with a step size parameter η ∈ (0, 1). This helps make the algorithm more robust to noise in the
learner’s feature expectations. In our experiments, we used η = 0.9.

Update of the teaching policy. After updating the estimate of the learner’s constraint set to Ω̂L,i
r ,

T solves a constrained MDP in order to find

πT,i+1 ∈ arg max
π,µr(π)∈Ω̂L,i

r

R(π).

Given that Ω̂L,i
r is cut out by linear equations, solving the constrained MDP reduces to solving an LP,

as described in Appendix F.

Termination of the interaction. The algorithm terminates as soon as the stopping criterion ‖µL,i
r −

µT,i
r ‖2 ≤ ε is satisfied. Note that Ω̂L,i

r ⊃ ΩL
r implies that

R(πT,i) ≥ R(πaware)

for any πaware ∈ arg maxπ,µr(π)∈ΩL
r
R(π). Therefore, after termination we have

R(πL,i) ≥ R(πaware)− ε
for any policy πaware which is optimal under L’s constraints, which is the first statement of Theorem 2.

The second statement of Theorem 2 follows from the fact that if ΩL
r is a convex polytope cut out by

m linear inequalities, the number of faces, which is in O(mdr ), is an upper bound on the number of
iterations of the algorithm, because one face is “eliminated” in each round.

C.2 Details for ADAWARE-LIN (Section 5.2)

In ADAWARE-LIN, T updates the teaching policy πT,i+1 based on L’s feature expectations µL,i
r from

the previous round. To do so, T uses LINESEARCH (Algorithm 2) to perform a binary search on the
line segment

{µL,i
r + αw∗r | α ∈ [αmin, αmax]} ⊂ Rdr (7)

in order to find a vector µr that is realizable as the vector of feature expectations of a policy. If
the intersection of the line segment (7) with Ωr is non-empty, it is of the form {µL

r + αw∗r | α ∈
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Algorithm 2 LINESEARCH

Require: µL
r , αmin, αmax, εα, εµ.

1: αu ← αmax, αl ← αmin

2: while αu − αl > εα do
3: α← (αu + αl)/2
4: πT ← IRL(µL

r + αw∗r)
5: if ‖µr(πT)− µL

r − αw∗r‖2 > εµ then
6: αu ← α
7: else
8: αl ← α
9: if ‖µr(πT)− µL

r − αw∗r‖2 > εµ then
10: πT ← IRL(µL

r + αminw
∗
r)

11: return πT Figure 6

LINESEARCH is the algorithm that T uses in order to find a teaching policy πT provided that the
feature expectations of L’s current policy are µL

r . Figure 6 illustrates the two cases may occur: For
the right µL

r , LINESEARCH returns a policy πT whose feature expectations satisfy µT
r = µL

r + α∗w∗r
such that α∗ > αmin. For the left µL

r , LINESEARCH returns a policy πT whose feature expectations
satisfy µT

r ∈ arg minµr∈Ωr
‖µr − µL

r + αminµ
T
r ‖.

[αmin, α
∗]} for some α∗ ≤ αmax due to the convexity of Ωr. In that case, LINESEARCH returns a

policy with feature expectations
µT,i+1
r = µL,i

r + α∗iw
∗
r ,

where α∗i is the maximal α ∈ [αmin, αmax] such that µL,i
r + αw∗r ∈ Ωr. If the intersection is empty,

LINESEARCH returns a policy with feature expectations

µT,i+1
r ∈ arg min

µr∈Ωr

‖µr − µL,i
r − αminw

∗
r‖2.

Figure 6 illustrates the two cases that may occur.

C.2.1 Proof of Theorem 3

In this section, we provide the proof of Theorem 3, which gives a guarantee on the improvement of L’s
performance in each round of the ADAWARE-LIN algorithm. The assumption we make here is that, in
every teaching round, LINESEARCH returns a teaching policy πT,i+1 such that µT,i+1

r = µL,i
r +αiw

∗
r

for some αi ≥ αmin, where αmin > 0 is a fixed constant. It is easy to see that this assumption,
together with our assumption on L’s algorithm and the convexity of ΩL

r , imply that the change in
learner performance

∆Ri := R(µL,i+1
r )−R(µL,i

r )

is non-negative in every teaching round. The following proposition, which will be needed in the proof
of Theorem 3, strengthens this statement:

Proposition 1. Let RL := maxµr∈ΩL
r
R(µr) be the maximally achievable learner performance.

