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1 Notations and definitions

Let us consider an output space Y , and FY a σ-algebra over Y . We denote P(Y) the set of probability measures over
(Y,FY). Let (Y ′,FY′) be a second measurable space, and φ a measurable mapping from (Y,FY) to (Y ′,FY′). Finally
Let us consider µ, ν two measures on (Y,FY).

Dominated measure: µ is said to be dominated by ν (denoted µ� ν) if for all Y ∈ FY , ν(Y ) = 0 =⇒ µ(Y ) = 0.
If µ is dominated by ν, there is a measurable function h : Y → [0,+∞) such that for all Y ∈ FY , µ(Y ) =

∫
Y
h dν. h

is called the Radon-Nikodym derivative of µ w.r.t. ν and is denoted dµ
dν .

Push-forward measure: the push-forward measure of ν by φ (denoted φ#ν) is the measure on (Y ′,FY′) such that
∀Z ∈ FY′ , φ#ν(Z) = ν(φ−1(Z)).

Convolution product: the convolution of ν with µ, denoted ν ∗µ is the push-forward measure of ν⊗µ by the addition
on Y . Since the convolution between functions is defined accordingly, we use ∗ indifferently for measures and simple
functions.

Modulus of continuity: Let us consider f : (E, ‖.‖E)→ (F, ‖.‖F ). f admits a non-decreasing modulus of continuity
regarding ‖.‖E and ‖.‖F if there exists a non-decreasing function ωE,Ff : R+ → R+ such as for all x, y ∈ E,
||f(y)− f(x)||F ≤ ωE,Ff (||x− y||E).

2 Main proofs

As a trade-off between completeness and conciseness, we delayed the proofs of our theorems to this section.

2.1 Proof of Lemma 1

Lemma 1. Let M be a probabilistic mapping, and let d1 and d2 be two metrics on P(Y). If there exists a non decreasing
function φ : R→ R such that ∀µ1, µ2 ∈ P(Y), d1(µ1, µ2) ≤ φ(d2(µ1, µ2)), then the following holds:

M is d2-(α, ε, γ)-robust =⇒ M is d1-(α, φ(ε), γ)-robust

Proof. Let us consider a probabilistic mapping M, x ∼ D, and τ ∈ B(α), one has d1(M(x),M(x + τ)) ≤
φ(d2(M(x),M(x + τ))) ≤ φ(ε). Hence Px∼D [∀τ ∈ B(α), d1(M(x+ τ),M(x)) ≤ φ(ε)] ≤ 1 − γ. By inverting
the inequality, one gets the expected result.

2.2 Proof of Proposition 1

Proposition 1 (Renyi-robustness implies TV-robustness). Let M be a probabilistic mapping, then for all λ ≥ 1:

M is dR,λ-(α, ε, γ)-robust =⇒ M is dTV -(α, ε′, γ)-robust

with ε′ = min

3

2

(√
1 +

4ε

9
− 1

)1/2

,
exp(ε+ 1)− 1

exp(ε+ 1) + 1

 .

Proof. Given two probability measures µ1 and µ2 on (Y,FY), and λ > 0 one wants to find a bound on dTV (µ1, µ2)
as a functional of dR,λ(µ1, µ2).

Thanks to [6], one has

dKL(µ1, µ2) ≥ 2dTV (µ1, µ2)2 +
4dTV (µ1, µ2)4

9
.

From which it follows that

dTV (µ1, µ2)2 ≤ 9

4

(√
1 +

4dKL(µ1, µ2)

9
− 1

)
One thus finally gets:

dTV (µ1, µ2) ≤ 3

2

(√
1 +

4dKL(µ1, µ2)

9
− 1

)1/2

2



Moreover, using inequality from [16], one gets:

dKL(µ1, µ2) ≥ log

(
1 + dTV (µ1, µ2)

1− dTV (µ1, µ2)

)
− 2dTV (µ1, µ2)

1 + dTV (µ1, µ2)

For the sake of simplicity, since the second part of the right hand side of the equation is non increasing given
dTV (µ1, µ2), and since 0 ≤ dTV (µ1, µ2) ≤ 1 one gets:

dKL(µ1, µ2) + 1 ≥ log

(
1 + dTV (µ1, µ2)

1− dTV (µ1, µ2)

)
Hence, one gets:

exp(dKL(µ1, µ2) + 1)− 1

exp(dKL(µ1, µ2) + 1) + 1
≥ dTV (µ1, µ2)

By combining the two results, one obtains:

dTV (µ1, µ2) ≤ min

3

2

(√
1 +

4dKL(µ1, µ2)

9
− 1

)1/2

,
exp(dKL(µ1, µ2) + 1)− 1

exp(dKL(µ1, µ2) + 1) + 1

 .

