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Abstract

Finding local correspondences between images with different viewpoints requires
local descriptors that are robust against geometric transformations. An approach
for transformation invariance is to integrate out the transformations by pooling the
features extracted from transformed versions of an image. However, the feature
pooling may sacrifice the distinctiveness of the resulting descriptors. In this paper,
we introduce a novel visual descriptor named Group Invariant Feature Transform
(GIFT), which is both discriminative and robust to geometric transformations. The
key idea is that the features extracted from the transformed versions of an image
can be viewed as a function defined on the group of the transformations. Instead of
feature pooling, we use group convolutions to exploit underlying structures of the
extracted features on the group, resulting in descriptors that are both discriminative
and provably invariant to the group of transformations. Extensive experiments show
that GIFT outperforms state-of-the-art methods on several benchmark datasets and
practically improves the performance of relative pose estimation.

1 Introduction

Establishing local feature correspondences between images is a fundamental problem in many
computer vision tasks such as structure from motion [21], visual localization [17], SLAM [43], image
stitching [5] and image retrieval [47]. Finding reliable correspondences requires image descriptors
that effectively encode distinctive image patterns while being invariant to geometric and photometric
image transformations caused by viewpoint and illumination changes.

To achieve the invariance to viewpoints, traditional methods [36, 37] use patch detectors [33, 39]
to extract transformation covariant local patches which are then normalized for transformation
invariance. Then, invariant descriptors can be extracted on the detected local patches. However,
a typical image may have very few pixels for which viewpoint covariant patches can be reliably
detected [22]. Also, “hand-crafted" detectors such as DoG [36] and Affine-Harris [39] are sensitive to
image artifacts and lighting conditions. Reliably detecting covariant regions is still an open problem
[29, 11] and a performance bottleneck in the traditional pipeline of correspondence estimation.

Instead of relying on a sparse set of covariant patches, some recent works [20, 7, 11] propose to
extract dense descriptors by feeding the whole image into a convolutional neural network (CNN) and
constructing pixel-wise descriptors from the feature maps of the CNN. However, the CNN-based
descriptors are usually sensitive to viewpoint changes as convolutions are inherently not invariant
to geometric transformations. While augmenting training data with warped images improves the
robustness of learned features, the invariance is not guaranteed and a larger network is typically
required to fit the augmented datasets.

In order to explicitly improve invariance to geometric transformations, some works [60, 55, 22] resort
to integrating out the transformations by pooling the features extracted from transformed versions of
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the original images. But the distinctiveness of extracted features may degenerate due to the pooling
operation.

In this paper, we propose a novel CNN-based dense descriptor, named Group Invariant Feature
Transform (GIFT), which is both discriminative and invariant to a group of transformations. The key
idea is that, if an image is regarded as a function defined on the translation group, the CNN features
extracted from multiple transformed images can be treated as a function defined on the transformation
group. Analogous to local image patterns, such features on the group also have discriminative patterns,
which are neglected by the previous methods that use pooling for invariance. We argue that exploiting
underlying structures of the group features is essential for building discriminative descriptors. It
can be theoretically demonstrated that transforming the input image with any element in the group
results in a permutation of the group features. Such a permutation preserves local structures of the
group features. Thus, we propose to use group convolutions to encode the local structures of the
group features, resulting in feature representations that are not only discriminative but equivariant
to the transformations in the group. Finally, the intermediate representations are bilinearly pooled
to obtain provably invariant descriptors. This transformation-invariant dense descriptor simplifies
correspondence estimation as detecting covariant patches can be avoided. Without needs for patch
detectors, the proposed descriptor can be incorporated with any interest point detector for sparse
feature matching or even a uniformly sampled grid for dense matching.

We evaluate the performance of GIFT on the HPSequence [1, 30] dataset and the SUN3D [59] dataset
for correspondence estimation. The results show that GIFT outperforms both of the traditional
descriptors and recent learned descriptors. We further demonstrate the robustness of GIFT to
extremely large scale and orientation changes on several new datasets. The current unoptimized
implementation of GIFT runs at ∼15 fps on a GTX 1080 Ti GPU, which is sufficiently fast for
practical applications.