Assume that, in teaching round i, T can find a teaching policy πT,i+1 whose feature expectations
satisfy µT,i+1

r = µL,i
r + αiw

∗
r for some αi > 0. Then

RL −R(µL,i
r ) ≤ ∆Ri +D ·

√
∆Ri

αi −∆Ri
, (8)

where D = diam Ωr.

Proof of Proposition 1. Consider the plane V ⊂ Rdr spanned by µL,i
r , µT,i+1

r and µL,i+1
r and denote

by µ̃r the unique point in V with the properties that

(a) 〈w∗r , µ̃r〉 = 〈w∗r , µL,i+1
r 〉,
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(b) µ̃r lies on the same side of the line through µL,i and µT,i+1 as µL,i+1
r , and

(c) µ̃r, µT,i+1
r and µL,i

r span a right triangle with µ̃r at the right-angled corner.

Note that µL,i+1
r must lie inside this triangle, i.e., on the red line segment in Figure 7: Otherwise

there would a point on the line segment connecting µL,i+1
r and µL,i

r , and hence in ΩL
r by convexity,

which is closer to µT,i+1
r than µL,i+1

r , contradicting the fact that µL,i+1
r is closest to µT,i+1

r among all
points in ΩL

r . Denote by ˜̀ the line passing through µ̃r and µL,i
r .

Figure 7: Illustration of the proof of Proposition 1: The smaller the performance increase ∆Ri, the
better the upper bound on the gap RΩ −R(µL,i

r ).

The facts that ΩL
r is convex and that µL,i+1

r = arg minµr∈ΩL
r
‖µT,i+1

r − µr‖2 imply that ΩL
r must lie

on one side of the hyperplane

µL,i+1
r + (µT,i+1

r − µL,i+1
r )⊥ ⊂ Rdr .

Therefore, we can upper bound RL in terms of the slope s` of the line ` which arises by intersecting
that hyperplane with V :

RL ≤ R(µL,i+1
r ) +D · s` = R(µL,i

r ) + ∆Ri +D · s`. (9)

Note that the slope s` is upper bounded by the slope s˜̀ of ˜̀. We have s˜̀ = ∆Ri

h , where h is the
length of the red line segment in Figure 7, and h =

√
(αi −∆Ri)∆Ri by Pythagoras’s theorem.

Using that, we obtain

s` ≤ s˜̀ =

√
∆Ri

αi −∆Ri
. (10)

The claimed estimate (8) follows by plugging this upper bound for s into (9) and rearranging.

Proof of Theorem 3.

Proof of Theorem 3. The fact that R(µL,i+1
r ) > R(µL,i

r ), which is equivalent to ∆Ri > 0, follows
immediately from Proposition 1.

We now prove the claimed rate of convergence.

First, using Proposition 1, we note that the assumption that RL −R(µL,i
r ) > ε implies that

ε < ∆Ri +D

√
∆Ri

αi −∆Ri
. (11)

Using that, we can conclude that√
∆Ri > min{

√
ε/2, ε

√
αmin/(4D2 + ε2)}. (12)

Indeed, if ∆Ri ≤ ε
2 , it follows from (11) that we must have D ·

√
∆Ri/(αmin −∆Ri) >

ε
2 , which

implies
√

∆Ri > ε
√
αmin/(4D2 + ε2). Since we are interested in the behavior as ε → 0, we

assume from now on that ε is so small that ε
√
αmin/(4D2 + ε2) <

√
ε/2, so that (12) becomes√

∆Ri > ε
√
αmin/(4D2 + ε2) =: C0. (13)
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Second, we observe that √
αi −∆Ri >

√
αmin

2
=: C1 (14)

except in at most N := 2
αmin

(maxR|Ω − minR|Ω) teaching steps. To see that, note that if the
claimed inequality, which is equivalent to αi − αmin

2 > ∆Ri, does not hold, performance increases
by at least ∆Ri ≥ αmin

2 as αi > αmin, and that can happen at most N times.