To conclude for λ > 1 it suffices to use Lemma 1, and the monotony of Renyi divergence regarding λ.

2.3 Proof of Proposition 2

Proposition 2 (Data processing inequality). Let us consider a probabilistic mapping M : X → P(Y). Let us also
denote ρ : Y → Y ′ a deterministic function. If U ∼ M(x) then the probability measure M ′(x) s.t. ρ(U) ∼ M ′(x)
defines a probabilistic mapping M ′ : X → P(Y ′).

For any λ > 1 if M is dR,λ-(α, ε, γ) robust then M ′ is also is dR,λ-(α, ε, γ) robust.

Proof. Let us consider M a dR,λ-(α, ε, γ) robust algorithm. Let us also take x ∈ X , and τ ∈ B(α). Without loss
of generality, we consider that M(x), and M(x + τ) are dominated by the same measure µ. Finally let us take ρ a
measurable mapping from (Y,FY) to (Y ′,FY′). For the sake of readability we denote M(x) = ν1 and M(x+ τ) = ν2

(therefore M ′(x) = ρ#ν1, and M ′(x+ τ) = ρ#ν2).

Since µ >> ν1, ν2, one has ρ#µ >> ρ#ν1, ρ#ν2. Hence one has

dR,λ(ρ#ν1, ρ#ν2) =
1

λ− 1
log

∫
Y′

(
dρ#ν1

dρ#µ

)λ(
dρ#ν2

dρ#µ

)1−λ

dρ#µ =
1

λ− 1
log

∫
Y′

(
dρ#ν1

dρ#ν2

)λ
dρ#ν2

Simply using the transfer theorem, one gets

dR,λ(ρ#ν1, ρ#ν2) =
1

λ− 1
log

∫
Y

(
dρ#ν1

dρ#ν2
◦ ρ
)λ

dν2

Since
(
dρ#ν1
dρ#ν2

◦ ρ
)

= E
(
dν1
dν2

∣∣ρ−1(FY′)
)

one easily gets the following:

dR,λ(ρ#ν1, ρ#ν2) =
1

λ− 1
log

∫
Y

(
dρ#ν1

dρ#ν2
◦ ρ
)λ

dν2 =
1

λ− 1
log

∫
Y
E
(
dν1

dν2

∣∣ρ−1(FY′)
)λ

dν2

Finally, by using the Jensen inequality, and the property of the conditional expectation, one has

dR,λ(ρ#ν1, ρ#ν2) ≤ 1

λ− 1
log

∫
Y
E

(
dν1

dν2

λ∣∣ρ−1(FY′)

)
dν2 =

1

λ− 1
log

∫
Y

dν1

dν2

λ

dν2 = dR,λ(ν1, ν2).
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2.4 Proof of Theorem 1

Lemma 2. Let ψ : X → Rn be a mapping. For any α ≥ 0 and for any norms ||.||A and ||.||B , one can define
∆A,B
α (ψ) := sup

x,y∈X ,||x−y||A≤α
||ψ(x)−ψ(y)||B . LetX be a random variable. We denote M(x) the probability measure

of the random variable ψ(x) +X .

• If X ∼ EF (θ, t, k) where t and k have non-decreasing modulus of continuity ωt and ωk.

Then for any α ≥ 0, M defines a probabilistic mapping that is dR,λ-(α, ε) robust with ε =

||θ||2ωB,2t (∆A,B
α (φ)) + ωB,1k (∆A,B

α (φ)) where ||.||2 is the norm corresponding to the scalar product in
the definition of the exponential family density function and ||.||1 is here the absolute value on R.

• If X is a centered Gaussian random variable with a non degenerated matrix parameter Σ. Then for any α ≥ 0,
M defines a probabilistic mapping that is dR,λ-(α, ε) robust with ε =

λ∆A,2
α (φ)2

2σmin(Σ) where ||.||2 is the canonical
Euclidean norm on Rn.

Proof. Let us consider M the probabilistic mapping constructed from noise injections respectively drawn from 1) an
exponential family with non-decreasing modulus of continuity, or 2) a non degenerate Gaussian. Let us take x ∈ X , and
τ ∈ B(α). Without loss of generality, we consider that M(x), and M(x+ τ) are dominated by the same measure µ. Let
us also denote, pF the Radon-Nikodym derivative of the noise drawn in 1) with respect to µ, pG the Radon-Nikodym
derivative of the noise drawn or in 2) with respect to µ and δa the Dirac function mapping any element to 1 if it equals a
and to 0 otherwise.