2 Related work

Existing pipelines for feature matching usually rely on a feature detector and a feature descriptor.
Feature detectors [33, 36, 39] detect local patches which are covariant to geometric transformations
brought by viewpoint changes. Then, invariant descriptors can be extracted on the normalized
local patches via traditional patch descriptors [36, 6, 48, 3] or deep metric learning based patch
descriptors [63, 19, 40, 52, 37, 2, 18, 23, 64]. The robustness of detectors can be guaranteed
theoretically, e.g., by the scale-space theory [34]. However, a typical image often have very few
pixels for which viewpoint covariant patches may be reliably detected [22]. The scarcity of reliably
detected patches becomes a performance bottleneck in the traditional pipeline of correspondence
estimation. Some recent works [45, 61, 29, 41, 64, 12, 62] try to learn such viewpoint covariant
patch detectors by CNNs. However, the definition of a canonical scale or orientation is ambiguous.
Detecting a consistent scale or orientation for every pixel remains challenging.

To alleviate the dependency on detectors, A-SIFT [42] warps original image patches by affine
transformations and exhaustively searches for the best match. Some other methods [60, 22, 55, 13]
follow similar pipelines but pool features extracted from these transformed patches to obtain invariant
descriptors. GIFT also transforms images, but instead of using feature pooling, it applies group
convolutions to further exploit the underlying structures of features extracted from the group of
transformed images to retain distinctiveness of the resulting descriptors.

Feature map based descriptor. Descriptors can also be directly extracted from feature maps of
CNNs [20, 11, 7]. However, CNNs are not invariant to geometric transformations naturally. The
common strategy to make CNNs invariant to geometric transformations is to augment the training data
with such transformations. However, data augmentation cannot guarantee the invariance on unseen
data. The Universal Correspondence Network (UCN) [7] uses a convolutional spatial transformer [26]
in the network to normalize the local patches to a canonical shape. However, learning an invariant
spatial transformer is as difficult as learning a viewpoint covariant detector. Our method also uses
CNNs to extract features on transformed images but applies subsequent group convolutions to
construct transformation-invariant descriptors.

Equivariant or invariant CNNs. Some recent works [8, 38, 28, 10, 58, 15, 27, 9, 28, 57, 38, 24, 14,
16, 4] design special architectures to make CNNs equivariant to specific transformations. The most
related work is the Group Equivariant CNN [8] which uses group convolution and subgroup pooling
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Figure 1: Pipeline. The input image is warped with different transformations and fed into a vanilla
CNN to extract group features. Then the group features for each interest point are further processed
by two group CNNs and a bilinear pooling operator to obtain final GIFT descriptors.

to learn equivariant feature representations. It applies group convolutions directly on a large group
which is the product of the translation group and the geometric transformation group. In contrast,
GIFT uses a vanilla CNN to process images, which can be regarded as features defined on the
translation group, and separate group CNNs to process the features on the geometric transformation
group, which results in a more efficient model than the original Group Equivariant CNN.

3 Method

Preliminary. Assuming the observed 3D surfaces are smooth, the transformation between corre-
sponding image patches under different viewpoints is approximately in the affine group. In this paper,
we only consider its subgroup G which consists of rotations and scaling. The key intermediate feature
representation in the pipeline of GIFT is a map f : G→ Rn from the group G to a feature space Rn,
which is referred to as group feature.

Overview. As illustrated in Fig. 1, the proposed method consists of two modules: group feature
extraction and group feature embedding. Group feature extraction module takes an image I as input,
warps the image with a grid of sampled elements in G, separately feeds the warped images through a
vanilla CNN, and outputs a set of feature maps where each feature map corresponds to an element in
G. For any interest point p in the image, a feature vector can be extracted from each feature map.
The feature vectors corresponding to p in all the feature maps form a group feature f0 : G→ Rn0 .
Next, the group feature embedding module embeds the group feature f0 of every interest point to two
features fl,α and fl,β by two group CNNs, both of which have l group convolution layers. Finally,
fl,α and fl,β are pooled by a bilinear pooling operator [32] to obtain a GIFT descriptor d.

3.1 Group feature extraction

Given an input image I and a point p = (x, y) on the image, this module aims to extract a
transformation-equivariant group feature f0 : G → Rn0 on this point p. To get the feature vector
f0(g) on a specific transformation g ∈ G, we begin with transforming the input image I with g. Then,
we process the transformed image g ◦ I with a vanilla CNN η. The output feature map is denoted by
η(Tg ◦ I). Since the image is transformed, the corresponding location of p on the output feature map
also changes into Tg(p). We use the feature vector locating at Tg(p) on the feature map η(Tg ◦ I)
as the value of f0(g). Because the coordinates of Tg(p) may not be integers, we apply a bilinear
interpolation φ to get the feature vector on it. The whole process can be expressed by,

