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Transforms’

A Proof of proposition 1: Permutation invariance

The low-pass summarizing operator U is linear so that, under permutations, Û = UP. Therefore,

�pj(`)(Ŝ, x̂) = Û(⇢Hj(Ŝ))pj(`)x̂ = UP(⇢Hj(P
T
SP))pj(`)P

T
x. (20)

But, for analytical wavelets, we have that Hj(PT
SP) = P

T
Hj(S)P [cf. (5)]. Also, since the

nonlinearities are pointwise, ⇢(PT
z) = P

T⇢(z) for any z. Then, we get

�pj(`)(Ŝ, x̂) = UPP
T(⇢Hj(S))pj(`)PP

T
x = U(⇢Hj(S))pj(`)x = �pj(`)(S,x) (21)

where we used that PP
T = I by definition of permutation matrix. Since this holds independently of

pj(`), then it holds for every scattering coefficient. If it holds for every scattering coefficient, then it
hold for the GST �(x), thereby completing the proof.

B Proof of proposition 2: Graph wavelet stability

Without loss of generality assume that P = I (alternatively, fix some P0 2 P and redefine Ŝ to be
equal to P

T

0 ŜP0). Then, we can write Ŝ = S+E
H
S+SE. Observe that, given two arbitrary square

matrices A and B of the same size, the first order expansion of (A+B)k gives

(A+B)k = A
k +

k�1X

r=0

A
r
BA

k�r�1 +C (22)

with C such that kCk 
Pk

r=2

�k
r

�
kBk

r
kAk

k�r. Exploiting that the graph wavelets are analytic
functions, we can use this first-order approximation in (5) with A = S and B = E

H
S+ SE, to get

H(Ŝ) � H(S) =
1X

k=0

hk

k�1X

r=0

�
S
r
E

H
S
k�r + S

r+1
ES

k�r�1
�
+D (23)

with D such that kDk = O(kEk
2
2).

Next, we proceed to compute the output to an graph signal x with finite energy kxk < 1 which has
a GFT given by x̃ = [x̃1, . . . , x̃N ]T so that

x =
NX

i=1

x̃ivi (24)

for {vi}
N
i=1 the eigenvector basis of the GSO S. Then, we can compute

h
H(Ŝ) � H(S)

i
x =

NX

i=1

x̃i

1X

k=0

hk

k�1X

r=0

�
S
r
E

H
S
k�r + S

r+1
ES

k�r�1
�
vi +

NX

i=1

x̃iDvi (25)

Let us consider first the product Sr+1
ES

k�r�1
vi. It is immediate that Sk�r�1

vi = �k�r�1
i vi, so

we focus on the product

Evi =
NX

n=1

mnunu
H

nvi = mN

NX

n=1

mn

mN
unu

H

nvi. (26)

The hypothesis that kE/mN �Ik  " is equivalent to 1�"  mn/mN  1+" for all n = 1, . . . , N .
Then, we can write mn/mN = 1 + �n with |�n|  ", which yields

Evi = mNvi +mNwi , wi =
NX

n=1

�nunu
H

nvi. (27)
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Note that

kwik 

�����

NX

n=1

�nunu
H

n

����� kvik = max
n=1,...,N

|�n|  ". (28)

Using (27) we get that

S
r+1

ES
k�r�1

vi = mN�k
i vi +mNV�k�r�1

i ⇤
r+1

V
H
wi. (29)

And this can be used to compute

1X

k=0

hk

k�1X

r=0

S
r+1

ES
k�r�1

vi = mN

1X

k=0

hk(k�
k
i vi) +mNV

 1X

k=0

hk

k�1X

r=0

�k�r�1
i ⇤

r+1

!
V

H
wi

= mN�ih
0(�i)vi +mNVdiag(ĝi)V

H
wi

(30)
where vector ĝi 2 RN is such that

[ĝi]j =
1X

k=0

hk

k�1X

r=0

�k�r�1
i �r+1

j . (31)