1)
dR,λ (M(x),M(x+ τ)) = dR,λ

(
ν ∗ δψ(x), ν ∗ δψ(x+τ)

)
≤ dR,∞

(
ν ∗ δψ(x), ν ∗ δψ(x+τ)

)
= log sup

z∈Rn

(pF ∗ δψ(x))(z)

(pF ∗ δψ(x+τ))(z)

= log sup
z∈Rn

exp(< t(z − ψ(x))− t(z − ψ(x+ τ)), θ >

+ k(z − ψ(x))− k(z − ψ(x+ τ)))

≤ sup
z∈Rn

||θ||2||t(z − ψ(x))− t(z − ψ(x+ τ))||2 + |k(z − ψ(x))− k(z − ψ(x+ τ))|

≤ ||θ||2ωB,2t (||ψ(x+ τ)− ψ(x)||B) + ωB,1k (||ψ(x+ τ)− ψ(x)||B)

≤ ||θ||2ωB,2t (∆A,B
α (ψ)) + ωB,1k (∆A,B

α (ψ))

2)

dR,λ (M(x),M(x+ τ)) =
1

λ− 1
log

∫
Rn

(
pG ∗ δψ(x)

)λ × (pG ∗ δψ(x+τ)

)1−λ
dµ

=
1

λ− 1
log

∫
Rn

exp
{
−1/2

(
λ (z − ψ(x))

>
Σ−1 (z − ψ(x)) + (1− λ) (z − ψ(x+ τ))

>
Σ−1 (z − ψ(x+ τ))

)}
(2π)n/2|Σ|1/2

dz

=
−
(
λψ(x)>Σ−1ψ(x) + (1− λ)ψ(x+ τ)>Σ−1ψ(x+ τ)− (λψ(x) + (1− λ)ψ(x+ τ))

>
Σ−1 (λψ(x) + (1− λ)ψ(x+ τ))

)
2λ− 2

=
λ2 − λ

2(λ− 1)
(ψ(x)− ψ(x+ τ))>Σ−1(ψ(x)− ψ(x+ τ))

≤ λ

2
σmax

(
Σ−1

)
||(ψ(x)− ψ(x+ τ))||22 ≤

λ∆A,2
α (ψ)2

2σmin(Σ)
.

Theorem 1 (Exponential family ensures robustness). Let us denote N i
X(.) = φn ◦ ... ◦ φi+1(N|i(.) + X) with X a

random variable. Let us also consider ||.||A, and ||.||B two arbitrary norms respectively on X and on the output space
of N i

X .
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• If X ∼ EF (θ, t, k) where t and k have non-decreasing modulus of continuity ωt and ωk. Then for any
α ≥ 0, N i

X(.) defines a probabilistic mapping that is dR,λ-(α, ε) robust with ε = ||θ||2ωB,2t (∆A,B
α (φ)) +

ωB,1k (∆A,B
α (φ)) where ||.||2 is the norm corresponding to the scalar product in the definition of the exponential

family density function and ||.||1 is here the absolute value on R. The notion of continuity modulus is defined
in the preamble of this supplementary material.

• If X is a centered Gaussian1 random variable with a non degenerated matrix parameter Σ. Then for any
α ≥ 0, N i

X(.) defines a probabilistic mapping that is dR,λ-(α, ε) robust with ε =
λ∆A,2

α (φ)2

2σmin(Σ) where ||.||2 is the
canonical Euclidean norm on Rn.

Proof. This theorem is a direct consequence of Lemma 2 and Proposition 2. By applying Lemma 2 to ψ = N|i and
Proposition 2 to ρ = φn ◦ ... ◦ φi+1, we immediately get the result.