f0(g) = φ(η(Tg ◦ I), Tg(p)). (1)
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The extracted group feature f0 is equivariant to transformations in the group, as illustrated in Fig. 2.
Lemma 1. The group feature of a point p in an image I extracted by Eq. (1) is denoted by f . If the
image is transformed by an element h ∈ G and the group feature extracted at the corresponding
point Th(p) in this transformed image is denoted by f ′, then for any g ∈ G, f ′(g) = φ(η(Tg ◦ Th ◦
I), Tg(Th(p))) = φ(η(Tgh ◦ I), Tgh(p)) = f(gh), which means that the transformation of the input
image results in a permutation of the group feature.
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Figure 2: The scaling and rotation of an image (left)
result in the permutation of the feature maps defined on
the scaling and rotation group (right). The red arrows
illustrate the directions of the permutation.

Lemma 1 provides a novel and strict crite-
rion for matching two feature points. Tra-
ditional methods usually detect a canon-
ical scale and orientation for an interest
point in each view and match points across
views by descriptors extracted at the canon-
ical scale and orientation. This can be
interpreted as, if two points are matched,
then there exists a g ∈ G and g′ ∈ G
such that f(g) = f ′(g′). However, the
canonical g and g′ are ambiguous and hard
to detect reliably. Lemma 1 shows that,
if two points are matched, then there ex-
ists an h ∈ G such that for all g ∈ G,
f ′(g) = f(gh). In other words, the group
features of two matched points are related
by a permutation. This provides a strict
matching criterion between two group fea-
tures. Even though h can hardly be de-
termined when extracting descriptors, the
permutation caused by h preserves struc-
tures of group features and only changes
their locations. Encoding local structures
of group features allows us to construct distinctive and transformation-invariant descriptors.

3.2 Group convolution layer

After group feature extraction, we apply the discrete group convolution originally proposed in [8] to
encode local structures of group features, which is defined as

[fl(g)]i = σ

(∑
h∈H

fTl−1(hg)Wi(h) + bi

)
, (2)

where fl and fl−1 are group features of the layer l and the layer l − 1 respectively, [·]i means the i-th
dimension of the vector, g and h are elements in the group, H ⊂ G is a set of transformations around
the identity transformation, W are learnable parameters which are defined on H , bi is a bias term
and σ is a non-linear activation function. If G is the 2D translation group, the group convolution in
Eq. (2) becomes the conventional 2D convolution. Similar to the conventional CNNs that are able to
encode local patterns of images, the group CNNs are able to encode local structures of group features.
For more discussions about the relationship between the group convolution and the conventional
convolution, please refer to [8].

The group convolution actually preserves the equivariance of group features:
Lemma 2. In Eq. (2), if fl−1 is equivariant to transformations in G as stated in Lemma 1, then fl is
also equivariant to transformations in G.

The proof of Lemma 2 is in the supplementary material. With Lemma 2, we can stack multiple
group convolution layers to construct group CNNs which are able to encode local structures of group
features while maintaining the equivariance property.

3.3 Group bilinear pooling

In GIFT, we actually construct two group CNNs α and β, both of which consist of l group convolution
layers, to process the input group feature f0. The outputs of two group CNNs are denoted by fl,α
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and fl,β , respectively. Finally, we obtain the GIFT descriptor d by applying the bilinear pooling
operator [32] to fl,α and fl,β , which can be described as

di,j =

∫
G

[fl,α(g)]i[fl,β(g)]jdg, (3)

where di,j is an element of feature vector d. Based on Lemma 1 and Lemma 2, we can prove the
invariance of GIFT as stated in Proposition 1. The proof is given in the supplementary material.
Proposition 1. Let d denote the GIFT descriptor of an interest point in an image. If the image is
transformed by any transformation h ∈ G and the GIFT descriptor extracted at the corresponding
point in the transformed image is denoted by d′, then d′ = d.

In fact, many pooling operators such as average pooling and max pooling can achieve such invariance.
We adopt bilinear pooling for two reasons. First, it collects second-order statistics of features and
thus produces more informative descriptors. Second, it can be shown that the statistics used in many
previous methods for invariant descriptors [22, 55, 60] can be written as special forms of bilinear
pooling, as proved in supplementary material. So the proposed GIFT is a more generalized form
compared to these methods.

