
R1:1

• Motivation and context: the proposed estimator is motivated with M/EEG applications in mind. For the sake of2

clarity, the M/EEG part of the introduction has been rewritten thanks to the insightful comments. We now detail that3

in the M/EEG setting the noise is correlated between sensors (non-diagonal covariance), but also that three types of4

sensors are potentially available (gradiometers, magnetometers and electrodes). We now also clarified that 3 types5

of sensors can be used to increase the number of measurements (samples), yet each sensor type measures different6

physical quantities and have different noise characteristics (heteroscedasticity). To avoid any ambiguity we will7

replace the word ‘heteroscedastic’ by ‘correlated’ in the title. MTL has been recalled in the introduction to make the8

connection more explicit.9

• Repetitions in the M/EEG context: the repetitions concern the cognitive experiment (eg, recording M/EEG signal10

for 1 s following an auditory stimulation on one patient). The same experiment is performed, typically 50 times,11

sequentially on the same patient, which results in 50 repetitions of all sensors measurements. Alternative word for12

repetition in this context is trial.13

• Hyperparameter tuning is a difficulty shared by all the compared methods. Popular approaches include (gen-14

eralized) cross-validation. We wanted to decouple the two possible causes of errors: the one due to imperfect15

hyperparameter setting and the one due to the estimator itself. That’s why 1) on synthetic and realistic data we16

provided support recovery ROC curves (with a wide range of λs) 2) on real data we fixed the number of non-zero17

coefficients to 2 (for this dataset using auditory stimuli one expects one active source in each auditory cortex), and18

we selected a corresponding λ. It allowed us to compare methods performance irrespective of the selection of the19

regularization parameter.20

• Notation: when the norm subscript is a real number p, ||.||p refers to the classical `p norm (L66), and for a (positive21

definite) matrix S−1, it refers to the associated Mahalanobis norm (L71). We will detail this subtlety in the notation.22

• "why does the homoscedastic solver fail after whitening? (L222)”: we may have been unclear. The sentence23

L222 is “without this whitening process, the homoscedastic solver MTL fails”. Indeed MTL is the `2,1 regularized24

Maximum Likelihood Estimator with an iid (white) Gaussian noise modelling assumption. We meant that when this25

iid assumption breaks, e.g. when data are not whitened, MTL fails. We will rephrase to avoid any confusion.26

R2: Overlap with Massias 2018a Our work builds actually on Massias 2018a. Whereas this paper focused on how to27

solve optimization problems like SGCL (Eq. 4), our main theoretical contribution is to show how SGCL and CLaR28

result from the smoothing theory of Nesterov applied to a matrix valued function. As pointed out by R1: “the authors29

provide a theoretical justification for their approach“ while the formulation introduced in Massias 2018a was heuristic.30

Theoretically we stand from Massias 2018a by providing new contributions:31
• 1- We provide an explicit variational formula for the (smoothed) nuclear norm (see Proposition 4). To be more32

explicit: when ZZ> � 0, ‖Z‖S ,1 = minS∈Sn
++
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When ZZ> � 0, one can approximate ‖Z‖S ,1 by the following formula: ‖Z‖S ,1 ≈ minS∈Sn
++
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∑
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2012, Example 4.6, p.573). Here, we proposed a different smoothing
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2 Tr(S) (Prop. 4) which is a σ-smooth σ(n∧ q)/2-38

approximation (see Beck and Teboulle 2012, Thm. 4.1, p. 567) of ‖·‖S ,1. This smooth approximation leads to a39

better Lipschitz constant for a given ε-approximation. We will highlight such a theoretical and practical benefit40

(faster convergence thanks to a better Lipschitz constant) of our approach.41

• 2- The proposed smoothing approach (see App. A) paves the way to a practical use of Schatten norms as datafitting42

terms by not requiring to solve problems where both datafitting and regularization terms are non-smooth; see in43

particular the smoothing of the Schatten 2 (App. A.5) and Schatten∞ (App. A.6) -norm.44

Empirically we stand from Massias 2018a with the following contributions: 1) the modelling contribution with45

the repetitions for M/EEG 2) the extensive benchmark against convex and non-convex estimators (with a clean46

opensource package pointed out by R3 “the provided code helped me a lot to digest some technical pieces“) 3)47

extensive experiments on real data (Fig.6 and 7 + App. D) with potential impact for the neuroscience community48

(R3 “Thanks to the provided code, the impact of the paper could be immediate and more probable”). 4) We report that49

solving CLaR is as computationally cheap as solving SGCL, see App. B.7 and Tab. 1.50

R3:51

• clarifications about M/EEG context: (see answer to R1) we will better explain the specificities of the M/EEG52

framework in the introduction.53

• sample is a publicly available M/EEG dataset included in the Python package MNE. It consists in measurements54

Y (1), . . . , Y (r) corresponding to auditory or visual stimulations. This has been clarified in the paper.55