2.5 Proof of Theorem 2

Theorem 2 (Adversarial risk gap bound in the randomized setting). Let M be the probabilistic mapping at hand. Let
suppose that M is dR,λ-(α, ε) robust for some λ ≥ 1 then:

|Riskα(M)− Risk(M)| ≤ 1− e−εEx
[
e−H(M(x))

]
where H is the Shannon entropy: H(p) = −

∑
i pi log(pi)

Proof. Let M be a randomized network with a noise X injected at layer i. We have:

|Riskα(M)− Risk(M)| =

∣∣∣∣∣E(x,y)

[
sup

τ/||τ ||≤α
Ey′∼M(x+τ) [1 (y1 6= y)]− Ey2∼M(x) [1 (y′ 6= y)]

]∣∣∣∣∣
=

∣∣∣∣∣E(x,y)

[
sup

τ/||τ ||≤α
Ey1∼M(x+τ),y2∼M(x) [1 (y1 6= y)− 1 (y2 6= y)]

]∣∣∣∣∣
≤ E(x,y)

[
sup

τ/||τ ||≤α
Ey1∼M(x+τ),y2∼M(x) [|1 (y1 6= y)− 1 (y2 6= y)|]

]

≤ E(x,y)

[
sup

τ/||τ ||≤α
Ey1∼M(x+τ),y2∼M(x) [1 (y1 6= y2)]

]

= E(x,y)

[
sup

τ/||τ ||≤α
Py1∼M(x+τ),y2∼M(x)(y1 6= y2)

]

For two discrete random independent variables of law P = (p1, ..., pK) and Q = (q1, ..., qK), thanks to Jensen’s
inequality:

P(P = Q) =

K∑
i=1

piqi ≥ exp (

K∑
i=1

pi log qi) = exp (−dKL(P,Q)−H(P ))

Then we have:

E(x,y)

[
sup

τ/||τ ||≤α
Py1∼M(x+τ),y2∼M(x)(y1 6= y2)

]
≤ E(x,y)

[
sup

τ/||τ ||≤α
1− e−dKL(M(x),M(x+τ))−H(M(x))

]
≤ E(x,y)

[
1− e−ε−H(M(x))

]
= 1− e−εEx

[
e−H(M(x))

]

1Although the Gaussian distribution belongs to the exponential family, it does not satisfy the modulus of continuity constraint on
t and its robustness has to be proved differently.
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2.6 Proof of Theorem 3

Theorem 3. Let x ∈ X , and M be a probabilistic mapping with values in RK . If M is dR,λ-(α, ε) robust, and if there
exist k∗ and δ∗ ∈ (0, 1) s.t. Ey∼M(x) [yk∗ ] > e2ε′ max

i 6=k∗
Ey∼M(x) [yi] + (1 + eε

′
)δ∗, with ε′ = ε+ log(1/δ∗)

λ−1 . Then, for

the classifier f : x 7→ argmax
k∈[K]

Ey∼M(x) [yk] there is no perturbation τ ∈ B(α) such that f(x) 6= f(x+ τ).

Proof. Let x ∈ X , and M a dλ-(α, ε) robust mapping.

1). By probability preservation [11], for any Y ∈ σ(Y), τ ∈ B(α) one gets M(x)(Y ) ≤ (eε M(x+ τ)(Y ))
λ−1
λ .

Let us now take δ ∈ (0, 1). If [eε M(x+ τ)(Y )]
λ−1
λ > δ, then [eε M(x+ τ)(Y )]

λ−1
λ ≤ eε M(x + τ)(Y )δ

−1
λ =

eε
′
M(x)(Y ). Else [eε M(x+ τ)(Y )]

λ−1
λ ≤ δ. Then for any Y ∈ σ(Y), τ ∈ B(α), and δ ∈ (0, 1), one has

M(x)(Y ) ≤ eε′ M(x+ τ)(Y ) + δ.

2). Tanks to 1), for any τ ∈ B(α), and δ ∈ (0, 1), one has Ey∼M(x) [y] ≤ eε
′Ey∼M(x+τ) [y] + δ (element wise).

Hence, if there exists k∗, and δ∗ such that Ey∼M(x) [yk∗ ] > e2ε′ maxi6=k∗ Ey∼M(x) [yi] + (1 + eε
′
)δ∗, then for any

τ ∈ B(α) one has Ey∼M(x+τ) [yk∗ ] >
e2ε′ maxi 6=k∗ Ey∼M(x+τ) [yi] + (1 + eε

′
)δ∗ − δ∗

eε′
> maxi 6=k∗ Ey∼M(x+τ) [yi].

This being true for any τ ∈ B(α), one gets the expected result.

3 Additional results and discussions

In this section, we give some additional results on both the strength of the Renyi-divergence and a bound on the risk gap
for TV-distance.

3.1 About Renyi divergence

In the main submission, we chose to use the Renyi-robustness as the principled measure of robustness. Since Renyi-
divergence is a good surrogate for the trivial distance (which is a risk of the 0− 1-loss for probabilistic mappings), we
supported this statement by showing that Renyi-divergence is stronger than TV-distance. In this section, we extend this
result to most of the classical divergences used in Machine Learning and show that Renyi-divergence is stronger than
all of them.