We note that if j = i then �k�r�1
i �r+1

j = �k
i and thus [ĝi]i = �ih0(�i). For j 6= i, on the other

hand, noting that
Pk�1

r=0 �
k�r�1
i �r+1

j = �j(�k
i � �k

j )/(�i � �j) we have

[ĝi]j =
1X

k=0

hk�j

�k
i � �k

j

�i � �j
=

�j

�i � �j

1X

k=0

hk

�
�k
i � �k

j

�
. (32)

Therefore,

[ĝi]j =

(
�ih0(�i) if j = i

�j
h(�i)�h(�j)

�i��j
if j 6= i

(33)

We also observe that |[ĝi]j |  G . max{C, 2B} for all j = 1, . . . , N due to the fact that |h(�)|  B
and |�h0(�)|  C due to the integral Lipschitz constraint.

We can get an expression analogous to (30) for the term

1X

k=0

hk

k�1X

r=0

S
r
E

H
S
k�r

vi = mN�ih
0(�i)vi +mNVdiag(ǧi)V

H
wi (34)

where now

[ǧi]j =

(
�ih0(�i) if j = i

�i
h(�i)�h(�j)

�i��j
if j 6= i

(35)

where it also holds that |[ǧi]j |  G.

Finally, using (30) and (34) back in (25), and applying the norm, we get

���
h
H(Ŝ) � H(S)

i
x

��� 

�����2mN

NX

i=1

�ih
0(�i)x̃ivi

����� (36)

+

�����mN

NX

i=1

Vdiag(ĝi + ǧi)V
H(x̃iwi)

����� (37)

+ kDx̃k . (38)

For the first order term (36) we have
�����2mN

NX

i=1

�ih
0(�i)x̃ivi

�����

2

= 4|mN |
2

NX

i=1

|�ih
0(�i)|

2
|x̃i|

2 (39)
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since {vi}
N
i=1 form an orthonormal basis. Then, bounding |mN |  "/2 in virtue of d(S, ŝ)  "/2

and |�h0(�)|  C for all �, we get

4|mN |
2

NX

i=1

|�ih
0(�i)|

2
|x̃i|

2
 "2C2

NX

i=1

|x̃i|
2 = "2C2

kxk
2. (40)

For the second order term (37) coming from Evi, we have
�����mN

NX

i=1

Vdiag(ĝi + ǧi)V
H(x̃iwi)

�����  |mN |

NX

i=1

kVdiag(ĝi + ǧi)V
H
k|x̃i|kwik (41)

where, by bounding |mN |  "/2, kVdiag(ĝi+ǧi)VH
k  2G in virtue of (33) and (35),

PN
i=1 |x̃i| =

kx̃k1 
p
Nkx̃k2 =

p
Nkxk and kwik  " because of (28), we get
�����mN

NX

i=1

Vdiag(ĝi + ǧi)V
H(x̃iwi)

�����  O("2)kxk. (42)

Finally, for the second order term (38) stemming from the expansion of Ŝk, we obtain

kDx̃k  O(kEk
2)kxk  O("2)kxk. (43)

Using bounds (40), (42) and (43) back in (36), (37) and (38), respectively, we complete the proof.

C Proof of proposition 3: GST coefficient stability

We prove a more general case in which the low-pass average operator U depends on the GSO S and
is such that kUk  BU and kU(S) � U(Ŝ)k  "U . Prop. 3 can be readily obtained from Prop. 4
below by setting BU = 1 and "U = 0 which is the case for the selected low-pass average operator
U = N�1

1
T, that does not depend on S.

Proposition 4 (GST coefficient stability). Let G be a graph with GSO S and bG be the perturbed
graph with GSO Ŝ, such that d(S, Ŝ)  "/2. Let E 2 E(S, Ŝ), consider its eigendecomposition
E = UMU

