Supplementary Material:
Convergence-Rate-Matching Discretization of
Accelerated Optimization Flows Through
Opportunistic State-Triggered Control

Miguel Vaquero Jorge Cortés
Mechanical and Aerospace Engineering Mechanical and Aerospace Engineering
UC San Diego UC San Diego
San Diego, CA 9500 San Diego, CA 9500
mivaquerovallinas@ucsd.edu cortes@ucsd.edu
Abstract

This is the supplementary material corresponding to the paper entitled
“Convergence-Rate-Matching Discretization of Accelerated Optimization Flows
Through Opportunistic State-Triggered Control”. In the first part of this supple-
ment, we provide proofs of some auxiliary results for the heavy-ball case. In the
second part, we introduce the continuous model of Nesterov’s accelerated gradient
method for strongly convex functions presented in [1]] and its discretization. Finally,
we provide numerical illustrations of the performance of the proposed integratros
on several quadratic objective functions.

1 Heavy-Ball Case

Proof of Proposition 3.2

Here we upper bound the terms I, II and III described in Proposition 3.2 in order to obtain the
definitions of Agr, BCgr, Dgr, Ast, Bst, Csr and Dgr. We will use the notation p = [z, U]T
along this section.

e Term I. By direct computation we have

V) = 1+ /us)V f(z) + /av + 2p(x — x.)

v+ /(- xy)
and
TV 4 tXu(p)) = (14 /us)V f(z +tv) + /v — t /(1 + /us)V f(x) + 2p(x — )
P iwp v — ty/iv — t(1+ ISV () + T — ) '
Therefore,

(VV(p + tXn(p) — VV(p), Xin(p)) = (1 + us)(Vf(z +tv) — Vf(z),v)
2L+ IR (@), 0) + 20 o]
+H(1+ is)? V()7

The RHS of the last expression is precisely Agr(p,t). We can use the Lipschitz continuity of the
gradient to get

Ast(p) = (1+ Vis)L [[ol* + 2/a(1 + Vis)(V £ (), 0) + 2 [[ol* + (1 + /as)* [V f (@)
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e Term /. We have
Vip+ Xun(p)) — V(p) = (14 V) (7@ + o) = f() + § o — 12y — 11+ 735)V f(z)
+ o= 12y — (1 4 V)V (&) + 2/ + 1 — )

1., 1 )
(4 VER)(() — F) — ol % ot 2y - )
Using ||a + b||* = ||al|*+2(a, b)+||b]|* on the second and third addends, the last expression becomes

(14 V(o + t0) — F(@) 4 [0l +5 [ 12y — 11+ V7)V ()]
——

1

2 o, ~12y/0 41+ IRV (@)} g o+ 2/E( — w4 [0+ VTS @)

2

20 2w — 22), ~(1 + V)V ()~ ol ~ o+ 2y — )
A/—/

1 2

Canceling out the corresponding terms (1 and 2) we get
1
(1 + yas)(f(z +tv) = f(z)) + 7 l[=t2v/kv — ¢(1 + Vis)Vf (@)
2 1
2 (0, —t2 v =t + V)V (@) + 7 10+ V)V (@)

£2 0 2yl — 2., ~(1 + )V ().
Finally, using
fla+tv) = f(z) < (Vf(z),tv) + & [[to]*,

IV £ ()]
(e —z,Vf(2)) < -7

we can uncover the expression of BC'gp. We continue to obtain the definitions of Bgp and Cgr

(1 4+ V)V S (@), 0) 425 [ol) + 25 =23/ — (L4 i)V ()
————
1
g o, ~2y/0 —(L+ VISV (@) 17 |-(1 4+ V)V ()]

5 (1 + V)0,V £(2) /(1 + V)7 9]