Let us consider an output space Y , FY a σ-algebra over Y , and µ1, µ2, ν three measures on (Y,FY), with µ1, µ2 in
the set of probability measures over (Y,FY) denoted P(Y). One has ν >> µ1, µ2 and one denotes g1 and g2 the
Radon-Nikodym derivatives with respect to ν.

The Separation distance:

dS(µ1, µ2) := sup
{z}∈FY

1− µ1({z})
µ2({z})

.

The Hellinger distance:

dH(µ1, µ2) :=

[∫
Y

(
√
g1 −

√
g2)

2
dν

]1/2

.

The Prokhorov metric:
dP (µ1, µ2) := inf

{
ζ > 0 : µ1(B) ≤ µ2(Bζ) + ζ for all Borel sets B

}
where Bζ = {x : inf

y∈B
dY′(x, y) ≤ ζ}.

The Discrepancy metric:
dD(µ1, µ2) := sup

all closed balls B
|µ1(B)− µ2(B)| .

Lemma 3. Given two probability measures µ1 and µ2 on (Y,FY) the Separation metric and the Renyi divergence
satisfy the following relation: dS(µ1, µ2) ≤ dR,∞(µ1, µ2)

Proof. The function x :→ 1−x−|ln(x)| is negative on R, therefore for any {z} ∈ Y one has 1− µ1({z})
µ2({z}) ≤

∣∣∣ln µ1({z})
µ2({z})

∣∣∣,
hence sup{z}∈FY 1− µ1({z})

µ2({z}) ≤ sup{z}∈FY

∣∣∣ln µ1({z})
µ2({z})

∣∣∣ ≤ supZ∈FY

∣∣∣ln µ1(Z)
µ2(Z)

∣∣∣ = dR,∞(µ1, µ2)

6



Theorem 4. Let M be the probabilistic mapping, then for all λ > 1 if M is dR,λ-(α, ε, γ)-robust the following
assertions holds:

(1) M is dH -(α,
√
ε, γ)-robust.

(2) M is dP -(α, ε′, γ)-robust and dD-(α, ε′, γ)-robust, for ε′ = min

(
3
2

(√
1 + 4ε

9 − 1
)1/2

, exp(ε+1)−1
exp(ε+1)+1

)
.

(3) M is dW -(α, ε′, γ)-robust with ε′ = min

(
3

2diam(Y)

(√
1 + 4ε

9 − 1
)1/2

, exp(ε+1)−1
diam(Y)(exp(ε+1)+1)

)
.

(4) if λ =∞, M is dS-(α, ε, γ)-robust.

Proof.

(1) The proof is a simple adaptation of Proposition 1 using the inequality dH(µ1, µ2)2 ≤ dKL(µ1, µ2) [5] and
Lemma 1.

(2) Using the inequalities dD(µ1, µ2) ≤ dTV (µ1, µ2) [5] and dP (µ1, µ2) ≤ dTV (µ1, µ2) [8], the proof is
immediate, using Theorem 1 and Lemma 1.

(3) The proof is adapted from Proposition 1 using the inequality dW (µ1, µ2) ≤ diam(Y)dTV (µ1, µ2) [5].

(4) The result is a straightforward application of Lemma 3, and Lemma 1.

3.2 risk gap with TV-robustness

In the main paper, we give a bound on the risk gap based on the Renyi-robustness. We extend this result to the
TV-robustness, highlighting the fact that risk gap could be derived from any of the above divergences.
Theorem 5. Let M be the probabilistic mapping at hand. Let us suppose that M is dTV -(α, ε) robust then:

|Riskα(M)− Risk(M)| ≤ 1− (Ex
[
e−Hc(M(x))

]
− ε)

where Hc is the collision entropy: Hc(p) = − log(
∑
i p

2
i )

Proof. For two discrete random independent variables of law P = (p1, ..., pK) andQ = (q1, ..., qK), thanks to Jensen’s
inequality:

P(P = Q) =

K∑
i=1

piqi =

K∑
i=1

p2
i −

∑
pi(pi − qi) ≥ e−Hc(P ) − dTV (P,Q)

because, for any i ∈ [K], pi − qi ≤ dTV (P,Q).

Then, the proof is a simple adaptation of the model of proof from Theorem 2.

4 Additional empirical evaluation

Due to space limitations, we had to defer the thorough description of our experimental setup and the results of some
additional experiments.

