
A A class of examples where assumptions A1, A2, and A3 are satisfied

First consider a spherically distributed d dimensional random vector S, i.e., for each d dimensional
orthonormal matrix O the distributions of S and OS are identical. It is known that a d dimensional
random vector S is spherically distributed iff there exists a positive (one dimensional) random variable
R, called generating random variable, such that S =d RU (d) where U (d) is uniformly distributed on
the d dimensional unit hypersphere Frahm (2004). For example, if S is a standard normal random
vector than R2 is a chi-squared distributed random variable. Further, it is also known that for each
spherically distributed S there exists a function �S(.) such that the MGF of S, namely E[e✓|S], is
equal to �S(k✓k22), where k.k2 represents 2-norm Frahm (2004).

Now, suppose that {Xt}t are i.i.d. with a spherical distribution such that the generating random
variable has density with support in [0, 1

2]. Further suppose that {Zt}t are i.i.d. Uniform[0, 1), and
that ⇥ ⇢ [0, 1]d. Thus A1 and A2 readily hold.

The following facts are easy to show: (i) F (z) = z(1�z) (ii) z⇤ = 0.5, (iii) r(z, ✓) = z�X1(k✓k22)�
z2�X1(k2✓ � ✓0k22), and (iv) (z⇤, ✓0) is the unique optimizer of r(z, ✓). Further, �S(.) is a linear
combination of MGFs Frahm (2004) which are convex, and is thus convex itself. Now, let H be the
Hessian of r(z, ✓) at (z⇤, ✓0). With some calculations one can show that for any non-zero y = (z, ✓),
we have that

y|Hy = �4�00
X1

(k✓k22)

4z2 + 4z

dX

l=1

✓(l)✓(l)0 + 2
dX

l=1

dX

l0=1

✓(l)✓(l)0 ✓(l
0)✓(l

0)
0 +

dX

l=1

⇣
✓(l)(1 + ✓(l)0)

⌘2
!

 �4�00
X1

(k✓k22)

0

@2z2 + 2(✓|✓0 + z)2 +

dX

l=1

|✓(l)|(1 + ✓(l)0)

!2
1

A

< 0

Thus, the Hessian of r(z, ✓) at (z⇤, ✓0) is negative definite. Thus, as argued in Section 2.3, A3 holds.

B Variants of DEEP-C: Formal Definitions

B.1 DEEP-C with Rounds

We partition the support of Z1 into intervals of length n�1/4. If the boundary sets are smaller, we
enlarge the support slightly (by an amount less than n�1/4) so that each interval is of equal length,
and equal to n�1/4. Let the corresponding intervals be Z1, . . . ,Zk, and their centroids be ⇣1, . . . , ⇣k
where k is less than or equal to n1/4. Similarly, for l = 1, 2, . . . , d, we partition the projection of the
support of the ✓0 into the lth dimension into kl intervals of equal length, with sets ⇥(l)

1 , . . . ,⇥(l)
kl

and
centroids ✓(l)1 , . . . , ✓(l)kl

. Again, if the boundary sets are smaller, we enlarge the support so that each
interval is of equal length, and equal to n�1/4.

Our algorithm keeps a set of active (z, ✓) ⇢ Z ⇥⇥ and eliminates those for which we have sufficient
evidence for being far from (z⇤, ✓0).

Our algorithm operates in rounds. We use ⌧ to index the round. Each round lasts for one or more
time steps. Let A(⌧) ⇢ {1, . . . , k} where [i2A(⌧)Zi represents the set of active z’s. For each l

let Bl(⌧) ⇢ {1, . . . , k} where
Q

l [j2Bl(⌧)⇥
(l)
j represents the set of active ✓’s in round ⌧ . Then,

([i2A(⌧)Zi)⇥
Q

l [j2Bl(⌧)⇥
(l)
j represents the set of active (z, ✓)’s.

During each time t in round ⌧ we have a set of active prices, which depends on Xt and A(⌧) ⇥Q
l Bl(⌧). Let

P (⌧, t) =

(
p : 9z 2 [i2A(⌧)Zi, 9✓ 2

Y

l

[j2Bl(⌧)⇥
(l)
j s.t. ln p = ln z + ✓|Xt

)
.

12

During round ⌧ , at each time t we pick a price pt from P (⌧, t) uniformly at random. At time t, we say
that cell (i, j1, . . . , jd), i.e. set Zi ⇥⇥(1)

j1
⇥⇥(2)

j2
⇥ . . .⇥⇥(d)

jd
, is ‘checked’ if pt 2 Pi,j1,...,jd(⌧, t)

where

Pi,j1,...,jd(⌧, t) ,
(
p : 9z 2 Zi, 9✓ 2

Y

l

⇥(l)
jl

s.t. ln p = ln z + ✓|Xt

)
.

Each price selection checks one or more cells (i, j1, . . . , jd). The round lasts until all active cells are
checked.