H where the eigenvalues in M = diag(m1, . . . ,mN ) are ordered such that |m1| 

· · ·  |mN |, and assume that the structural constraint kE/mN � Ik  " holds. Consider a GST
with L layers and J wavelet scales hj(�), each of which satisfies the integral Lipschitz constraint
|�h0

j(�)|  C and conform a frame with bounds 0 < A  B [cf. (9)]. Then, for the coefficient �pj(`)

associated to path pj(`) = (j1, . . . , j`) it holds that

|�pj(`)(S,x) � �pj(`)(Ŝ,x)| 
�
"UB

` +BU"C`B`�1
�
kxk (44)

Starting with (2), using graph convolutions (5) and recalling that we can write hj ⇤S x = Hj(S)x,
we get

����pj(`)(S,x) � �pj(`)(Ŝ,x)
��� =

���U(S)(⇢Hj(S))pj(`)x � U(Ŝ)(⇢Hj(Ŝ))pj(`)x

���



���U(S)(⇢Hj(S))pj(`)x � U(Ŝ)(⇢Hj(S))pj(`)x

���

+
���U(Ŝ)(⇢Hj(S))pj(`)x � U(Ŝ)(⇢Hj(Ŝ))pj(`)x

���

(45)

where we have added and subtracted U(Ŝ)(⇢hj(S))pj(`)x, and then applied the triangle inequality.
Applying Cauchy-Schwarz inequality to each term, we get

����pj(`)(S,x) � �pj(`)(Ŝ,x)
���  kU(S) � U(Ŝ)kk(⇢Hj(S))pj(`)xk

+ kU(Ŝ)kk(⇢Hj(S))pj(`)x � (⇢Hj(Ŝ))pj(`)xk.
(46)

We proceed by bounding, one by one, these four terms. The first one, is bounded by hypothesis

kU(S) � U(Ŝ)k  "U . (47)
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For the second term, we recall that the nonlinearity is nonexpansive, i.e. k⇢k  1, and use the
definition of operator norm together with the property of submultiplicativity

k(⇢Hj(S))pj(`)xk  k⇢Hj`(S)k · · · k⇢Hj1(S)kkxk (48)

and thus, together with the frame condition (9), we obtain

k(⇢Hj(S))pj(`)xk  B`
kxk. (49)

The third term is bounded by the hypothesis that the summarizing linear operator is bounded

kU(Ŝ)k  BU . (50)

The fourth and last term is slightly more involved. We can bound it in a recursive fashion as follows.
First, add and subtract ⇢Hj`(S)⇢Hj`�1(Ŝ) · · · ⇢Hj1(Ŝ) and use the triangle inequality to obtain

k(⇢Hj(S))pj(`)x � (⇢Hj(Ŝ))pj(`)xk

 k⇢Hj`(S)
⇣
⇢Hj`�1(S) · · · ⇢Hj1(S) � ⇢Hj`�1(Ŝ) · · · ⇢Hj1(Ŝ)

⌘
k

+ k

⇣
⇢Hj`(S) � ⇢Hj`(Ŝ)

⌘
⇢Hj`�1(Ŝ) · · · ⇢Hj1(Ŝ)k. (51)

Now, using submultiplicativity and defining

bound(`) = k⇢Hj`(S) · · · ⇢Hj1(S) � ⇢Hj`(Ŝ) · · · ⇢Hj1(Ŝ)k (52)

we observe that (51) becomes the recursive inequality

bound(`)  B bound(` � 1) + "CB`�1 (53)

where we have used that k⇢Hj`(S)k  B by the frame condition, that kHj(S)�Hj(Ŝ)k  "C due
to Prop. 2, and that k⇢Hj`�1(Ŝ) · · · ⇢Hj1(Ŝ)k  B`�1 by the same submultiplicativity and frame
argument of (49).

Solving the recursive inequality in (53) we reach

bound(`)  B`�1 bound(1) + (` � 1)"CB`�1 (54)

and noting that
bound(1) = k⇢Hj1(S) � ⇢Hj1(Ŝ)k  "C (55)

by Prop. 2 we finally bound the fourth term (51) by

k(⇢Hj(S))pj(`)x � (⇢Hj(Ŝ))pj(`)xk  `"CB`�1 (56)

Finally, substituting (47), (49), (50) and (56) back in (46), we complete the proof.