4.1 Architectures & Hyper-parameters

We conduct experiments with 3 different dataset:

• CIFAR-10 and CIFAR-100 datasets, which are composed of 50K training samples, 10000 test samples and
respectively 10 and 100 different classes. Images are trained and evaluated with a resolution of 32 by 32 pixels.

• ImageNet dataset, which is composed of ∼ 1.2M training examples, 50K test samples and 1000 classes.
Images are trained and evaluated with a resolution of 299 by 299 pixels.

7



For CIFAR-10 and CIFAR-100 [9], we used a Wide ResNet architecture [17] which is a variant of the ResNet model
from [7]. We used 28 layers with a widen factor of 10. We trained all the networks for 200 epochs, a batch size of 400,
dropout 0.3 and Leaky Relu activation with a slope on R− of 0.1. We used the cross entropy loss with Momentum 0.9
and a piecewise constant learning rate of 0.1, 0.02, 0.004 and 0.00008 after respectively 7500, 15000 and 20000 steps.
The networks achieve for CIFAR10 and 100 a TOP-1 accuracy of 95.8% and 79.1% respectively on test images.

For ImageNet [4], we used an Inception ResNet v2 [14] which is the sate of the art architecture for this dataset and
achieved a TOP-1 accuracy of 80%. For the training of ImageNet, we used the same hyper parameters setting as the
original implementation. We trained the network for 120 epochs with a batch size of 256, dropout 0.8, Relu as activation
function. All evaluations were done with a single crop on the non-blacklisted subset of the validation set.

4.2 Evaluation under attack

We evaluate our models against the strongest possible attacks from the literature using different norms (`1, `2 and `∞)
which are all optimization based attacks. On their guide to evaluate robustness, Carlini et al. [2] proposed the three
following attacks for each norm:

`2 – Carlini & Wagner attack and `1 – ElasticNet attack The `2 Carlini & Wagner attack (C&W ) introduced
in [3] is formulated as:

min
x+r∈X

c× ||r||2 + g(x+ r)

where g is a function such that g(y) ≥ 0 iff f(y) = l′ with l′ the target class. The authors listed some g functions. we
choose the following one:

g(x) = max(Fk(x)(x)− max
i 6=k(x)

(Fi(x)),−κ)

where F is the softmax function and κ a positive constant.

Instead of using box-constrained L-BFGS [15] as in the original attack, the authors use instead a new variable for x+ r:

x+ r =
1

2
(tanh(w) + 1)

Then a binary search is performed to optimize the constant c and ADAM or SGD for computing an optimal solution.

`1 – ElasticNet attack is an adaptation of `2 C&W attack where the objective is adaptive to `1 perturbations:

min
x+r∈X

c1 × ‖r‖1 + c2 × ‖r‖2 + g(x+ r)

`∞ – PGD attack. The PGD attack proposed by [12] is a risk of the iterative FGSM attack proposed in [10]. The
goal of the adversary is to solve the following problem:

argmax
‖r‖p≤ε

L(Fθ(x+ r), y)

In practice, the authors proposed an iterative method to compute a solution:

xt+1 = Px⊕r(x
t + α sign(∇xL(Fθ(x

t), y)))

Where x ⊕ r is the Minkowski sum between {x} and {r s.t. ‖r‖p ≤ ε}, α a gradient step size, PS is the projection
operator on S and x0 is randomly chosen in x⊕ r.

4.3 Detailed results on CIFAR-10 and CIFAR-100

Figure 2(a) presents the trade-off accuracy versus intensity of noise for the CIFAR-100 dataset. As for CIFAR-10,
we observe that the accuracy decreases from 0.79 with a small noise (0.01) to ∼0.55 with a higher noise (0.5). The
Figures 2(b) and 2(c) are coherent with the theoretical guarantee of accuracy (Theorem 2) that the model can achieve
under attack with a given perturbation and noise.

Table 1 and 2 summarize the results on the accuracy and accuracy under attack of CIFAR-10 and CIFAR-100 datasets
with a Randomized Wide ResNet architecture given the standard deviation of the injected noise and the number of
iterations of the attack. For PGD, we use an epsilon max of 0.06 and a step size of 0.006 for an input space of between
-1 and +1. We show that injecting noise empirically helps defending neural networks against adversarial attacks.
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Figure 1: (a) Impact of the standard deviation of the injected noise on accuracy in a randomized model on CIFAR-100
dataset with a Wide ResNet architecture. (b) and (c) illustration of the guaranteed accuracy of different randomized
models with Gaussian (b) and Laplace (c) noises given the norm of the adversarial perturbation.
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Table 1: Accuracy and Accuracy under attack of CIFAR-10 dataset