1

After canceling out the terms with 1 we get

P4 V) g Il + 25 |-2y/E — (1 + V)V @) — ty/aol
25 -0+ VIR V@) — t/F + i) L IV @),

and so, including the « factor

Bsr(p) = o — VA ol = L+ V) 7 IV @),

Csr(p) = a((1+ i) ol + 1 =20 — (1 + V)V (@)
+ 1 1-0+ VIR,



e Term I /1. From the computations in Appendix B in [1] (p. 50) we have

(VV(p), Xun(p)) < —vaE(lvl* + 1+ VEs)(Vf(2), z — 2.)).
On the other hand

2
aV(p) = a((1+ ms)(f(x) = f@)) + 5 ol + ] lv+2y/E@ - 2)|")
1 2 2
< a((U V(@) — @) + 5 ol + 2 ol + 2 2yt — 2],
where we used [|a + b||* < 2|a]|” + 2b||* on the last addend. Finally, using

(Vf(@), 2. — ) < fls) — f(2) = & |lo — .|,

2
fle) — fl@) < _%7
2
e —a? < —HVLM7

ifo<a< %, it is easy to see that

(VV(p), Xiw(p)) + aV(p) < (a2 — p) v
(1 + 8) 5 + (a2p — EIEDDN LY 17 ()2

And so,

3 a— /1 (1 + /ps)p), 1
Dir(p) = Dsr(p) = (ocs—/B) ol +(1y75) 5 P a2 EEE NI Ly 1 .
Which finishes the proof of Proposition 3.2. |

Explicit Computation of Uniform Lower Bound of Stepsize

In this section we provide a lower bound of the stepsize computed in Theorem 3.3. Before that, we
need to introduce the following lemma

Lemma 1. Given the expression below, where (3; are positive real numbers,

B2t + Baz3
B3z} + Bazy’
there exist positive constants given by

B2 B B2 B1

cp =min{==, =5}, ¢z = max{—

B Bs By B3’ W

such that ) )
B1 zi + 5222

< 1l R\{0}.
c < B2 & Barl <ecy forall z1, zo € R\{0}

Proof. Consider
Br2f + Baz3
h(z1,29) = —5——
(21, 2) B3z + B4z3

A

when zo = 0 we have h(z1,0) = B When 25 # 0 we can divide numerator and denominator by 23
3

and study the following function of z = 2

Z2
o(x) = BE B
B32% + B
If we compute the derivative, to compute the minimum and maximum, we have
’ o 223, (6322 + 54) — 2532(5122 + ﬂg)
g(z) = 2 2
(/632 + 54)




and ¢'(z) = 0 < 22(01 84 — B382) = 0. Since the function is symmetric with respect to vertical-axis

we only need to study its maximum and minimum between [0, co). In this interval g is increasing

if (8181 — B3f2) > 0 and decreasing otherwise. If (3134 — 33/32) = 0 the function is constant and

the maximum and minimum coincide with % Let us assume that g is increasing, the other case is

analogous. Then the maximum is reached asymptotically lim g(z) = % The minimum is achieved
Z—r00

at z = 0, which is ﬂ Soc = gQ and ¢y = ; In the general case we can easily conclude the
desired result.

O

Computation of a lower bound of the stepsize. Using Lemma [I| we can compute ¢; such that

—Dst(p)

0<eg < ——=.
L= Csr(p)

Taking into account that

—DST@)>—<a%—f>||v||2—<<1+r>a*ﬁ (0231 = L) o) [V f (@)
Cst(p) = a((1+ S5 +20) ol + ad (1 + is)? |V £ ()]

we obtain

)

2(vE-%)  2(Aap+L(Vi- a)(f+1)+u3/2(f+1))}
a(4p+ Ly/ps+ L)’ 3aL? (/s + 1)
Analogously, let us compute cs such that

Agst(p) + Bsr(p) < o
2Cs7(p) -

¢1 = min{

using

Asr(p) + Bsr(p) _ Asr(p) <(1+\ﬁ)(L+f+2u) loll* + (f+(1+\/lﬁ))(1+\//ﬁ)HVf(%‘)HQ.