The inequalities (13) and (14) together imply that we have

C0 · C1 ≤
√

(αi −∆Ri)∆Ri (15)

as long as RL − R(µL,i
r ) > ε, except in at most N teaching steps. Setting C := 1

C0·C1
, this is

equivalent to √
∆Ri

αi −∆Ri
≤ C∆Ri (16)

Plugging (16) into the bound (8) provided by Proposition 1, we obtain the estimate

1

1 + CD
(RL −R(µL,i

r )) ≤ ∆Ri. (17)

We have C = 1
εαmin

√
2(4D2 + ε2), and hence

1

1 + CD
=

εαmin

εαmin +
√

2(4D2 + ε2) ·D
≥ 1

1 +
√

10

εαmin

D2
=: λ (18)

If we had the estimates (17), (18) for all teaching steps, we could conclude that the learner perfor-
mance satisfies R(µL,i

r ) > RL − 2ε after at most O( D2

εαmin
log D

ε ) teaching steps. One can see that
e.g. by comparing the sequence R0, R1, R2, . . . with the solution R(t) of the ordinary differential
equation Ṙ = λ(RL −R), which satifies RL − R(t) = (RL − R(0)) exp(−λt). Since the number
N of teaching steps for which (17), (18) do potentially not hold is O( D

αmin
), we can still make this

conclusion.

D Background on (discounted) MCE-IRL Problem (Section 3)

Our learner models build on the (discounted) Maximum Causal Entropy (MCE) IRL frame-
work [Ziebart et al., 2008, Ziebart, 2010, Ziebart et al., 2013, Zhou et al., 2018]. The results below
are based on the MDCE-IRL formulation from [Zhou et al., 2018].

D.1 Primal problem

In the standard (discounted) MCE-IRL framework, a learning agent aims to identify a policy that
matches the feature expectations of the teacher’s demonstrations while simultaneously maximizing
the (discounted) causal entropy of the policy, i.e., the learner solves the following optimization
problem:

max
π

Hγ(A0:∞‖S0:∞) :=

∞∑
t=0

γtE
[
− log π(at | st)

]
subject to µr(π)[i] = µ̂r(Ξ

T)[i] ∀i ∈ {1, 2, . . . , dr}.

Here, µr(π)[i] and µ̂r(ΞT)[i] denote the scalar values of the ith reward feature. The idea is that
without any further information beyond the teacher’s demonstrations, the most uncertain solution
matching the reward feature expectation of those demonstrations should be preferred.

Formulating this as a minimization problem and spelling out all the constraints, we arrive at the
following primal:

min
π={πt}∞t=0

−Hγ(A0:∞‖S0:∞)

subject to
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µr(πt)[i] = µ̂r(Ξ
T)[i] ∀i ∈ {1, 2, . . . , dr}

πt(a|s) ≥ 0 ∀a ∈ A, s ∈ S, t ≥ 0∑
a∈A

πt(a|s) = 1 ∀s ∈ S, t ≥ 0

πt(a|s) = πt′(a|s) ∀a ∈ A, s ∈ S, t ≥ 0, t′ ≥ 0

The last condition ensures that the policy π is stationary.

D.2 Lagrangian relaxation

The Lagrangian relaxation optimization formulation of the above primal problem is given by

L(π,λ,ψ) = −Hγ(A0:∞‖S0:∞) + λ†(µ̂r(Ξ
T)− µr(πt)) +

∑
s,t

ψs,t(1−
∑
a∈A

πt(a|s))

subject to
πt(a|s) ≥ 0 ∀a ∈ A, s ∈ S, t ≥ 0

πt(a|s) = πt′(a|s) ∀a ∈ A, s ∈ S, t, t′ ≥ 0

Here, λ ∈ Rdr and ψ = {ψs,t}∀st . Also, † is the transpose operator defined for vectors.

Remark. The Lagrangian relaxation of the optimization problem is not convex in the problem
variables because of the term λ†(µ̂r(Ξ

T)− µr(πt)) in the objective function, which is not convex
in the variables πt. However, it can be shown that strong duality holds for both its dual and primal
formulations ([Zhou et al., 2018]). The dual formulation is described in Section D.4.