D Proof of theorem 1: GST stability

In this case, we also prove a more general case for a low-pass average operator U that depends on the
GSO S and is such that kUk  BU and kU(S) � U(Ŝ)k  "U . Theorem 1 can be readily obtained
from Theorem 1 below by setting BU = 1 and "U = 0 which is the case for the selected low-pass
average operator U = N�1

1
T, that does not depend on S.

Theorem 2 (GST stability). Let G be a graph with GSO S and bG be the perturbed graph with GSO
Ŝ, such that d(S, Ŝ)  "/2. Let E 2 E(S, Ŝ), consider its eigendecomposition E = UMU

H where
the eigenvalues in M = diag(m1, . . . ,mN ) are ordered such that |m1|  · · ·  |mN |, and assume
that the structural constraint kE/mN � Ik  " holds. Consider a GST with L layers and J wavelet
scales hj(�), each of which satisfies the integral Lipschitz constraint |�h0

j(�)|  C and conform a
frame with bounds 0 < A  B [cf. (9)]. Then, it holds that

����(S,x) � �(Ŝ,x)
��� 

"
"2U⇠

(0)
BJL + 2"UBU

"C

B
⇠(1)BJL +B2

U

✓
"C

B

◆2

⇠(2)BJL

#1/2
kxk (57)

with ⇠(r)BJL =
PL�1

`=0 `r(B2J)`.
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From (3), we get

k�(S,x) � �(Ŝ,x)k2 =
L�1X

`=0

J`X

j=1

|�pj(`)(S,x) � �pj(`)(Ŝ,x)|
2. (58)

Now, each term in the sum, can be bounded by means of Prop. 3, so that

k�(S,x) � �(Ŝ,x)k2 

L�1X

`=0

J`X

j=1

�
"UB

`
kxk +BU"C`B`�1

kxk
�2

. (59)

Expanding the square, and taking kxk
2 out of the sum, yields

k�(S,x) � �(Ŝ,x)k2  kxk
2
L�1X

`=0

J`X

j=1

⇣
"2UB

2` + 2"UBU"C`B2`�1 +B2
U"

2C2`2B2(`�1)
⌘
.

(60)
We note that no term in the inner sum depends on j, so we obtain

k�(S,x) � �(Ŝ,x)k2  kxk
2
L�1X

`=0

J`
⇣
"2UB

2` + 2"UBU"C`B2`�1 +B2
U"

2C2`2B2(`�1)
⌘

 kxk
2
L�1X

`=0

�
"2U (JB

2)` + 2"UBU ("C/B)`(JB2)` +B2
U ("C/B)2`2(JB2)`

�
. (61)

Assuming JB2
6= 1, we can use the geometric sum to get

k�(S,x) � �(Ŝ,x)k2  kxk
2

"
"2U⇠

(0)
BJL + 2"UBU

"C

B
⇠(1)BJL +B2

U

✓
"C

B

◆2

⇠(2)BJL

#
(62)

with

⇠(0)BJL =
L�1X

`=0

(B2J)` =
(B2J)L � 1

B2J � 1
(63)

⇠(1)BJL =
L�1X

`=0

`(B2J)` =
B2J + (L � 1)(B2J)L�1

� L(B2J)L

(B2j � 1)2
(64)

⇠(2)BJL =
L�1X

`=0

`2(B2J)` (65)

=
(1 + 2L � 2L2)(B2J)L+1 + L2(B2J)L + (L � 1)2(B2J)L+2

� (B2J)2 � (BJ)2

(B2J � 1)3

Finally, we apply the square root to complete the proof.