2Csr(p) = 2Csr(p) ~ 20((1+ /8) L+ 20) v]” + 203 (1 + m9)? |V f(2)]?

Following the same strategy as before,

2p+ o+ L) (Vas+1) 2(Vi+/us+ 1)}
a(4u+L,/u5+L) ’ 304(,/u5+1) .

By the arguments introduced in the paper, we can conclude that if f(z) = —z 4+ /22 4 ¢; then

f(ca) < stepgr(p),

fle2) = —c2 + /3 + c1 < stepgr(p).

2 Nesterov’s Accelerated Gradient for Strongly Convex Functions

¢o = max{

for all p. Finally,

Continuous Model

This section is devoted to the introduction and discretization of the continuous model of Nesterov’s
accelerated gradient for strongly convex functions presented in [[1]. Due to the similarities with
the heavy-ball case we will only sketch the proofs. Let f be an objective function, f € 837 L (R™),
and x, its unique minimizer. The Hessian of f is assumed to be H-Lipschitz continuous, so
|V2f(z) = V2f(y)|| < H ||z — yl| forall z, y € R™. We also assume knowledge of a bound of the
type Hsz(x)H < M for all z € R™. Given s € R+, consider the following s-dependent family of
second-order differential equations,

z v
M = {2\/@0 — VEV2f(2) — (1 + SV f(2)] 2
with initial conditions 2(0) = z¢, v(0) = — %\/g’?o). When convenient, we refer to this dynamics

as Xna. The convergence properties of this dynamics are characterized in the next result.



Theorem 2 ([1]). Let V : R® x R® - R be the positive definite function relative to [z, 0]T,

V= (1 V@)~ S@) + Il + ] o+ 2yt —2) + VAVI@IT. )
Then
7 <y V@) + 0"V ),

along the dynamics () and, as a consequence, [z, 0]T is globally asymptotically stable. Moreover;
for s < 1/L, the decay rate of the Lyapunov function V implies
Vi
2||x(0) — x4 2 Vo
10 — (o) < O =27 @
Analogously to the heavy-ball case, we evaluate V+aV+F along the proposed dynamics in order
to compute a large stepsize satisfying the decay condition. Let p(t) = p + tXna (p), then

dV( () +aV(p(t)) + F(p(t)) = (VV(D+tXna(p)), Xna(®)) + V(P + tXna(p)) + F(p + tXna(p))

dt
= (VV(p+tXna(®) — VV (D), Xna (D)) + a(V(p + tXna(p) — V(D))
I II
+ F(p+tXna(p)) — F(p) +(VV (D), Xna(p)) + V(D) + F(p) .
III7 v (5)

We bound these terms separately. Since our aim here is just showing that analogous results to
the heavy-ball case can be obtained, we sketch how to compute the necessary estimates for the
self-triggered implementation (ST). Event-triggered implementations (ET) can be inferred from the
computations presented here.

Upper Bounds of the Terms I, II, III and IV

. . T . . I
During the computations of the bounds, we assume p = [z, v] " is an arbitrary point in R?",

e Term /. We have,
VoV(p) =1+ Jm)Vi(x) + Jav + 2u(x — z.) + ISV f(z) + LV f(x)
+/sV2 f(z)(x — x.) + 5V f(2)V f (),

VoV(p) =v+ il —2.)+ SV (z),
and

VoV(p+tXna(p) =1+ /us)Vf(z+tv) + /u(v — 2o — t/sV? f(z)v — t(1 + /us)V f(z))
+2u(x +tv — ) + sV f(x + tv) + %VQf(x + tv) (v — 2 /pv — t/sV2 f(z)v
—t(1+ /ps)Vf(z)) + VusV2f(z 4+ tv) (@ + tv — z,) + §V2f(z + tv)V f(z + tv),
Vo V(p+tXna(p)) =v—ty/fiv—ty/sV2f(x)o — t(1+ /a8)Vf(2) + Va(x — 2.) + LV f(x + to).