Let t⌧ (i, j1, . . . , jd) be the first time in round ⌧ when the cell (i, j1, . . . , jd) is checked. Recall that
the reward generated ay time t is Ytpt. At the end of each round ⌧ , for each active cell (i, j1, . . . , jd)
we compute the empirical average of the rewards generated at the times t⌧ 0(i, j1, . . . , jd) for ⌧ 0 =
1, . . . , ⌧ , i.e., we compute

µ̂⌧ (i, j1, . . . , jd) =
1

⌧

⌧X

⌧ 0=1

Yt⌧0 (i,j1,...,jd)pt⌧0 (i,j1,...,jd).

Note that for each cell, in each round we only record reward at the first time the cell is checked
and ignore rewards at the rest of the times in that round. We also compute confidence bounds for
µ̂⌧ (i, j1, . . . , jd), as follows. Let � = max

⇣
10↵2

2, 4
2
2

logn ,
�2
1

logn

⌘
. For each active (i, j1, . . . , jd), let

u⌧ (i, j1, . . . , jd) = µ̂⌧ (i, j1, . . . , jd) +

r
�d log n

⌧
,

and

l⌧ (i, j1, . . . , jd) = µ̂⌧ (i, j1, . . . , jd)�
r

�d log n

⌧
.

These represent the upper and lower confidence bounds, respectively.

We eliminate i 2 A(⌧) from A(⌧ + 1) if there exists i0 2 A(⌧) such that
sup

(j1,...,jd)2
Q

l Bl(⌧)
u⌧ (i, j1, . . . , jd) < inf

(j1,...,jd)2
Q

l Bl(⌧)
l⌧ (i

0, j1, . . . , jd)

Similarly, we eliminate j 2 Bl(⌧) from Bl(⌧ + 1) if there exists j0 2 Bl(⌧) such that

sup
i2A(⌧)

sup
(j1,...,jl�1,jl+1,...,jd)2

Q
l0 6=l Bl0 (⌧)

u⌧ (i, j1, . . . , jl�1, j, jl+1, . . . , jd)

< inf
i2A(⌧)

inf
(j1,...,jl�1,jl+1,...,jd)2

Q
l0 6=l Bl0 (⌧)

l⌧ (i, j1, . . . , jl�1, j
0, jl+1, . . . , jd).

The time-complexity of this policy is driven by the number of cells, which increases as O(nd/4), and
thus scales poorly with d.

B.2 Decoupled DEEP-C

We assume that there exists an s  d such that at most s entries in ✓0 are non-zero. The value of s is
known to the platform. Here, s represents sparsity and could be significantly smaller than d. We also
assume that ⇥ ⇢ {✓ : k✓k2 = 1}.

At times t = 1, 2, . . . , dne2/3, select price uniformly at random from [↵1,↵2]. Then, we estimate ✓0
by solving the following convex-optimization problem:

maximize
✓

dne2/3X

t=1

(2Yt � 1)(✓|Xt)

subject to k✓k1  1p
s
, k✓k2  1

(2)

13

We denote the estimate at ✓̂0.

We partition the support of Z1 into intervals of length n�1/4 as above, and let the corresponding
intervals be Z1, . . . ,Zk with centroids ⇣1, . . . , ⇣k.

Fix � > 0. For t > dne2/3 we do the following.

We let A(t) ⇢ {1, . . . , k} represent the set of active cells. Then, [i2A(t)Zi represents the set of
active z’s. Here, A(dne2/3 + 1) = {1, . . . , k}.

We let

P (t) =
n
p : 9z 2 [i2A(t)Zi s.t. ln p = ln z + ✓̂|0Xt

o
.

At time time t we pick a price pt from P (t) uniformly at random. We say that cell i, i.e. set Zi, is
‘checked’ if pt 2 Pi(t) where

Pi(t) ,
n
p : 9z 2 Zi s.t. ln p = ln z + ✓̂|0Xt

o
.

Each price selection checks one or more cells i. Let Tt(i) be the number of times cell i is checked till
time t and St(i) be the total reward obtained at such times. Let

µ̂t(i) =
St(i)

Tt(i)
.

We also compute confidence bounds for µ̂t(i), as follows. For each active i, let

ut(i) = µ̂t(i) +

r
�

Tt(i)
,

and
lt(i) = µ̂t(i)�

r
�

Tt(i)
.

These represent the upper and lower confidence bounds, respectively.

We eliminate i 2 A(t) from A(t+ 1) if there exists i0 2 A(t) such that

ut(i) < lt(i
0).

The time-complexity of this policy is driven by that of the convex-optimization problem (2), size of
which scales as O(n2/3d). Note also that the total number of cells in this policy is O(n1/4).

B.3 Sparse DEEP-C

Again, we assume that there exists an s  d such that at most s entries in ✓0 are non-zero, and that
the value of s is known to the platform. We also assume that ⇥ ⇢ {✓ : k✓k2 = 1}.