D.3 Parametric form of the policy

For a given λ, the optimal policy πsoft
λ (a|s) is given by

πsoft
λ (a|s) =

exp(Qsoft
λ (s, a))

exp(V soft
λ (s))

where the quantities are defined recursively as follows:

Qsoft
λ (s, a) = λ†µr(π

soft
λ (a|s)) + γ

∑
s′∈S

T (s′|s, a)V soft
λ (s′)

V soft
λ (s) = log

∑
a∈A

exp(Qsoft
λ (s, a))

This is shown by taking the derivative of the Lagrangian, L(π,λ,ψ) w.r.t. the primal variables πt
and equating it to 0, i.e.,

∂L({πt}∞t=0,λ,ψ)

∂πt
= 0.

For a given λ, the corresponding softmax policy can be obtained by Soft-Value-Iteration procedure
(see [Ziebart, 2010, Algorithm. 9.1], [Zhou et al., 2018]).

D.4 Dual problem

For any given λ,ψ, let g(λ,ψ) be the optimal value for the optimization problem defined by the
Lagrangian relaxation problem in Section D.2. As strong duality holds for the (discounted) MCE-IRL
problem and its dual counter part, we solve only the following concave dual problem:

maximize
λ∈Rdr ,ψs,t∈R

g(λ,ψ)
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D.5 Gradients for the dual variables

As the dual problem is concave, it can be solved using gradient ascent. The gradients of the dual
function described in Section D.4 are given by:

∇λ g = µ̂r(Ξ
T)− µr(πsoft

λ )

∇ψs,t
g = 1−

∑
a∈A

πsoft
λ (a|s)

Here πsoft
λ is the parametric softmax policy described above. The second condition is automatically

satisfied because πsoft
λ is a probability distribution.

The gradient update rule to compute the optimal λ is:

λnext ← λ− η ·
(
µr(π

soft
λ )− µ̂r(ΞT)

)
where η is the learning rate.

E Details of (discounted) MCE-IRL Problem with Preferences (Section 3.2)

Here we present the background of the learner model described in Section 3.2. In this set-
ting, the learner’s preferences are modeled as linear soft constraints with L1 penalties. We
consider the minimization variant of the problem. The results in this section follow directly
from the analysis of Maximum Entropy Models under different constraints, as presented in
[Kazama and Tsujii, 2005, Dudík et al., 2007] when applied to (discounted) MCE-IRL problem
[Ziebart et al., 2013, Zhou et al., 2018]. For brevity, redundant details of the derivations are omitted.
The final policy of the learner is given by πsoft

λ and is defined in Section E.3.

E.1 Primal problem

The primal problem is given by

min
π={πt}∞t=0; δsoft,low

r , δsoft,up
r , δsoft,up

c ≥0
−Hγ(A0:∞||S0:∞) +

dr∑
i=1

Cr · (δsoft,low
r [i] + δsoft,up

r [i]) +

dc∑
j=1

Cc · δsoft,up
c [j]

subject to

µ̂r(Ξ
T)[i]− µr(πt)[i] ≤ δsoft,low

r [i] ∀i ∈ {1, 2, . . . , dr}
µr(πt)[i]− µ̂r(ΞT)[i] ≤ δsoft,up

r [i] ∀i ∈ {1, 2, . . . , dr}
µc(πt)[j] ≤ δhard

c [j] + δsoft,up
c [j] ∀j ∈ {1, 2, . . . , dc}

Here we have δsoft,low
r , δsoft,up

r ∈ Rdr and δsoft,up
c ∈ Rdc as the primal optimization slack variables

with the constraint that δsoft,low
r , δsoft,up

r , δsoft,up
c ≥ 0. We also have Cr > 0, Cc > 0. δhard

c ∈ Rdc is a
given constant vector.

Remark. low and up in the superscripts of dual variables represent whether they are variables for
lower bound constraints or upper bound constraints.