E Details on numerical experiments

Experiment E.1 is a synthetic experiment where we can exercise full control on the perturbation size
" [cf. (15)]. The objective is to show how stable is the GST when compared to the GFT, and also
to show how tight the bound is. Experiments E.2 and E.3 are based on real-world data, in problem
formulations analogous to [22]. The objective is to show that the GST is a useful representation,
yielding similar performance than the GFT (i.e. that they capture, at least, as rich information as the
GFT). Additionally, we show how stable the GST is to real-world perturbations (i.e. perturbations
that are not synthetically controlled by fixing ").

We consider three different GSTs. In all cases, we consider J = 6 scales and L = 3 layers yielding
43 coefficients. First, we consider the use of a monic cubic polynomial as the generating kernel,
see [31, eq. (65)] and ensuing discussion for details. We set x1 to be �bN/4c and x2 = �d3N/4e (i.e.
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for the eigenvalues in increasing order, the first fourth of the eigenvalues are affected by the monic
polynomial x�↵

1 x↵, and for the last fourth, by x�
2x

��). The values of ↵ = � = 2 and K = 20 are
the same as in [31]. The cubic polynomial for the eigenvalues located between x1 and x2 is designed
so that the Kernel has continuous first derivatives. The adopted GSO for the monic cubic polynomial
GST is the normalized Laplacian S = D

�1/2(D � W)D�1/2 with D = diag(W1) the degree
matrix and W the adjacency matrix, as suggested in [31]. We denote this GST as �MC(S,x) and
refer to it as “Monic Cubic”. We also use this “Monic Cubic” polynomial to compute the theoretical
value of the bound as in (19). The values of both B and C are obtained numerically by computing
B = max{�n} |h(�n)| and C = max{�n} |�nh0(�n)| for {�n} the set of eigenvalues of S.

Second, we employ a tight Hann wavelet kernel, see [32, Example 1] for details. More specifically,
we implement a generating kernel in [32, eq. (9)] with K = 1, a0 = a1 = 1/2, and R = 3. We do
warping as suggested in [32, Sec. IV] with a warping function !(�) = log(�). We then construct
the remaining wavelets from the generating kernel as in [32, eq. (12)] with a scaling function given
by [32, eq. (13)]. The adopted GSO is also the normalized Laplacian. We denote this GST as
�TH(S,x) and refer to it as “Tight Hann”.

Third, we compare with the graph geometric scattering of [28]. In this case, each wavelet is obtained
as Hj = P

2j�1

(I�P
2j�1

), j = 1, . . . , J for P = 1/2(I+WD
�1) the lazy random walk operator,

which we adopt as the GSO. The low-pass average operator U in this case comprises of the set
of Q moments [Ux]q =

PN
n=1[x]

q
n for q = 1, . . . , Q. We adopt Q = 4 as in [28]. Note that this

increases the number of GST coefficients to 172. We denote this GST as �G(S,x) and refer to it as
“Geometric”.

To compare the stability of the graph-based representation given by the GST, we construct another
graph-based representation, namely, the graph Fourier transform (GFT). Given a GSO S = V⇤V

H

and a graph signal x, the GFT is computed as x̃(S,x) = V
H
x, where the dependence on S comes

through V. We choose the normalized Laplacian as the GSO for computing the eigenbasis V. We
note that, unlike the GST, the number of coefficients in the GFT representation is N . Therefore, for
fair comparison, in experiments E.2 and E.3 we select a number of GFT coefficients equal to the
number of GST coefficients. We denote the GFT as x̃(S,x) and refer to it as “GFT”.

Additionally, we consider a trainable GIN neural network [36] on the adjacency matrix normalized
by the largest eigenvalue. We consider a single-layer that outputs 43 features and ReLU activation
functions, followed by a MLP that maps the 43 features per node to a vector of size 2 that we consider
to be the logits for the 2 classes in each of the classification problems. We train this network over the
same training set used to train the SVM classifier, using a cross-entropy loss function for 40 epochs
with batch size of 5 in E.2 and 20 in E.3. In both cases we use an ADAM optimizer with learning
rate 0.001 and forgetting factors �1 = 0.9 and �2 = 0.999. We denote the GIN as �GIN(S,x).