We partition the support of Z1 into intervals of length n�1/4 as above, and let the corresponding
intervals be Z1, . . . ,Zk with centroids ⇣1, . . . , ⇣k. We let A(t) ⇢ {1, . . . , k} represent a set of active
cells at time t. Here, A(1) = {1, . . . , k}. Fix � > 0.

At each time t, estimate ✓0 by solving the following convex-optimization problem:

maximize
✓

t�1X

t0=1

(2Yt0 � 1)(✓|Xt0)

subject to k✓k1  1p
s
, k✓k2  1

(3)

We denote the estimate as ✓̂0(t).

14

We let

P (t) =
n
p : 9z 2 [i2A(t)Zi s.t. ln p = ln z + ✓̂0(t)

|Xt

o
.

At time time t we pick a price pt from P (t) uniformly at random. We say that cell i, i.e. set Zi, is
‘checked’ if pt 2 Pi(t) where

Pi(t) ,
n
p : 9z 2 Zi s.t. ln p = ln z + ✓̂0(t)

|Xt

o
.

Each price selection checks one or more cells i. Let Tt(i) be the number of times cell i is checked till
time t and St(i) be the total reward obtained at such times. Let

µ̂t(i) =
St(i)

Tt(i)
.

We also compute confidence bounds for µ̂t(i), as follows. For each active i, let

ut(i) = µ̂t(i) +

r
�

Tt(i)
,

and
lt(i) = µ̂t(i)�

r
�

Tt(i)
.

These represent the upper and lower confidence bounds, respectively.

We eliminate i 2 A(t) from A(t+ 1) if there exists i0 2 A(t) such that
ut(i) < lt(i

0).

The time-complexity of this policy is driven by having to solve the convex-optimization problem (3)
at each time t, size of which scales as O(td). Its implementation at time t can be sped up by using
solution from time t� 1 for initialization. Note also that the total number of cells in this policy is
O(n1/4).

C Proof of Theorem 1

Consider policy DEEP-C with Rounds as defined in Appendix B. The proof follows from a few
technical results that we state now. We provide the statements of these results and delegate their
proofs to Appendix D to not interrupt the logical flow of the proof of the theorem.

First, at the end of round ⌧ , with high probability, the set of active arms corresponds to cells with

guaranteed O

✓q
logn
⌧

◆
expected regret. More precisely, recall the definitions of r(z, ✓), ⇣i, and

✓(l)j . Let

�(i, j1, . . . , jd) = r(z⇤, ✓0)� r
⇣
⇣i, (✓

(l)
jl

: 1  l  d)
⌘
.

We have the following result.

Lemma 1 For each round ⌧ , let E1(⌧) be the event that the following holds:

A(⌧) ⇢
(
i : sup

(j1,...,jd)
�(i, j1, . . . , jd) < 162

�1
1

r
�d log n

⌧

)
,

and for each l

Bl(⌧) ⇢
(
j : sup

i
sup

(j1,...,jl�1,jl+1,...,jd)
�(i, j1, . . . , jl�1, j, jl+1, . . . , jd) < 162

�1
1

r
�d log n

⌧

)
.

Then,

P(E1(⌧)) � 1� 4

n2
.

15

Second, not only are the corresponding active cells guaranteed to have small expected regret with
high probability, but the size (Lebesgue measure) of the set of active prices is guaranteed to be small
with high probability. The next result provides explicit bound on such size.

Lemma 2 For each ⌧ , the event E1(⌧) implies that the following holds for each time t in round ⌧ :

L(P (⌧, t))  40
↵2
2

↵1
d�1

1 1/2
2

✓
�d log n

⌧

◆1/4

,

where for each Borel set A, L(A) is its Lebesgue measure.

Third, after verifying that the remaining cells have a suitably controlled expected regret, and that the
size of active arms (prices) is also controlled, we verify that at each time in the current round any
given active cell is checked with substantially high probability.

Lemma 3 Fix round ⌧ . Consider an active cell (i, j1, . . . , jd). Then the probability that the cell

(i, j1, . . . , jd) is checked at time t in round ⌧ is at least
↵1n

�1/4

L(P (⌧,t)) .

Finally, using Lemmas 1, 2, and 3, we are ready to piece together all of the elements (i.e., control on
the performance of active arms, size of the remaining arms, and the speed at which arms are explored)
to obtain the main result, as we do next.

From Lemma 2 we have w.p. 1 that L(P (⌧, t))  �0 , 40↵2
2

↵1
d�1

1 1/2
2

⇣
�d logn

⌧

⌘1/4
for each ⌧ and

t.

Let E2(⌧) be the event that the round ⌧ runs for at most 3d�0

↵1n�1/4 log n times. Since the number of
cells is at most nd/4, by Lemma 3 and union bound we obtain:

P((E2(⌧))
c)  nd/4

✓
1� ↵1n�1/4

�0

◆3d �0

↵1n�1/4 logn

 nd/4e�3d logn  nd/4�3d  n�2d

 n�2 (4)

Also, recall event E1(⌧) from Lemma 1. By the law of total expectation, the expected regret incurred
during round ⌧ , i.e. the difference between expected reward earned by the oracle and the platform
during round ⌧ , denoted as R̃⌧ , satisfies the following:

E[R̃⌧]  E[R̃⌧ |E1(⌧), E2(⌧)]P (E1(⌧)\E2(⌧))+E[R̃⌧ |E1(⌧)
c[E2(⌧)

c]P(E1(⌧)
c[E2(⌧)

c).