After arranging the terms we have
(VV(p +tXna(p)) = VV(p), Xna(p)) = (1 + /us)(V f(z + tv) = Vf(x), v)

+\/ﬁ<—t2\/ﬁv — t/5V2 f(x)v — t(1 + /Es)V f(x),0) + 2ut |[v]|* + /Es(V f(z + tv) — V f(z), v)
0T (V2 f(z + tv) — V2 f(a)v + %vTWf(x + tv)(—12/pv — t/sV2 f(z)v — t(1 + /s)V f(z))

+/msvT (V2 f(z + tv) — V2 f(2)) (@ — z2) + /usvT V2 f(z + to)tv + 50T V2 f(z + to)V f(z + tv)

—50TV2 f(@)V f (@) + 2tp [[o]|* + /50T V2 fw)o + 11+ /i)y /R(v, V()

2t s V2 f(z)v + ts || V2 f(@)o||* + t(1 + )Y f(2) TV f (z)v + 2t /(1 + Es)(V f (), v)

+H(1+ /ES)V/EV f (@) TV2 f ()0 + H(1+ 115)? |V f(2)|° = sV f (@ + to) = Vf(2),0)

—5(V(@ +tv) = Vf(@), V2f(@)o) = L (1+ Vas)(Vf(a + tv) = V (), Vf(2)).



We cancel out the terms 1, 2, 3, 4, 5 and group the terms with 6

(14 /Es)(Vf(z+tv) — VF(2),v) + (- t2¢/mv —t/sV? f(z)v —t(1 + /us)V f(z), v)
1 2 3
+2ut |o]|* + VES(V f (2 + to) — V (), 0) + 50T (V2 f(x + tv) — V2 f(2))v + LT V2 f (2 + to)(— 12w
1 1 5

—t/EV2 ()0 — t(1 + VISV (1)) + ST (V2 (x + to) — V(@) (@ — 2.) + Vso" V2 f (@ + to)to

5

+30T V2 f(x + to)V f(z + tv) — 50T V2 f(2)V () + 2tp o] + ty/svt V2 f(2)v
2
+ (1 + /ps) /v, V() +2t/usv’ V2 f(z)v + ts ||V2f(x)v||2 + (1 + /us)V/sV f(2) V2 f(z)v
3 6
ot /(L + S V(). v) + 11+ VWAV £ (@)Y f @) 411+ Vi) [V (@)

6
= Vs(Vf(z +tv) = Vf(x),v) —5(Vf(z +tv) = Vf(2), V2f(2)v)

4

— (1 + s)(V f(z + tv) — V(x), V().

Next, we bound any addend separately using the Lipschitz continuity of the gradient and Hessian, and

the bound ||z — z.|| < W, in combination with the Cauchy-Schwartz inequality. The bound

of the terms v V2 f(z + tv)V f(z + tv) — 0T V2 f(2)V f(z) is computed adding v V? f(z +
tv)V f(x) — vTV2f(z + tv)V f(z) and grouping terms. Finally, we achieve the expression

tL(1+ /s) [ol|* + StH [of|* + 5t [ol|* M2 + 52 (1 + zs)M [[v]| [V £ ()]

HYE o2 H |V £ (@) + $tLM ol|* + $tH |[v]* |V £ ()] + 2t o]

+2t /M ||o]* + tsM? [[v]]® + 21 + \/is) M /5 [V £ @) o] + 2ty/E(1L + y/Es) [V £ @) o]
+t(1+ /5) [V (@) + $LM [lo]*t+ (1 + s)tL o]l |V £ (z)]|.