E.1 Relative representation error: Small world graphs

In this first experiment, we consider a small world graph of N = 100 nodes, generated randomly
by using an edge probability pSW = 0.5 and a rewiring probability qSW = 0.1. We then consider a
white noise signal x with power �2

x defined on top of this graph, and compute the corresponding
representations �(S,x) for all three GSTs and x̃(S,x) for the GFT. We consider perturbations
of the adjacency matrix W given by Ŵ = W + E

H
W + WE [cf. (14)], where error matrix

E = diag(e) is a diagonal matrix with e being uniformly random, chosen such that kEk  "/2 and
kE/emax � Ik  " for emax = sign{argmax |[e]n|}max |[e]n|. Such a deformation amounts for a
local dilation of the edge weights (i.e. the edge weights of the neighborhood of each node are dilated
by different values). We control the value of " as a parametric sweep from 0.1 · �2

x to 1 · �2
x.

To account for the different sources of randomness, we generate 10 random connected graph real-
izations of the small world model, and for each of these 10 graphs we sweep for 10 different values
of " linearly spaced. For each value of " we consider 10 random realizations of the error matrix E,
and for each of these perturbations, we simulate 1000 test signals x assumed to be white gaussian
with zero-mean and power �2

x = 1. We compute �(S,x) and �(Ŝ,x) for each of the three different
GSTs and also x̃(S,x) and x̃(Ŝ,x) for the GFT. We calculate k�(S,x) � �(Ŝ,x)k/k�(S,x)k for
each of the signal and average across all 1000 test signals, and then average these means across all 10
random realizations of the error matrix to obtain an estimate of the relative representation error for
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each graph, for each value of ". We proceed analogously for the GFT. For each value of " we get
10 estimates fo the relative representation error, one for each random graph realization. We average
these across the 10 graphs and plot them as solid lines of Fig. 2a. We estimate the standard deviation
across the 10 graphs and plot them as the error bars. We also show, in dashed line, the value of the
bound (19) for the GST using the monic cubic polynomial wavelets (we choose this one due to its
simplicity in computing the frame bound B and the integral Lipschitz constant C).

E.2 Authorship attribution: Jane Austen

In this experiment, we consider the problem of authorship attribution. The objective is that, given
a text excerpt, we can accurately attribute it to a given author. In particular, we consider works
authored by Jane Austen, in the same setting as in [22]. To cast this problem as a graph signal
classification problem, we proceed as follows. Given a training set of text excerpts (i.e. text excerpts
that we know have been authored by Jane Austen), we build a word adjacency network (WAN) using
functional words (i.e. words without semantic meaning such as connectors) by determining their
relative positioning in the text. It has been noted that the relative positioning of functional words
offers a stylometric signature of the author, see [37] for details. Once the graph is built with N
functional words, we ensure it is connected and make it undirected by recomputing the edge weights
to be the average of the incoming and outgoing edge weights. Each of these functional words act
as a node in the network. We can then associate a graph signal (on top of this WAN graph) to each
text by counting the frequency of appearance of the functional words. It is then expected that if the
frequency of functional words bears strong relation with the graph, then the given text was written by
the author for which the WAN was built.

We consider N = 224 function words, and a corpus of 771 text fragments (of approximately 1, 000
words) authored by Jane Austen. We split at random this corpus in training, validation and test sets,
and use the training set to build the WAN. It is important to note that the texts included in the training
set are the only ones used to build the WAN graph, and therefore, the graph is different depending on
what texts were selected for the training set. This is a realistic scenario that models the perturbation
in the underlying support arising from an estimation of the graph topology (i.e. we do not know the
specific graph topology, but estimate it from data, and therefore the true graph topology might be
different from the one we are actually using). We consider 10 different split ratios ranging linearly
from 0.2 to 0.9 which implies that the number of texts used to build the WAN varies from 154 to 694.