Natural
`1 – EAD `2 – C&W `∞ – PGD

20 50 60 20 50 60 10 15 20
Normal (Sd)

0.010 0.954 0.208 0.193 0.172 0.271 0.294 0.411 0.428 0.408
0.050 0.950 0.265 0.347 0.367 0.350 0.454 0.423 0.638 0.549 0.486
0.130 0.931 0.389 0.401 0.411 0.443 0.495 0.515 0.710 0.636 0.553
0.200 0.913 0.411 0.456 0.470 0.481 0.516 0.724 0.629 0.539
0.320 0.876 0.442 0.450 0.445 0.475 0.522 0.499 0.720 0.641 0.566
0.500 0.824 0.453 0.513 0.448 0.503 0.494 0.523 0.694 0.608 0.587

Laplace (Sd)

0.010 0.955 0.167 0.190 0.208 0.184 0.279 0.313 0.474 0.423 0.389
0.050 0.950 0.326 0.315 0.355 0.387 0.458 0.448 0.630 0.534 0.515
0.130 0.929 0.388 0.426 0.435 0.461 0.515 0.493 0.688 0.599 0.538
0.200 0.919 0.417 0.464 0.484 0.481 0.501 0.730 0.600 0.569
0.320 0.891 0.460 0.443 0.448 0.472 0.499 0.520 0.750 0.665 0.576
0.500 0.846 0.454 0.471 0.464 0.488 0.494 0.721 0.650 0.589

Exponential (Sd)

0.010 0.953 0.153 0.174 0.228 0.292 0.306 0.443 0.404 0.395
0.050 0.953 0.312 0.326 0.330 0.343 0.468 0.435 0.616 0.575 0.479
0.130 0.940 0.373 0.402 0.411 0.424 0.504 0.679 0.585 0.526
0.200 0.936 0.394 0.414 0.455 0.510 0.501 0.701 0.623 0.550
0.320 0.919 0.429 0.426 0.416 0.494 0.492 0.513 0.739 0.638 0.564
0.500 0.900 0.423 0.454 0.470 0.488 0.494 0.516 0.752 0.699 0.594

4.4 Large scale robustness

Adversarial training fails to generalize to higher dimensional datasets such as ImageNet. We conducted experiments
with the large scale ImageNet dataset and compared our randomized neural network against large scale adversarial
training proposed by Kurakin et al. [10]. One can observe from Table 3 that the model from Kurakin et al. is neither
robust against recent `1 nor `2 iterative attacks such as EAD and C&W. Moreover, it offers a small robustness against
`∞ PGD attack. Our randomized neural network with EoT attacks offers a small robustness on `1 and `2 attacks while
being less robust against PGD.

4.5 Experiments with noise on the first activation

The aim of the following experiments is empirically illustrate the Data processing inequality in Proposition 2.

Table 4 and 5 present the experiments conducted with the same set of parameters as the previous ones on CIFAR-10
and CIFAR-100, but with the noise injected in the first activation layer instead of directly in the image. We observe
from Table 4 that we can inject more noise with a marginal loss on accuracy. The accuracy under attack is presented in
Table 5 for a selection of models.
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Table 2: Accuracy and Accuracy under attack of CIFAR-100 dataset.

Natural
`1 – EAD `2 – C&W `∞ – PGD

20 50 60 20 50 60 10 15 20
Normal (Sd)

0.010 0.790 0.235 0.234 0.228 0.235 0.318 0.316 0.257 0.176 0.187
0.050 0.768 0.321 0.294 0.320 0.357 0.377 0.410 0.377 0.296 0.254
0.130 0.726 0.357 0.371 0.349 0.387 0.427 0.428 0.414 0.319 0.260
0.200 0.689 0.338 0.350 0.384 0.394 0.381 0.439 0.356 0.277
0.320 0.627 0.334 0.344 0.350 0.328 0.364 0.400 0.441 0.366 0.299
0.500 0.553 0.322 0.331 0.331 0.349 0.342 0.351 0.408 0.374 0.308

Laplace (Sd)

0.010 0.782 0.199 0.227 0.243 0.225 0.311 0.321 0.236 0.190 0.177
0.050 0.763 0.326 0.317 0.331 0.354 0.377 0.409 0.368 0.319 0.256
0.130 0.723 0.337 0.357 0.344 0.408 0.414 0.408 0.420 0.346 0.293
0.200 0.695 0.355 0.349 0.361 0.393 0.405 0.393 0.445 0.340 0.303
0.320 0.647 0.324 0.373 0.357 0.388 0.387 0.373 0.460 0.381 0.303
0.500 0.572 0.310 0.308 0.323 0.358 0.351 0.361 0.425 0.403 0.329