Notice that all these terms are linear in ¢ and therefore we can define a function Agr(p) analogous to
the heavy-ball case. We observe that all addends in the last expression can be upper bounded by terms

of the form (y1 |[v]|” + 72 | V.f||*)¢ (where ~; € R) using Young’s inequality, with the exception of
the terms 2t [[o]*, 2 |[o]* H |[V (@) | and 5t [Jo]]? [V £(2)]].

e Term I /. Taking into account

I

V() = (L V) (S(@) — Fae)) + 5 ol + § [0+ 2VAGe = 2.) + vV S (@)
and

Vip+tXna®) = (14 VE8)(f(e +t0) = f(a.) +  [Jo = 25w — t/5V2f(@)o — t(1 + Vas)V (@)
+ [0 = 2y = ty5V2f(@)o = t(1+ VES)V f(2) + 2y/file + tv — 2.) + V5V f (@ + o).

6



Using [|a + b||” = |Ja]|* + 2(a, b) + ||b]|* we have
V(p+tXna(p) = V(p) < (1+ a8)(f(z+tv) = f(2) + § [[o]
1 || ~t2y v — 5V f () — (1 + /is) V f (2) ||
+2 (v, —t2\/fiv — t/sV? f(z)v — t(1 + /us)V f(z))
+1 v+ 2y — 2.) + VEV f(a + to)||”
+4 | ~t/5VE ()0 — (1 + ims) V()]
+2(v+ 2/li(x — z.) + V5V f(z + tv), —tV2 f(z)v — t(1 + /a5 V f(x))
ol = § [lo + 2v/A(@ - 2.) + V5V (@)

Canceling out the corresponding terms we get
(1+\/m)(f(x+w)—f(x))+iy|—t2\ﬁv—t\[v2 (x)v —t(1+ /us)Vf(z H
+2 (v, —12/fiv — t/5V2f(2)o — t(1 + JES)V () + 3 |Jv + 2y/f(z — 2.) + 5V f (2 + t)|)?
~Lo+2yate - x.) + VEV @) + L[tV )v—t(1+rw )|
+2(v+ sV f(z + tv), —t\/sV2 f(z)v — t(1 + /asV f(z)))
+32Va(E = a.), —t/sVA f(2)v — t(s + /i8)V f(2)).

We focus now on the fourth and the fifth addends which are the most problematic. Using ||a + b||2 =
2 2
llall™ + 2(a, b) + |[b]]

Tl 2yie — 2|+ 19+ 1) 42 o+ 2w — ), VAV @ + 1)

1 2 3
o 2y — 2 s IV @I ~2 (0 + 2R - 2.), VAV (2)
1 2 3

We cancel out the terms with 1 and we bound the terms 3 by

20+ 2V — 2, VBTt t0) = V1)) < V55 ol L+ YL 95w ol

For the terms with 2 we get
= V@ + )P~ [VF@)I + (o +t0), VI) — (Vo + ), V(@)
= (Va4 ), V(x + 1) ~ V@) + (VS + 1) — (), V()
< (VS t0) Vi) + V() Vi + ) - V()

HY S+ 1) Vf(x), V(@)

195Gz + 1) = V@) + (Y (), Vi + ) — V()

HYf(+ ) — V@), V()

IVF (@ + to) = VF(@)|* + 2V f(2), VS(z + tv) = V()

L2462 [ol[* + 2(V(2), Vf(w + t0) — Vf(2))

£262 Jol[* + 21V ()| Lt o]

IN

IANIA

Finally, we observe that using

fl@+tv) = f(z) < (Vf(@),to) + & [[to]]”,

o — o < KL,




in combination with Young’s inequality, the term II can be bounded by a function of the form
Bsr(p)t + Csr(p)t?. That is, we collect the coefficients of the linear terms in ¢ in Bg7(p) and the
coefficients of the quadratic terms in ¢ in C's7(p). These functions can be chosen to be of the form

Y1 |v]|? + 72 |V f ()| for ~; positive real numbers.
o Term I11. We start with

Fp) = LV 07T (@),
and
F(p+tXna(p) = L(|Vf(z +to)|?
(v —t2/w — t/sV2f(z)v — t(1 + /as)V f(2))T V2 f(z + tv) (v — t2\/av — t/sV2 f(z)v
—t(1+/ps)Vf(2))).
Therefore,
F(p+tXxa(p) — Fp) = L(|Vf (@ + t0)|* = [V f(2)|*) + L 0T (V2 f(z + tv) — V2 f(x))v)
FE (20T V2 f (2 + to) (—t2, /v — ty/5V2 f ()0 — t(1 + /E8)V f ()
+(—t2y/av — t/sV2 f(2)v — t(1 + /) V f ()T V2 f(z + to) (—t2/av
—ty/sV2 f(z)v — t(1 + /is)V f(2))).