E.2 Lagrangian relaxation

The Lagrangian relaxation optimization formulation of the primal problem described in Section E.1
is given by

L(π, δsoft,low
r , δsoft,up

r , δsoft,up
c ,λ,ψ) = −Hγ(A0:∞, S0:∞) + (αlow −αup)†(µ̂r(Ξ

T)− µr(πt))
+ β†µc(πt)

+
∑
s,t

ψs,t(1−
∑
a∈A

πt(a|s))− (αlow)†δsoft,low
r − (αup)†δsoft,up

r

− β†δsoft,up
c − β†δhard

c
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− (ρlow)†δsoft,low
r − (ρup)†δsoft,up

r

− σ†δsoft,up
c

+

dr∑
i=1

Cr · (δsoft,low
r [i] + δsoft,up

r [i]) +

dc∑
j=1

Cc · δsoft,up
c [j]

subject to
πt(a|s) ≥ 0 ∀a ∈ A, s ∈ S, t ≥ 0

πt(a|s) = πt′ (a|s) ∀a ∈ A, s ∈ S, t, t
′
≥ 0

Here, αlow,αup,ρlow,ρup ∈ Rdr , and β,σ ∈ Rdc . We also have non-negativity constraints on the
dual variables: αlow,αup,β,ρlow,ρup,σ ≥ 0. A few additional notes:

• For convenience, we will denote the group of dual variables as λ :=
{αlow,αup,β,ρlow,ρup,σ}

• The reward parameterwλ = [(αlow −αup)†,−β†]† is used to define the learner’s reward
function Rλ(s) = 〈wλ, φ(s)〉.

• † is the transpose operator, defined for vectors.

E.3 Parametric form of the policy

For a given, λ := {αlow,αup,β,ρlow,ρup,σ}, the optimal policy πsoft
λ (a|s) is given by

πsoft
λ (a|s) =

exp(Qsoft
λ (s, a))

exp(V soft
λ (s))

where the quantities are defined recursively as follows:

Qsoft
λ (s, a) = (αlow −αup)†µr(πsoft

λ (a|s))− β†µc(πsoft
λ (a|s)) + γ

∑
s′∈S

T (s
′
|s, a)V soft

λ (s
′
)

V soft
λ (s) = log (

∑
a∈A

exp(Qsoft
λ (s, a)))

This is shown by taking the derivative of the Lagrangian, L(π,λ,ψ) w.r.t the primal variables, πt
and equating it to 0. i.e.

∂L({πt}∞t=0,λ,ψ)

∂πt
= 0

E.4 Updated Lagrangian

We find the partial derivatives of the Lagrangian defined in Section E.2 w.r.t all the primal variables,
δsoft,low
r , δsoft,up

r , δsoft,up
c :

∂L
∂δsoft,low
r [i]

= 0

⇒ αlow[i] = Cr − ρlow[i]

Also,
∂L

∂δsoft,up
r

= 0

⇒ αup[i] = Cr − ρup[i]

And,
∂L

∂δsoft,up
c

= 0

⇒ β[i] = Cr − σ[i]
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The dual variables satisfy σ,ρlow,ρup ≥ 0. Hence, the above conditions translate into the following
constraints on the set of dual variables, αlow,αup,β:

0 ≤ αlow[i] ≤ Cr ∀i ∈ {1, 2, . . . , dr}
0 ≤ αup[i] ≤ Cr ∀i ∈ {1, 2, . . . , dr}

0 ≤ β[j] ≤ Cc ∀j ∈ {1, 2, . . . , dc}
The updated Lagrangian now has these additional constraints and is given by:

L(π, δsoft,low
r , δsoft,up

r , δsoft,up
c ,λ,ψ) = −Hγ(A0:∞, S0:∞) + (αlow −αup)†(µ̂r(Ξ

T)− µr(πt)) + β†µc(πt)

+
∑
s,t

ψs,t(1−
∑
a∈A

πt(a|s))− (αlow)†δsoft,low
r − (αup)†δsoft,up

r

− β†δsoft,up
c − β†δhard

c

− (ρlow)†δsoft,low
r − (ρup)†δsoft,up

r

− σ†δsoft,up
c

+

dr∑
i=1

Cr · (δsoft,low
r [i] + δsoft,up

r [i]) +

dc∑
j=1

Cc · δsoft,up
c [j]

subject to
πt(a|s) ≥ 0 ∀a ∈ A, s ∈ S, t ≥ 0

πt(a|s) = πt′ (a|s) ∀a ∈ A, s ∈ S, t, t
′
≥ 0

0 ≤ αlow[i] ≤ Cr ∀i ∈ {1, 2, . . . , dr}
0 ≤ αup[i] ≤ Cr ∀i ∈ {1, 2, . . . , dr}
0 ≤ β[j] ≤ Cc ∀j ∈ {1, 2, . . . , dc}

The set of dual variables becomes λ := {αlow,αup,β} and ψ = {ψs,t}∀st .