Exponential (Sd)

0.010 0.785 0.218 0.251 0.217 0.247 0.278 0.321 0.250 0.214 0.169
0.050 0.767 0.323 0.337 0.317 0.346 0.380 0.402 0.356 0.291 0.235
0.130 0.749 0.330 0.356 0.403 0.444 0.421 0.400 0.328 0.266
0.200 0.731 0.345 0.361 0.357 0.388 0.424 0.406 0.427 0.340 0.267
0.320 0.703 0.349 0.351 0.340 0.388 0.439 0.399 0.433 0.351 0.280
0.500 0.673 0.387 0.378 0.378 0.396 0.435 0.485 0.370 0.322

Table 3: Accuracy under attack of the Adversarial model training by Kurakin et al. [10] and an Inception Resnet v2
model training with normal 0.1 noise injected in the image on the ImageNet dataset.

Baseline `1 EAD 60 `2 C&W 60 `∞ PGD
Kurakin et al. [10] 0.739 0.097 0.100 0.239
Normal 0.1 0.625 0.255 0.301 0.061

Table 4: Impact of the distribution and the intensity of the noise with randomized networks with noise injected on the
first activation

Sd Normal Sd Laplace Sd Exponential
0.01 0.956 0.01 0.955 0.01 0.953
0.23 0.943 0.05 0.947 0.08 0.943
0.45 0.935 0.10 0.933 0.15 0.938
0.68 0.926 0.15 0.916 0.23 0.925
0.90 0.916 0.20 0.911 0.30 0.919
1.00 0.916 0.25 0.897 0.38 0.903
1.34 0.906 0.30 0.889 0.45 0.897
1.55 0.900 0.35 0.882 0.53 0.886
1.77 0.893 0.40 0.867 0.60 0.885
2.00 0.886 0.45 0.855 0.68 0.875

Table 5: Accuracy and Accuracy under attack of selected models with noise on the first activation

Natural
`1 – EAD `2 – C&W `∞ – PGD

20 50 60 20 50 60 10 20
Dataset Distribution Sd

CIFAR10
Normal 1.55 0.900 0.441 0.440 0.413 0.477 0.482 0.484 0.683 0.526
Laplace 0.25 0.897 0.388 0.436 0.445 0.481 0.506 0.491 0.664 0.493
Exponential 0.38 0.903 0.456 0.463 0.438 0.495 0.516 0.506 0.697 0.557

CIFAR100
Normal 0.45 0.741 0.362 0.352 0.353 0.352 0.410 0.418 0.380 0.250
Laplace 0.10 0.742 0.350 0.367 0.350 0.371 0.419 0.418 0.264
Exponential 0.15 0.741 0.354 0.356 0.373 0.394 0.409 0.420 0.430 0.258

10



5 Additional discussions on the experiments

For the sake of completeness and reproducibility, we give some additional insights on the noise injection scheme and
comprehensive details on our numerical experiments.

5.1 On the need for injecting noise in the training phase

Robustness has always been thought as a property to be enforced at inference time and it is tempting to focus only on
injecting noise at inference. However, simply doing so ruins the accuracy of the algorithm (as it becomes an instance
of distribution shift [13]). Indeed, making the assumption that the training and test distributions matches, in practice,
injecting some noise at inference would result in changing the test distribution.

Distribution shift occurs when the training distribution differs from the test distribution. This implies that the hypothesis
minimizing the empirical risk is not consistent, i.e. it does not converge to the true model as the training size increases.
A way to circumvent that is to ensure that training and test distributions matches using importance weighting (in the
case of covariate-shift) or with noise injection in the training phases as well (in our case).

5.2 Reproducibility of the experiments

We emphasize that all experiments should be easily reproducible. All our experiments are developed with TensorFlow
version 1.12 [1]. The code is available on github:

https://github.com/MILES-PSL/Adversarial-Robustness-Through-Randomization.

The repository contains a readme file containing a small documentation on how to run the experiments, a configuration
file which defines the architecture and the hyper-parameters of the experiments, python scripts which generate a bash
command to run the experiments. The code contains Randomized Wide Resnet used for CIFAR-10 and CIFAR100,
Inception Resnet v2 used for ImageNet, PGD, EAD and C&W attacks used for evaluation under attack. We ran our
experiments, on a cluster with computers each having 8 GPU Nvidia V100.
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