Notice that a bound for the first addend was computed in term II. The second addend can be bounded
using the Lipschitz continuity of the Hessian by ?H t||v]|>. The remaining terms are easily bounded

using Cauchy-Schwartz and Young’s inequality. Observe that with the exception of %H t ||v\|3,
we obtain terms that are linear and quadratic in ¢ and their coefficients are linear combinations of

|V ()| and |jv||*. These terms have no correspondence in the heavy-ball case, but the coefficients
of the terms linear in ¢ may be added to the function Agr and the coefficients of the terms quadratic
in t may be added to Cg7, as they play an analogous role.

e Term /V. From the Appendix in [1] one has
(VV(p), Xna(®) < —vA(II* + (14 E5)(z = 2., Vf (@)
VAWV (@ + 95 @)
On the other hand
aV(p) = a((1+ ims)(f(z) = f@.) + 3 [vl® + & [+ 2/ = 2.) + V3V £(@)][)
< (L4 yES)(f(@) = f@) + ol + 5l + [|2y/7G - 2)|* + VSV F@)I)),

and Y
s
F(p) = L9 @) + 792 (@)0).
Following computations analogous to the heavy-ball case, we can easily upper bound

(VV(p), Xna(p)) + aV (p) + F(p) by an expression of the form v; () ||v||2 + v () |\Vf(a:)\|2,
where 7; («) are shown to be negative if o < %. These computations allow us to define Dgr.

Algorithm and Properties

Gathering together all the computed bounds of the terms I, II, III, and IV we can go back to (5) and

%V(p(t)) +aV(p(t)) + F(p(t)) < Csr(®)t* + (Ast(p) + Bsr(p)t + Dsr(p).

Observing that for any point p = [z, U}T such that ||v|| and ||V f(x)|| are not zero, Csr(p) > 0 and

Dgsr(p) < 0ifa < %, it is easy to see that Csr(p)t* + (Asr(p) + Bs7(p))t + Dsr(p) = 0 has
always a positive solution, which is



—(Ast(p) + Bst(p)) + \/(Ast(p) + Bsr(p))? — 4Cs7(p)Dsr(p)
2CsT(p) '

stepsr(p) =

Algorithm 1: Triggered Forward-Euler algorithm

Initialization: Initial point (pg), convergence rate (), objective function (f), tolerance (¢);
Set: k = 0;
while |V f(z)|| > e do

Compute stepsize t;, = stepgr(pr);

Compute next iterate pxy1 = pr + tx Xna (Pk);

Setk=Fk+1
end

We pointed out how to obtain bounds to design a self-triggered implementation, but its is very easy to
obtain an event-triggered implementation from there. Finally, we have the following result.

Theorem 3. For 0 < o < \/1i/4, Algorithm is a variable stepsize integrator with the following
properties

(i) the stepsize is uniformly lower bounded by a positive, explicit constant;

(ii) LV (p 4+ tXna(pr)) < —aV(pk + tXna(pr)) — F(pr + tXna(pr)) for all t € [0, ]
and all k € {0} UN.

As a consequence, it follows that f(xp11) — f(z.) < M@’a Yot forall k € {0} UN.