Once we build the WAN graph, we use a linear SVM to classify the graph signals. To train this SVM
we use the same texts included in the training set (labeled as 1 since they were written by the author of
interest), and we add to the training set an equivalent number of texts written by other contemporary
authors (labeled as 0 since they were written by other authors, such as Emily Brontë, Edgar Allan Poe,
Charles Dickens, among many others). We compute the relevant representation � and x̃ for each
text in the training set and use this representation to train 4 different SVMs (one for each of the three
GSTs and one for the GFT). We also train the GIN on this same training set. To use representations
of same size, we consider the GFT to project the signal only on the first 43 eigenvectors of the GSO
(low-pass filter). We then build a test set with the remaining texts by the author (those not used to
build the WAN nor to train the SVM) and add an equivalent number of texts by other contemporary
authors. The classification accuracy at test time for different sizes of training set is shown in Fig. 2b.

To account for randomness, for each split ratio (i.e. for each total number of training samples), we
simulate 10 different data splits. We compute the classification accuracy averaged over the test set
for each of these 10 different data splits. By averaging over the 10 data splits we obtain the mean
classification accuracy showed in solid lines in Fig. 2b. We also include the standard deviation
estimated from these 10 data splits. While the richness of the GST representation can be observed by
the fact that the classification accuracy is comparable to that achieved by using the GFT representation,
we can also observe the stability of the GST when compared to the GFT. More specifically, we see (i)
that the mean value of the classification accuracy of the GFT oscillates much more than the mean
value of the GST, and (ii) that the error bars for the GFT are much larger than those for the GST.
This shows that, depending on how we build the underlying graph (i.e. which and how many texts
we use to estimate the WAN), the classification accuracy by using the GFT representation can vary
wildly. We also note that the trained GIN exhibits around 5 percentage points increase in accuracy
with respect to the best performing GST.
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E.3 Source localization: Facebook subnetwork

For the final example, we consider a source localization problem (synthetic data) on a Facebook
subnetwork of N = 234 users (real-world data), the same as in [22]. This Facebook graph, exhibiting
a two-community topology, is a subnetwork of the larger 4, 039 user graph provided in [39]. The
problem of source localization consists in observing a diffusion signal and pinpointing to where it
started. In the context of graph signals, we consider a signal �c which is a signal with a 1 at node c
and 0 elsewhere. Then, we observed the diffused signal x = W

t�c for some unknown time t < tmax

and we want to estimate the community c that originated the rumor. In a two-community graph, this
is a binary classification problem. This problem is analogous to identifying the source of a rumor that
spread through the social network.

In this case, we consider perturbations stemming from randomly dropping edges with probability
p, ranging in 10 logarithmically-spaced points from 0.01 to 0.3, as in [22]. This models changing
friendships in the network. We use the underlying given graph as S which we use to build the
representations �(S,x) and x̃(S,x), but we use data x generated on graph Ŝ that corresponds to
some random realization of the edge dropping. Again, the objective of this simulation is twofold:
(i) to show that using the GST representation achieves as good classification accuracy as using the
GFT, and (ii) that the GST is more stable than the GFT. We consider 43 GFT coefficients belonging
to middle frequencies (bandpass filter).

To perform the classification, we train a Linear SVM on the representations obtained for each of the
three GSTs, the GFT and the GIN, analogously to experiment E.2. We train the SVMs by generating
1, 000 training samples x = W

t�c for c 2 {c0, c1} and random t < tmax = 20. The source nodes c0
and c1 are the nodes numbered 38 and 224 since each of them belongs to a different community, and
half of the training samples were originated at c0 and the other half at c1. For testing, we generate
200 new samples, half for each community, with random diffusion times t < tmax. Results are shown
in Fig. 2c.

To account for randomness, we generate 10 different random edge-failing graph realizations, for each
value of p simulated. We average across these 10 realizations to obtain the solid lines in Fig. 2c,
and compute the standard deviation for the error bars. We observe that �MC, �TH and x̃ perform
similarly, but that �TH exhibits considerably less variation and thus is more stable. The geometric
scattering �G exhibits a performance comparable to the GIN �GIN.
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