Here, P (E1(⌧)\E2(⌧))  1, and E[R̃⌧ |E2(⌧)c [E1(⌧)c]  ↵2n since the reward by the Oracle at
any time t is z⇤e✓0Xt1 {Vt � pt}  z⇤e✓0Xt  z⇤↵2  ↵2, with probability 1. Thus,

E[R̃⌧]  E[R̃⌧ |E2(⌧), E1(⌧)] + ↵2nP((E1(⌧)
c [E2(⌧)

c)

 E[R̃⌧ |E2(⌧), E1(⌧)] + ↵2n (P((E1(⌧)
c) + P((E2(⌧)

c))

Further, from (4) we have that P((E2(⌧)c)  n�2, and from Lemma 1 we have that P((E1(⌧)c) 
4n�2. Also, conditioned on events E1(⌧) and E2(⌧), we have the following:

(1) each round ⌧ is of length at most 3d log n �0

↵1n�1/4 (form the definition of E2(⌧)), and

(2) the regret incurred is at most 162
�1
1

q
�d logn

⌧ (from the definition of E1(⌧)),

(3) �0 = 40↵2
2

↵1
d�1

1 1/2
2

⇣
�d logn

⌧

⌘1/4
(from definition of �0).

16

Thus, we get

E[R̃⌧] 

0

B@3d log n
40↵2

2
↵1

d�1
1 1/2

2

⇣
�d logn

⌧

⌘1/4

↵1n�1/4

1

CA

162

�1
1

r
�d log n

⌧

!
+

5↵2

n
.

Upon simplification, we obtain

E[R̃⌧]  1920↵2
2↵

�2
1 �2

1 3/2
2 �3/4d11/4n1/4 log7/4 n⌧�3/4 +

5↵2

n
.

Thus, the total expected regret satisfies:

E[Rn] 
nX

⌧=1

R̃⌧  2000↵2
2↵

�2
1 �2

1 3/2
2 �3/4d11/4n1/4 log7/4 n

nX

⌧=1

⌧�3/4 + 5↵2

 16000↵�2
1 ↵2

2
�2
1 3/2

2 �3/4d11/4n1/2 log7/4 n+ 5↵2.

Hence, the theorem holds. ⌅

D Proof of lemmas used in Theorem 1

We present the proofs of Lemmas 1, 2, and 3 in order.

Proof of Lemma 1: For notational convenience and simplification of regret analysis, we pretend that
the following happens at the end of a round: We simulate ‘virtual times’ during which we obtain
virtual covariates and virtual prices so that we obtain a sample for each inactive set as well at round ⌧ ,
and update u⌧ and l⌧ accordingly. These times do not count as real times, and since inactive sets do
not take part in any decision making, the above procedure at virtual times incur no cost and have no
bearing to the execution of the actual algorithm in practice.

Throughout our development, we shall use that, as stated in A3,

1 max

⇢
(z⇤ � ⇣i)

2, max
1ld

(✓(l)0 � ✓(l)jl
)2
�

 �(i, j1, . . . , jd) 
2

d+ 1
k(z⇤�⇣i, ✓0�(✓(l)jl

: 1  l  d))k2

Fix a cell (i, j1, . . . , jd) such that �(i, j1, . . . , jd) > 162
�1
1

q
�d logn

⌧ . If no such cell exists, then
there is is nothing to prove since in that case P(E1(⌧)) = 1. We show that the probability of such a
cell being eliminated is high. Let E0 be the event that cell (i, j1, . . . , jd) has not been eliminated by
the end of round ⌧ . In addition, let E⇤

m be the event that (i⇤, j⇤1 , . . . , j⇤d) is eliminated at round m,
where (i⇤, j⇤1 , . . . , j

⇤
d) is the cell that contains (z⇤, ✓0). Using union bound, we can write

P(E0) = P (E0 \ ([⌧
m=1E

⇤
m)) + P (E0 \ (\⌧

m=1(E
⇤
m)c))


⌧X

m=1

P(E⇤
m) + P (E0 \ (\⌧

m=1(E
⇤
m)c)) .

We have two claims,

Claim 1: P(E⇤
m)  2 1

n4d , and

Claim 2: P (E0 \ (\⌧
m=1(E

⇤
m)c))  2

n10d .

It follows directly from Claims 1 and 2, since and ⌧  n, that

P(E0)  ⌧
2

n4d
+

2

n10d
 1

n3d
+

2

n10d
 4

n3d
.