E.5 Dual problem

For any given λ,ψ, let g(λ,ψ) be the optimal value for the Lagrangian relaxation problem. Strong
Duality holds for both our primal and dual formulations, and the dual optimal policy is also optimal
for the primal formulation. Hence, we solve the concave dual problem, given by

maximize
αlow,αup∈Rdr ,β∈Rdc ,ψs,t∈R

g(λ,ψ)

subject to

0 ≤ αlow ≤ Cr
0 ≤ αup ≤ Cr
0 ≤ β ≤ Cc

where λ := {αlow,αup,β}.

E.6 Gradients for the dual problem

As the dual problem is concave, it can be solved using gradient ascent.
Note that,

∇ψs,t
g = 1−

∑
a∈A

πsoft
λ (a|s)

Here πsoft
λ is the parametric softmax policy described above. This condition is automatically satisfied

because πsoft
λ is a probability distribution. For the remaining dual variables, we have the following

gradients:

∇αlow g = µ̂r(Ξ
T)− µr(πsoft

λ )
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∇αup g = µr(π
soft
λ )− µ̂r(ΞT)

∇β g = µc(π
soft
λ )

The (projected) gradient update rules to compute the optimal value of the dual variables (αlow,αup,β)
are given by the following:

αlow
next ← αlow − η · (µr(πsoft

λ )− µ̂r(ΞT))

αlow
next[i]← max(0, αlow

next[i]) ∀i ∈ {1, 2, . . . , dr}
αlow

next[i]← min(Cr, α
low
next[i]) ∀i ∈ {1, 2, . . . , dr}

αup
next ← αup − η · (µ̂r(ΞT)− µr(πsoft

λ ))

αup
next[i]← max(0, αup

next[i]) ∀i ∈ {1, 2, . . . , dr}
αup

next[i]← min(Cr, α
up
next[i]) ∀i ∈ {1, 2, . . . , dr}

βnext ← β − η · (−µc(πsoft
λ ))

βnext[j]← max(0, βnext[j]) ∀j ∈ {1, 2, . . . , dc}
βnext[j] ← min(Cc, βnext[j]) ∀j ∈ {1, 2, . . . , dc}

where η is the learning rate.

F LP Formulation for the Teacher AWARE-CMDP (Section 4.1)

The problem of finding optimal learner-aware teaching demonstrations for the learner in Section 3.1
with linear preferences can be formulated as the following linear program (based on the linear
programming formulation for solving MDPs [De, 1960]):

max
z

∑
s

∑
a

z(s, a)〈w∗r , φr(s)〉 (19)

s.t.
∑
a

z(s′, a) = (1− γ)P0(s′) + γ
∑
s

∑
a

T (s′|s, a)z(s, a) ∀s′ (20)

z(s, a) ≥ 0 ∀s, a (21)∑
s

∑
a

z(s, a)φc(s)[j] ≤ δhard
c [j] ∀j ∈ {1, 2, . . . , dc} (22)

Here z is a vector of discounted state-action frequencies and z(s, a) refers to state-action frequency
for state s and action a. The constraints in (22) are the linear preference constraints. From the optimal
solution of the LP, an optimal stochastic policy can be extracted by

π(s, a) :=
z(s, a)∑
a′ z(s, a

′)
. (23)

G Bi-Level Optimization Approach (Section 4.2)

We only show the formalism for the most general bi-level problem for learners with linear preferences.