Proof. Due to the similarities with the heavy-ball case we only outline the proof. We have already
shown how to compute a positive stepsize at any point, and are left to show that this stepsize is
positively lower bounded. In the end, the proof of Theorem 3.3 in the paper “Convergence-Rate-
Matching Discretization of Accelerated Optimization Flows Through Opportunistic State-Triggered
Control” relies on using twice the bounds provided by expressions of the form

Bi ol + B2 |V £ ()|
Ba o))® + Ba |V f(2)]*

which are known to be upper and lower bounded by positive constants when the (; are positive.

(6)

Firstly, in the proof of Theorem 3.3, the form (6) is used to lower bound D —==ZL . This can be done the
same way, just with different coefficients (;, due to the computations sketched above.

Ast(p)+Bst(p)

The form () is needed a second time to upper bound 5Csr ()

. The only difference is that
now Agr(p) includes terms of the form

v llol®, 2 [[ol* 1V £ (@)1l (7

for 7; € R which are not linear combinations of the terms ||v|* and ||V f(z)||* and therefore
% does not have the form (6). However, this can be easily fixed if we observe that, by design,
the iterates produced by Algorithm [I|stay inside the starting sub-level set of the Lyapunov function
(3). More precisely, since by construction the value of the Lyapunov function can only decrease along

the discrete dynamics, if p, = [z, vk]T then

1 1 2
Hvkll (1 + Vis)(f(zr) = flz:)) + 5 lox|* + 7 ok + 2@, = 2.) + VsV fai)|
=V(pr) < V(po).
Using this we can upper bound the terms in (7) by linear combinations of |v]|* and ||V f(z)|%, for

instance [|v||* < \/4V (po) ||v||>. Thus, we can upper bound M by an expression of the form

(6) and we can apply Lemmal([l] Finally, an argument analogous to the one employed in the heavy-ball
case gives the proof. O



3 Illustrations on Quadratic Objective Functions

We compare the performance of Algorithm 1 with the explicit and symplectic integrators proposed
in [2] in the case of 2-dimensional quadratic objective functions. These examples allow to see the
evolution of the state-variables in a neat way. Figure [T]illustrates how the state evolves under the
corresponding discrete dynamics for the objective functions fi(x1,22) = 23 + 23 and f2(z1,22) =
x1 + 1023 . In both cases, @ = \/i/4 and s = p/(16L%) and s = 11/(36L?) (according to the
values used in [2]])

50| @
4000
40
o 2000
30] 1
< . < 0|
20|
o ST Integrator (s = p/(16L2)) 2000
" " ST Integrator (s = p/(36L2))
e » Forward Euler 4000
0 é/c « Symplectic Integrator -

[ 10 20 30 40 50 45 46 47 48 49 50

Figure 1: The left plot displays three discrete algorithms converging from (50, 50) to the minimizer 0
of the function f;(z1,z2) = x? + x2. The stepsize of the ST integrator is significantly larger than
the one of the other two methods, which makes it converge in a far fewer number of iterations. We
also compare the difference in performance due to different values of s, showing that s = p1/(16L?)
performs slightly better. On the right plot, we run the three algorithms for the same number of
iterations (10000) starting at (50, 5000) for the function fa(x1,22) = z? + 10*23. Due to the large
stepsize of the ST integrator the algorithm makes considerable larger progress toward the optimum
as compared to the other two methods. The ST integrator corresponding to the value s = y/(16L?)
slightly outperforms the one corresponding to the value s = p/(36L?), although it is not noticiable
in the plot.

Next, we introduce the optimal stepsize only for comparison purposes, as the minimizer is in practice
unknown. Figure[2]compares the stepsizes obtained with a priori knowledge of the location of the
optimizer against the ones obtained by the ET- and the ST-integrators, as well as with the constant
stepsize for the explicit method in [2].
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Figure 2: Evolution of the stepsizes obtained with a priori knowledge of the optimizer, the ones
obtained by the ET- and the ST-integrators, and the constant stepsize for the explicit method in [2].
Left, from (50, 50) and right, from (500, 50). The objective function is f(x1,z2) = 1027 + 103z3.
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