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1 Proof of Theoretical Results

We prove the result of Theorem 1 in the main paper. Recall that the uncapacitated facility location
optimization can be written as

min
{zij}

λ

N∑
i=1

I(‖[zi1 · · · ziN ]‖∞) +

N∑
i,j=1

dijzij s. t. zij ∈ {0, 1},
N∑
i=1

zij = 1, ∀i, j, (1)

where, given the binary assumption on zij , we have I(‖[zi1 · · · ziN ]‖∞) = ‖[zi1 · · · ziN ]‖∞. The
convex relaxation of the problem is given by

min
{zij}

λ

N∑
i=1

∥∥[zi1 · · · ziN ]
∥∥
∞ +

N∑
i,j=1

dijzij s. t. zij ≥ 0,

N∑
i=1

zij = 1, ∀i, j. (2)

We restate the theorem, where for simplicity of notation, we remove the super or subscript `, corre-
sponding to the `-th dataset, and consider a generic dataset Y withR being its set of representatives.

Theorem 1 Consider the convex relaxation of the uncapacitated facility location in (2), with a fixed λ
and p =∞. LetR be the set of ground-truth representatives from a dataset {fΘ(y1), . . . , fΘ(yN )}
and let Gi denote the cluster associated with the representative i ∈ R, i.e.,

Gi =
{
j | i = argmini′ di′,j = argmini′ ‖fΘ(yi)− fΘ(yj)‖2

}
. (3)

The optimization (2) recoversR as the set of representatives, if the following conditions hold:

1. Medoid condition: ∀i ∈ R, ∀i′ ∈ Gi, we have
∑
j∈Gi di,j ≤

∑
j∈Gi di′,j ;

2. Inter-cluster condition: ∀i ∈ R, ∀j ∈ Gi, ∀i′ /∈ Gi, we have λ
|Gi| + di,j < di′,j ;

3. Intra-cluster condition: ∀i ∈ R, ∀i′, j ∈ Gi, we have di′,j ≤ λ
|Gi| + di,j .

Proof. First, we convert the optimization in (2) into an equivalent linear program, by introducing
auxiliary variables ζi and solving

min
{zij},{ζi}

N∑
i,j=1

dijzij + λ

N∑
i=1

ζi s. t. zij ≥ 0, zij ≤ ζi, ∀i, j;
N∑
i=1

zij = 1, ∀ j. (4)

We form the Lagrangian function L, by introducing Lagrange multiplier γij ≥ 0 associated with
zij ≥ 0, αij ≥ 0 associated with zij ≤ ζi and θj ∈ R associated with

∑N
i=1 zij = 1. The Lagrangian
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function is given by

L =

N∑
i=1

N∑
j=1

dijzij + λ

N∑
i=1

ζi +

N∑
j=1

θj(1−
N∑
i=1

zij)−
N∑
i=1

N∑
j=1

γijzij +

N∑
i=1

N∑
j=1

αij(zij − ζi). (5)

The Karush-Kuhn-Tucker (KKT) optimality conditions (stationarity, primal feasibility, dual feasibility
and complementary slackness) for (4) are given by

S1 :
∂L
∂zij

= dij − θj − γij + αij = 0, (6)

S2 :
∂L
∂ζi

= λ−
N∑
j=1

αij = 0, (7)

P1 : zij ≥ 0, (8)

P2 :

N∑
i=1

zij = 1, (9)

P3 : zij ≤ ζi, (10)
D1 : γij ≥ 0, (11)
D2 : αij ≥ 0, (12)
C1 : αij(zij − ζi) = 0, (13)
C2 : γijzij = 0. (14)

Given that in (4), the objective function is convex, the inequality constraints are continuously
differentiable, and the equality constraints are affine, the KKT conditions are necessary and sufficient
for the optimality. Thus, if we find

(
{zij}, {ζi}, {αi,j}, {γij}, {θj}

)
satisfying KKT conditions,(

{zij}, {ζi}
)

would be the optimal solution of (4), hence {zij} would be the solution of (2).

Next, we show that under the conditions of the theorem,R would be the set of representatives and
each point will be only assigned to the closest representative (assignment variable being 1) according
to the dissimilarity values. Let

Gi ,
{
j ∈ {1, . . . , N} | i = argmini′∈R di′,j

}
, (15)

denote the set of points closets to the representative i inR. Also, let M(j) denote the index of the
closest ground-truth representative to the point j, i.e.,

M(j) , argmini′∈R di′,j . (16)

We want to show that, under the conditions of the theorem, we have

a) z∗ij = 1, ζ∗i = 1, ∀i ∈ R,∀j ∈ Gi,
b) z∗ij = 0, ζ∗i = 1, ∀i ∈ R,∀j /∈ Gi,
c) z∗ij = 0, ζ∗i = 0, ∀i /∈ R,∀j.

(17)

Notice that, given the fact zij ≤ ζi for all j, and the fact the we minimize
∑
i ζi in the objective

function, we must have ζi = 1, whenever i is a representative point and ζi = 0, whenever i is not a
representative point.