17

Since total number of cells is at most nd/4, we have that

P((E1(⌧))
c)  nd/4 4

n3d
 4

n11d/4
 4

n11/4
,

and hence the lemma would follow. So, we just need to establish Claim 1 and Claim 2.

For Claim 1, note that

P(E⇤
m) P (9(i, j1, . . . , jd) s.t. u⌧ (i

⇤, j⇤1 , . . . , j
⇤
d) < l⌧ (i, j1, . . . , jd))

 nd/4 sup
(i,j1,...,jd)

P (u⌧ (i
⇤, j⇤1 , . . . , j

⇤
d) < l⌧ (i, j1, . . . , jd))

 nd/4 sup
(i,j1,...,jd)

P

u⌧ (i

⇤, j⇤1 , . . . , j
⇤
d) < inf

(z,✓)2Zi⇤⇥⇥j⇤1
⇥...⇥⇥j⇤

d

r(z, ✓)

!

+ P

l⌧ (i, j1, . . . , jd) � inf

(z,✓)2Zi⇤⇥⇥j⇤1
⇥...⇥⇥j⇤

d

r(z, ✓)

!!
,

where the last inequality follows from the fact that l < u implies that for each c we have l < c or
u � c; we are choosing c = inf(z,✓)2Zi⇤⇥⇥j⇤1

⇥...⇥⇥j⇤
d
r(z, ✓). Further, we have

P

u⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)  inf

(z,✓)2Zi⇤⇥⇥j⇤1
⇥...⇥⇥j⇤

d

r(z, ✓)

!

= P

µ̂⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)  inf

(z,✓)2Zi⇤⇥⇥j⇤1
⇥...⇥⇥j⇤

d

r(z, ✓)�
r

�d log n

⌧

!

 P

µ̂⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)  E[µ̂⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)]�

r
�d log n

⌧

!

Note that
0  µ̂⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)  sup

x2X ,z2Z,✓2⇥
ze✓

|x  ↵2.

Thus, using Hoeffding’s inequality, we obtain

P

u⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)  inf

(z,✓)2Zi⇤⇥⇥j⇤1
⇥...⇥⇥j⇤

d

r(z, ✓)

!
 e

� 2�d log n

↵2
2

 e�20d logn

 1

n20d
.

Fix (i, j1, . . . , jd). From A3 and the fact that each cell is of size n�1/4, we have r(z⇤, ✓0) �
inf(z,✓)2Zi⇤⇥⇥j⇤1

⇥...⇥⇥j⇤
d
r(z, ✓)  2(n�1/4)2. Also, from the definition of � we have that 2 

q
�d logn

4 . Since ⌧  n we get 2(n�1/4)2 
q

�d logn
4⌧ .

Thus, we get that

sup
(z,✓)2Zi⇥⇥(1)

j1
⇥...⇥⇥(d)

jd

r(z, ✓)  r(z⇤, ✓0)  inf
(z,✓)2Zi⇤⇥⇥j⇤1

⇥...⇥⇥j⇤
d

r(z, ✓) +

r
�d log n

4⌧
.

Thus,

18

P

l⌧ (i, j1, . . . , jd) � inf

(z,✓)2Zi⇤⇥⇥j⇤1
⇥...⇥⇥j⇤

d

r(z, ✓)

!

 P

0

@l⌧ (i, j1, . . . , jd) � sup
(z,✓)2Zi⇥⇥(1)

j1
⇥...⇥⇥(d)

jd

r(z, ✓)�
r

�d log n

4⌧

1

A

= P

0

@µ̂⌧ (i, j1, . . . , jd) � sup
(z,✓)2Zi⇥⇥(1)

j1
⇥...⇥⇥(d)

jd

r(z, ✓) +

r
�d log n

4⌧

1

A

 e
� �d log n

2↵2
2

 e�5d logn

 1

n5d

Thus,

P(E⇤
m)  2

1

n5d�d/4
 2

1

n4d
.

Hence, the Claim 1 follows. We now show Claim 2. Note that

P (E0 \ (\⌧
m=1(E

⇤
m)c))  P (u⌧ (i, j1, . . . , jd) � l⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)) .

Let (z0, ✓0) 2 arg sup
(z,✓)2Zi⇥⇥(1)

j1
⇥...⇥⇥(d)

jd

r(z, ✓). Using the fact that for any u, l, c we have that

u � l implies u � c or c � l, and letting c = (r(z⇤, ✓0)� r(z0, ✓0)) /2 we obtain

P (u⌧ (i, j1, . . . , jd) � l⌧ (i
⇤, j⇤1 , . . . , j

⇤
d))

 P (u⌧ (i, j1, . . . , jd) � (r(z⇤, ✓0)� r(z0, ✓0)) /2 + r(z0, ✓0))

+ P (l⌧ (i
⇤, j⇤1 , . . . , j

⇤
d)  r(z⇤, ✓0)� (r(z⇤, ✓0)� r(z0, ✓0)) /2) . (5)

Now, by A3 and using the fact that � � �2
1

logn , we obtain that

k(z⇤ � ⇣i, ✓0 � (✓(l)jk
: 1  l  k)k2 � �1

2 (d+ 1)�(i, j1, . . . , jd) � 16�1
1 (d+ 1)

r
�d log n

⌧

� 16(d+ 1)

r
d

⌧
� 16(d+ 1)

r
1

n
.