3.4 Implementation details

Sampling from the group. Due to limited computational resources, we sample a range of elements
in G to compute group features. We sample evenly in the scale group S and the rotation group
R separately. The unit transformations are defined as 1/4 downsampling and 45 degree clockwise
rotation and denoted by s and r, respectively. Then, the sampled elements in the group G form a grid
{(si, rj)|i, j ∈ Z}. Considering computational complexity, we choose ns = 5 scales ranging from
s0 to s4 and nr = 5 orientations ranging from r−2 to r2. In this case, the group feature of an interest
point is a tensor f ∈ Rns×nr×n where n is the dimension of the feature space.

Due to the discrete sampling, Lemma 1 and Lemma 2 don’t rigorously hold near the boundary of the
selected range. But empirical results show that this boundary effect will not obviously affect the final
matching performance if the scale and rotation changes are in a reasonable range.

Bilinear pooling. The integral in the Eq. (3) is approximated by the summation over the sampled
group elements. Suppose the output group features of two group CNNs are denoted by fl,α ∈
Rns×nr×nα and fl,β ∈ Rns×nr×nβ , respectively, and reshaped as two matrices f̃l,α ∈ Rng×nα and
f̃l,β ∈ Rng×nβ , where ng = ns × nr. Then, the GIFT descriptor d ∈ Rnα×nβ can be written as

d = f̃Tl,αf̃l,β . (4)

Network architecture. The vanilla CNN has four convolution layers and an average pooling layer
to enlarge receptive fields. In the vanilla CNN, we use instance normalization [53] instead of batch
normalization [25]. The output feature dimension n0 of the vanilla CNN is 32. In both group
CNNs, H defined in Eq. (2) is {r, r−1, s, s−1, rs, rs−1, r−1s, r−1s−1, e}, where e is the identity
transformation. ReLU [44] is used as the nonlinear activation function. The number of group
convolution layers l = 1 in ablation studies and l = 6 in subsequent comparisons to state-of-the-art
methods. The output feature dimensions nα and nβ of two group CNNs are 8 and 16 respectively,
which results in a 128-dimensional descriptor after bilinear pooling. The output descriptors are
L2-normalized so that ‖d‖2 = 1.

Loss function. The model is trained by minimizing a triplet loss [49] defined by
` = max

(
‖da − dp‖2 − ‖da − dn‖2 + γ, 0

)
, (5)

where da, dp and dn are descriptors of an anchor point in an image, its true match in the other image,
and a false match selected by hard negative mining, respectively. The margin γ is set to 0.5 in all
experiments. The hard negative mining is a modified version of that proposed in [7].

4 Experiments

4.1 Datasets and Metrics

HPSequences [1, 30] is a dataset that contains 580 image pairs for evaluation which can be di-
vided into two splits, namely Illum-HP and View-HP. Illum-HP contains only illumination changes
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while View-HP contains mainly viewpoint changes. The viewpoint changes in the View-HP cause
homography transformations because all observed objects are planar.

SUN3D [59] is a dataset that contains 500 image pairs of indoor scenes. The observed objects are not
planar so that it introduces self-occlusion and perspective distortion, which are commonly-considered
challenges in correspondence estimation.

ES-* and ER-*. To fully evaluate the correspondence estimation performance under extreme scale
and orientation changes, we create extreme scale (ES) and extreme rotation (ER) datasets by artificially
scaling and rotating the images in HPSequences and SUN3D. For a pair of images, we manually add
large orientation or scale changes to the second image. The range of rotation angle is [−π, π]. The
range of scaling factor is [2.83, 4]

⋃
[0.25, 0.354]. Examples are shown in Fig. 3.

MVS dataset [51] contains six image sequences of outdoor scenes. All images have accurate
ground-truth camera poses which are used to evaluate the descriptors for relative pose estimation.

Training data. The proposed GIFT is trained on a synthetic dataset. We randomly sample images
from MS-COCO [31] and warp images with reasonable homographies defined in Superpoint [11]
to construct image pairs for training. When evaluating on the task of relative pose estimation, we
further finetune GIFT on the GL3D [50] dataset which contains real image pairs with ground truth
correspondences given by a standard Structure-from-Motion (SfM) pipeline.

Metrics. To quantify the performance of correspondence estimation, we use Percentage of Correctly
Matched Keypoints (PCK) [35, 65], which is defined as the ratio between the number of correct
matches and the total number of interest points. All matches are found by nearest-neighbor search.
A matched point is declared being correct if it is within five pixels from the ground truth location.
To evaluate relative pose estimation, we use the rotation error as the metric, which is defined as the
angle of Rerr = Rpr ·RTgt in the axis-angle form, where Rpr is the estimated rotation and Rgt is the
ground truth rotation. All testing images are resized to 480×360 in all experiments.