To prove that (17) holds under the assumptions of the theorem, we introduce dual certificates for
which KKT conditions are satisfied. More specifically, we let

d) α∗i,j =
λ

|Gi|
, γ∗ij = 0, ∀i ∈ R,∀j ∈ Gi,

e) α∗i,j = 0, γ∗ij = dij − θ∗j , ∀i ∈ R,∀j /∈ Gi,
f) α∗i,j ≥ (θ∗j − dij)+, γ∗ij = (θ∗j − dij)+ − (θ∗j − dij), ∀i /∈ R,∀j,

g) θ∗j =
λ

|Gi|
+ dM(j)j , ∀j.

(18)
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It is easy to verify that a) to c) satisfy primal feasibility conditions (P1−P3), d), f) and g) satisfy dual
feasibility conditions (D1 −D2), e) satisfies D2, the stationarity condition S1 and complementary
slackness (C1 − C2) are always satisfied, and the stationarity condition S2 is always satisfied for d)
and e).

We need to show that γ∗ij in e) is dual feasible, and that α∗ij in f) satisfies S2. Given the choice of θ∗j
in g), we have

γ∗ij = dij − θ∗j = dij −
λ

|Gi|
− dM(j)j ≥ 0, (19)

where the non-negativity holds using the intra-cluster condition. Also, we want to show that ∀i /∈ R,
for the α∗ij in f) we have S2 being satisfied. Notice that, given θ∗j in g), we can write

N∑
j=1

(θ∗j − dij)+ =
∑

j:M(j)=M(i)

(θ∗j − dij)+ +
∑

j:M(j)6=M(i)

(θ∗j − dij)+

=
∑

j:M(j)=M(i)

(
λ

|GM(j)|
+ dM(j)j − dij)+ +

∑
j:M(j)6=M(i)

(
λ

|GM(j)|
+ dM(j)j − dij)+. (20)

From the inter-cluster condition of the theorem, we have

(
λ

|GM(j)|
+ dM(j)j − dij)+ =

λ

|GM(j)|
+ dM(j)j − dij , ∀j :M(j) =M(i), (21)

while from the intra-cluster condition of the theorem, we have

(
λ

|GM(j)|
+ dM(j)j − dij)+ = 0, ∀j :M(j) 6=M(i). (22)

Thus, we can rewrite (20) as

N∑
j=1

(θ∗j − dij)+ =
∑

j:M(j)=M(i)

(
λ

|GM(j)|
+ dM(j)j − dij) = λ+

∑
j:M(j)=M(i)

(dM(j)j − dij). (23)

Notice that from the medoid condition of the theorem, we have
∑
j:M(j)=M(i) dM(j)j ≤∑

j:M(j)=M(i) dij , hence,
N∑
j=1

(θ∗j − dij)+ ≤ λ. (24)

As a result, by appropriately choosing αij as in f), the stationarity condition S2 will be satisfied. This
completes the proof.

Notice that, we have also shown that the solution of the convex optimization will be integer, under
the assumptions of the theorem, where each point is assigned to its representative with zij = 1.
This, in addition to the fact that the optimal value of the convex optimization is a lower bound for
the non-convex optimization (the integer constrained is relaxed), implies the following: under the
conditions of the theorem, the gap between the convex and non-convex optimization vanishes and the
two problems would be equivalent.

Below, we show a similar result for p = 2.

Theorem 2 Consider the convex relaxation of the uncapacitated facility location in (2), with a fixed
λ and p = 2. LetR be the set of ground-truth representatives from a dataset {fΘ(y1), . . . , fΘ(yN )}
and let Gi denote the cluster associated with the representative i ∈ R, i.e.,

Gi =
{
j | i = argmini′ di′,j = argmini′ ‖fΘ(yi)− fΘ(yj)‖2

}
. (25)

The optimization (2) recoversR as the set of representatives, if the following conditions hold:

1. ∀i ∈ R, ∀i′ ∈ Gi, we have
∑
j∈Gi di,j ≤

∑
j∈Gi di′,j ;
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2. ∀i ∈ R, ∀j ∈ Gi, ∀i′ /∈ Gi, we have λ√
|Gi|

+ di,j < di′,j ;

3. ∀i ∈ R, ∀i′, j ∈ Gi, we have di′,j ≤ λ√
|Gi|

+ di,j .

4. ∀i ∈ R, ∀i′, j ∈ Gi, we have di,j ≤ (1− 1√
|Gi|

)λ+ di′,j .

Notice that in this case, we need an additional intra-cluster condition that makes sure that the radius
of each cluster is sufficiently small. Notice that compared to the case of p =∞, the margin for p = 2

has changed to λ/
√
|Gi|. Given the additional constraint and the fact that designing a loss function

for the case of p = 2 requires four terms, as opposed to three with p =∞, we chose to use p =∞ in
the paper. We do not show the proof as we do not use it in the paper, however, the derivations are
similar to p =∞.
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