Further, by construction of the partition, we have |z0 � ⇣i|  1
2n

�1/4 and (✓0(l) � ✓(l)jl
)  1

2n
�1/4

for each 1  l  d. Thus,

���
⇣
z⇤ � ⇣i, ✓0 � (✓(l)jl

: 1  l  d)
⌘���

2
 k(z⇤ � z0, ✓0 � ✓0)k2+

���
⇣
z0 � ⇣i, ✓

0 � (✓(l)jl
: 1  l  d)

⌘���
2

 k(z⇤ � z0, ✓0 � ✓0)k2 + (d+ 1)

✓
n�1/4

2

◆2

.

In turn, we have

19

k(z⇤ � z0, ✓0 � ✓0)k2 �
���
⇣
z⇤ � ⇣i, ✓0 � (✓(l)jl

: 1  l  d)
⌘���

2
� (d+ 1)

✓
n�1/4

2

◆2

.

Thus, by again using A3 we get

�(i, j1, . . . , jd)

r(z⇤, ✓0)� r(z0, ✓0)


2

���
⇣
z⇤ � ⇣i, ✓0 � (✓(l)jl

: 1  l  d)
⌘���

2

(d+ 1)1 max
n
(z⇤ � z)2,max1ld(✓

(`)
0 � ✓(l))2

o


2

���
⇣
z⇤ � ⇣i, ✓0 � (✓(l)jl

: 1  l  d)
⌘���

2

1 k(z⇤ � z0, ✓0 � ✓0)k2

 2
�1
1

0

B@1�
(d+ 1)

⇣
n�1/4

2

⌘2

���
⇣
z⇤ � ⇣i, ✓0 � (✓(l)jl

: 1  l  d)
⌘���

2

1

CA

�1

 2
�1
1 (1� 1/4

16
)�1  42

�1
1 .

Thus, we get

�(i, j1, . . . , jd)  42
�1
1 (r(z⇤, ✓0)� r(z0, ✓0)). (6)

Consequently,

P (u⌧ (i, j1, . . . , jd) � (r(z⇤, ✓0)� r(z0, ✓0)) /2 + r(z0, ✓0))

 P
�
u⌧ (i, j1, . . . , jd) � �(i, j1, . . . , jd)/(82

�1
1) + r(z0, ✓0)

�

 P

0

@u⌧ (i, j1, . . . , jd) � 2

r
�d log n

⌧
+ sup

(z,✓)2Zi⇥⇥(1)
j1

⇥...⇥⇥(d)
jd

r(z, ✓)

1

A

 P

0

@µ̂⌧ (i, j1, . . . , jd) � 2

r
�d log n

⌧
�
r

�d log n

⌧
+ sup

(z,✓)2Zi⇥⇥(1)
j1

⇥...⇥⇥(d)
jd

r(z, ✓)

1

A

= P

0

@µ̂⌧ (i, j1, . . . , jd) �
r

�d log n

⌧
+ sup

(z,✓)2Zi⇥⇥(1)
j1

⇥...⇥⇥(d)
jd

r(z, ✓)

1

A

 P

µ̂⌧ (i, j1, . . . , jd) �

r
�d log n

⌧
+ E[µ̂⌧ (i, j1, . . . , jd)]

!

Again using Hoeffding’s inequality, we get

P (u⌧ (i, j1, . . . , jd) � (r(z⇤, ✓0)� r(z0, ✓0)) /2 + r(z0, ✓0))  e
� 2�d log n

↵2
2  e�20d logn  1

n20d
.

(7)

Now, recall that r(z⇤, ✓0) � inf(z,✓)2Zi⇤⇥⇥j⇤1
⇥...⇥⇥j⇤

d
r(z, ✓)  2n�1/2 

q
�d logn

⌧ . Thus, we
have

20

P (l⌧ (i
⇤, j⇤1 , . . . , j

⇤
d)  r(z⇤, ✓0)� (r(z⇤, ✓0)� r((z0, ✓0))) /2)

 P
�
l⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)  r(z⇤, ✓0)��(i, j1, . . . , jd)/(82

�1
1)
�

 P

l⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)  r(z⇤, ✓0)� 2

r
�d log n

⌧

!

 P

l⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)  inf

(z,✓)2Zi⇤⇥⇥j⇤1
⇥...⇥⇥j⇤

d

r(z, ✓) +

r
�d log n

⌧
� 2

r
�d log n

⌧

!

 P

µ̂⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)  inf

(z,✓)2Zi⇤⇥⇥j⇤1
⇥...⇥⇥j⇤

d

r(z, ✓)�
r

�d log n

⌧

!