G.1 Using Dual (discounted) MCE-IRL formulation for the learner model in Section 3.2

The basic bi-level optimization problem that we aim to solve is the following:

max
πT

R(πL)

subject to πL ∈ arg max
π

IRL(π, µ(πT)).
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We will replace the lower-level problem, i.e., arg maxπ IRL(π, µ(πT)) with its Karush-Kuhn-Tucker
conditions [Boyd and Vandenberghe, 2004, Sinha et al., 2018]. The lower-level problem in its dual
formulation is given in Appendix E.5.

Omitting details and replacing R(πλ) := 〈w∗r , µr(πλ)〉, this yields problems of the following form:

max
λ

〈w∗r , µr(πλ)〉

subject to:

0 ≤ αlow ≤ Cr
0 ≤ αup ≤ Cr
0 ≤ β ≤ Cc
µc(πλ) ≤ (≥)δhard

c

where λ := {αlow,αup,β}. Here πλ corresponds to a softmax policy with a reward function
Rλ(s) = 〈wλ, φ(s)〉 forwλ = [(αlow−αup)†,−β†]†. Thus, finding optimal demonstrations means
optimization over softmax teaching policies while respecting the learner’s preferences.

G.1.1 Optimal solution

The cases of the above problem we can observe have to be solved separately and the best solution
must be picked. That is, we find the following two solutions: (step i) λ∗1, and (step ii) λ∗2. Then pick
the best λ∗ in (step iii):

Step i: λ∗1 Compute optimal parameters λ∗1 by solving the following problem:

max
λ

〈w∗r , µr(πλ)〉

subject to:

0 ≤ αlow ≤ Cr
0 ≤ αup ≤ Cr
0 ≤ β ≤ Cc
µc(πλ) ≤ δhard

c

Step ii: λ∗2 Compute optimal parameters λ∗2 by solving the following problem:

max
λ

〈w∗r , µr(πλ)〉 (24)

subject to: (25)

0 ≤ αlow ≤ Cr (26)
0 ≤ αup ≤ Cr (27)
β = Cc (28)

µc(πλ) ≥ δhard
c (29)

Step iii: λ∗ Pick the best solution as

λ∗ = arg max
λ∈{λ∗1 ,λ∗2}

〈w∗r , µr(πλ)〉

This provides the optimal policy for the teacher. The teacher then computes feature expectation of
this policy and provide it to the learner.

G.2 Solving the above problem

We adopt a variant of the Frank-Wolfe algorithm [Jaggi, 2013] to solve the problems of the form:

max
λ

R(πλ) := 〈w∗r , µr(πλ)〉 (30)

subject to: (31)
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0 ≤ αlow ≤ Cr (32)
0 ≤ αup ≤ Cr (33)
0 ≤ β ≤ Cc (34)

µc(πλ) ≤ (≥)δhard
c (35)

In particular, we take the following steps to optimize the teaching policy πλ:

1. Initialization. Find a feasible starting point λ0

2. Optimization. For t = 1, 2, . . .

• Compute the gradient gt = [∇λR(πλ)](λt−1) of the objective at λt−1. In experiments
we approximate the gradient using finite-differences.

• Linearize the constraints µc(πλ) ≤ (≥)δhard
c at λt−1 as bt+At(λ−λt−1) ≤ (≥)δhard

c ,
where bt = µc(πλt−1) and At = [∇λµc(πλ)](λt−1). Again, we employ finite-
differences to approximate this linearization. Clearly, we can reuse computation from
the gradient estimation of the objective here to reduce computational demands.

• Solve the direction-finding subproblem (a linear problem):

max
γ

〈γ, gt〉

subject to:

0 ≤ αlow ≤ Cr
0 ≤ αup ≤ Cr
0 ≤ β ≤ Cc
bt +At−1(λ− λt−1) ≤ (≥)δhard

c

with optimal solution γ∗t . Assuming that the linear approximation of the constraints is
accurate locally, the directional vector dt = γ∗t − λt−1 is an ascent direction.

• Perform a line-search from λt−1 to γ∗t and let λt be the point that maximizes the line
search.

• Upon convergence, terminate the For loop.

Upon convergence of the algorithm, the teacher can use the final λt for teaching.

Remark. Observe that the above algorithm would reduce to the standard Frank-Wolfe algorithm with
line-search in the case of linear inequalities only.
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