 P

µ̂⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)  E[µ̂⌧ (i

⇤, j⇤1 , . . . , j
⇤
d)]�

r
�d log n

⌧

!

Using Hoeffding’s inequality yet again, we get

P (l⌧ (i
⇤, j⇤1 , . . . , j

⇤
d)  r(z⇤, ✓0)� (r(z⇤, ✓0)� r((z0, ✓0))) /2)

 e
� 2�d log n

↵2
2  e�20d logn  1

n20d
. (8)

Claim 2 thus follows from (5), (7) and (8). This completes proof of Lemma 1. We now proceed with
the proof of Lemma 2.

Proof of Lemma 2:

Note that, by translation invariance, L(P (⌧, t)) = L
⇣
P (⌧, t)� z⇤e✓

|
0xt

⌘
. In addition, for any

measurable set A, we always have the bound L(A)  2
P

a2A |a|. Therefore, by definition of
P (⌧, t), we have

L(P (⌧, t))  2 sup
z2ZA,✓2⇥A

|z⇤e✓
|
0xt � ze✓

|xt |,

where ZA and ⇥A be the set of active z and ✓ in round ⌧ . Now, fix (z, ✓) 2 ZA⇥⇥a. Let z⇤�z = �z
and ✓0 � ✓ = �✓. Then, at time t in round ⌧ , we have

ze✓
|xt = (z⇤ � �z)e

✓|
0xte��|✓ xt

= e✓
|
0xt(z⇤ � �z)

⇣
1� (1� e��|✓ xt)

⌘

= e✓
|
0xt

⇣
z⇤
⇣
1� (1� e��|✓ xt)

⌘
� �z

⇣
1� (1� e��|✓ xt)

⌘⌘

= e✓
|
0xt

⇣
z⇤ � z⇤(1� e��|✓ xt)� �z + �z(1� e��|✓ xt)

⌘

= e✓
|
0xtz⇤ + e✓

|
0xt

⇣
�z⇤(1� e��|✓ xt)� �ze

��|✓ xt

⌘

= e✓
|
0xtz⇤ � e✓

|
0xt

⇣
z⇤(1� e��|✓ xt) + �ze

��|✓ xt

⌘
.

Recall that ↵1  e✓
|x  ↵2 for each x 2 X and ✓ 2 ⇥. Thus,

e��|✓ xt =
e✓

|xt

e✓
|
0xt

 ↵2

↵1
.

Thus, by triangle inequality, and noting that z⇤  1 as Z is a subset of the unit interval, we have

21

L(P (⌧, t))  2 sup
z2ZA,✓2⇥A

���e✓
|
0xt

⇣
z⇤(1� e��|✓ xt) + �ze

��|✓ xt

⌘���

 2↵2

sup
✓2⇥A

���z⇤(1� e��|✓ xt)
���+ sup

z2ZA,✓2⇥A

����ze��|✓ xt

���

!

 2↵2 sup
✓2⇥A

���z⇤(1� e��|✓ xt)
���+ 2↵2 sup

z2ZA,✓2⇥A

����ze��|✓ xt

���

 2↵2 sup
✓2⇥A

���(1� e��|✓ xt)
���+ 2

↵2
2

↵1
sup
z2ZA

|�z| .

From Lemma 1, for each ⌧ and each time t in round ⌧ , with probability at least 1� 4/n2 the only

active cells (i, j1, . . . , jd) are the ones such that �(i, j1, . . . , jd)  162
�1
1

q
�d logn

⌧ . Thus, under
E1(⌧), we have

sup
z2ZA

1 |�z|2  162
�1
1

r
�d log n

⌧
.

Also, for each ✓,

���(1� e��|✓ xt)
��� =

�����
|
✓xt �

e��

2
(�|✓xt)

2

���� ,

for some 0 < |�| < |�|✓xt|. Since 0 < |�| < |�|✓xt|, we have e��  sup(1, e��|✓ xt)  ↵2/↵1. Thus,
by triangle inequality and noting that X and ⇥ are a subset of unit hypercube, we get

sup
✓2⇥A

���(1� e��|✓ xt)
���  sup

✓2⇥A

|�|✓xt|+
↵2

↵1
sup
✓2⇥A

|�|✓xt|2

 sup
✓2⇥A

k�✓k1 kxtk1 +
↵2

↵1
sup
✓2⇥A

k�✓k21 kxtk21

 sup
✓2⇥A

k�✓k1 +
↵2

↵1
sup
✓2⇥A

k�✓k21

 4
↵2

↵1
sup
✓2⇥A

k�✓k1

 4
↵2

↵1
d�1

1

s

162

r
�d log n

⌧
.

Thus, we get

1

2
|P (⌧, t)|  ↵2

2

↵1
�1
1

s

162
�1
1

r
�d log n

⌧
+ 4

↵2
2

↵1
d�1

1

s

162

r
�d log n

⌧
,

 5
↵2
2

↵1
d�1

1

s

162

r
�d log n

⌧
.

This completes the proof of Lemma 2. We now proceed to the proof of Lemma 3.

Proof of Lemma 3: Since the price at time t is picked uniformly at random from P (⌧, t), and
since Pi,j1,...,jd(⌧, t) ⇢ P (⌧, t), we have that the probability that the cell (i, j1, . . . , jd) is checked
at time t in round ⌧ is equal to L(Pi,j1,...,jd

(⌧,t))

L(P (⌧,t)) . Thus, the result would follow if we show that
L(Pi,j1,...,jd(⌧, t)) � n�1/4↵1 w.p. 1. We show that below.

22

Fix ✓ from
Q

l ⇥
(l)
jl

. For each x 2 X let

P (x) ,
n
p : 9z 2 Zi s.t. p = ze✓

|x
o
.

Since L(Zi) = n�1/4, for each x 2 X we have

L(P (x)) = n�1/4e✓
|x � n�1/4↵1.

Thus, L(P (Xt)) � n�1/4↵1 w.p. 1. But, by definition we have P (Xt) ⇢ Pi,j1,...,jd(⌧, t). Thus,
L(Pi,j1,...,jd(⌧, t)) � n�1/4↵1 w.p. 1. This completes the proof of Lemma 3.

E Extensions

E.1 Incorporating adversarial covariates

We believe that the i.i.d. assumption on covariates can be significantly relaxed. As a prelude, consider
the following modification to A1.

A4 We assume that {Zt}t are i.i.d. with compact support Z . We assume that the support of Xt for

each t is compact, namely X . Given the past, Xt can be chosen adversarially from its support. More

formally, we assume that X is �(X1, . . . , Xt�1, Z1, . . . , Zt�1, p1, . . . , pt�1)-measurable.

Given Assumption A4, consider the following strengthening of Assumption A3. Recall that F (z) =
zP(Z1 > z). Let

r(z, ✓, x) = e✓
|
0xF

⇣
e�(✓0�✓)|xz

⌘
.

Given covariate x, r(z, ✓, x) can be viewed as the expected revenue at (z, ✓).

A5 We assume that there exist 1,2 > 0 such that for each z 2 Z , ✓ 2 ⇥, and x 2 X we have

1 max

⇢
(z⇤ � z)2, max

1ld
(✓(`)0 � ✓(l))2

�
 r(z⇤, x, ✓0)� r(z, x, ✓)  2

d+ 1
k(z⇤ � z, ✓0 � ✓)k2

where k(z, ✓)k2 =
⇣
z2 +

Pd
l=1(✓

(l))2
⌘
.

We conjecture that under assumptions A4, A2, and A5, a suitable modification to policy DEEP-C
with Rounds would achieve a regret scaling similar to (if not the same as) that in Theorem 1. This
conjecture rests on the following two key observations: (1) The optimal policy for the Oracle with
adversarial covariates is the same as that under the i.i.d. covariates setting; and (2) policy DEEP-C
with Rounds for i.i.d. covariates does not learn or use the distribution of Xt (except via the knowledge
of the constants ↵2,1 and 2).

E.2 Relaxing compactness of support of covariates

We believe that the compactness assumption of X in A1 can also be significantly relaxed. For example,
consider the following simple relaxation. (We say that a random variable W is �-subgaussian if
P(X > t)  e��2t2 .)

A6 {Xt}t and {Zt}t are i.i.d. and mutually independent. Their distributions are unknown to the

platform. The support of Z1, namely Z , is compact and known. Let

W = sup
z2Z,✓2⇥

ze✓
|X1 .

W is �-subgaussian for a known � > 0.

Under A2, and A3, and A6 we can obtain a result analogous to Theorem 1 as follows.

Recall that the policy DEEP-C with Rounds requires knowledge of ↵2, which in this case may
be infinity. However, the platform can compute ↵0

2 such that P (W > ↵0
2)  1/n2, and execute

policy DEEP-C with ↵0
2 instead of ↵2. Thus, the probability of event {9t 2 {1, . . . , n}Vt > ↵0

2}
is at most 1/n, and the overall impact of such an event on expected regret is O(1). Using the fact
that, since Z and ⇥ are compact, there exists ↵0

1 > 0 (possibly unknown to the platform) such that
P (W < ↵0

2)  1/n2, we can obtain a regret bound similar to Theorem 1.

23

	Introduction
	Related work

	Preliminaries
	Model
	The oracle and regret
	Smoothness Assumption
	Connection to assumptions in KlL03

	Pricing policies
	DEEP-C policy
	Variants of DEEP-C

	Regret analysis
	Simulation Results
	Acknowledgments
	A class of examples where assumptions A1, A2, and A3 are satisfied
	Variants of DEEP-C: Formal Definitions
	DEEP-C with Rounds
	Decoupled DEEP-C
	Sparse DEEP-C

	Proof of Theorem 1
	Proof of lemmas used in Theorem 1
	Extensions
	Incorporating adversarial covariates
	Relaxing compactness of support of covariates