Superpoint [11]+GIFT Superpoint [11] DoG [36]+GIFT DoG [36]+GeoDesc [37]

Figure 3: Visualization of estimated correspondences on HPSequences (first two rows), ER-HP
(middle two rows) and ES-HP (last two rows). The first two columns use keypoints detected by
Superpoint [11] and the last two columns use keypoints detected by DoG [36].

4.2 Ablation study

We conduct ablation studies on HPSequence, ES-HP and ER-HP in three aspects, namely comparison
to baseline models, choice of pooling operators and different numbers of group convolution layers. In
all ablation studies, we use the keypoints detected by Superpoint [11] as interest points for evaluation.
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VCNN GFC GAS GIFT-1
Illum-HP 59.15 60.63 59.2 59.61
View-HP 61.7 62.5 62.2 63.71
ES-HP 14.9 16.58 18.28 21.74
ER-HP 28.86 26.89 30.72 39.68

Table 1: PCK of different baseline models and
GIFT-1.

avg max subspace bilinear
Illum-HP 57.72 54.31 47.21 59.61
View-HP 62.52 58.16 49.36 63.71
ES-HP 19.08 19.37 14.85 21.74
ER-HP 36.15 32.57 29.12 39.68

Table 2: PCK of models using different pooling
operators.

We denote the proposed method by GIFT-l where l means the number of group convolution layers.
Architectures of compared models can be found in the supplementary material. All tested models are
trained with the same loss function and training data.

Baseline models. We consider three baseline models which all produce 128-dimensional descriptors,
namely Vanilla CNN (VCNN), Group Fully Connected network (GFC) and Group Attention Selection
network (GAS). VCNN has four vanilla convolution layers with three average pooling layers and
outputs a 128-channel feature map. Descriptors are directly interpolated from the output feature map.
GFC and GAS have the same group feature extraction module as GIFT. GFC replaces the group
CNN in GIFT-1 with a two-layer fully connected network. GAS is similar to the model proposed
in [54], which tries to learn attention weights by CNNs to select a scale for each keypoint. GAS first
transforms input group features to 128-dimension by a 1× 1 convolution layer. Then, it applies a
two-layer fully connected network on the input group feature to produce nr × ns attention weights.
Finally, GAS uses the average of 128-dimensional embedded group features weighted by the attention
weights as descriptors.

Table 1 summarizes results of the proposed method and other baseline models. The proposed method
achieves the best performance on all datasets except Illum-HP. The Illum-HP dataset contains no
viewpoint changes, which means that there is no permutation between the group features of two
matched points. Then, the GFC model which directly compares the elements of two group features
achieves a better performance. Compared to baseline models, the significant improvements of GIFT-1
on ES-HP and ER-HP demonstrate the benefit of the proposed method to deal with large scale and
orientation changes.

Pooling operators. To illustrate the necessity of bilinear pooling, we test other three commonly-used
pooling operators, namely average pooling, max pooling and subspace pooling [22, 55, 56]. For all
these models, we apply the same group feature extraction module as GIFT. For average pooling and
max pooling, the input group feature is fed into group CNNs to produce 128-dimensional group
features which are subsequently pooled with average pooling or max pooling to construct descriptors.
For subspace pooling, we use a group CNN to produce a feature map with 16 channels, which results
in 256-dimensional descriptors after subspace pooling. Results are listed in Table 2 which shows that
the bilinear pooling outperforms all other pooling operators.

GIFT-1 GIFT-3 GIFT-6
Illum-HP 59.61 61.33 62.49
View-HP 63.71 64.91 67.15
ES-HP 21.74 23.9 27.29
ER-HP 39.68 43.37 48.93

Table 3: PCK of GIFT using different num-
bers of group convolution layers.

Number of group convolution layers. To further
demonstrate the effect of group convolution layers,
we test on different numbers of group convolution
layers. All models use the same vanilla CNN but
different group CNNs with 1, 3 or 6 group convo-
lution layers. The results in the Table 3 show that
the performance increases with the number of group
convolution layers. In subsequent experiments, we
use GIFT-6 as the default model and denote it with
GIFT for short.

4.3 Comparison with state-of-the-art methods

We compare the proposed GIFT with three state-of-the-art methods, namely Superpoint [11],
GeoDesc [37] and LF-Net [45]. For all methods, we use their released pretrained models for
comparison. Superpoint [11] localizes keypoints and interpolates descriptors of these keypoints
directly on a feature map of a vanilla CNN. GeoDesc [37] is a state-of-the-art patch descriptor which
is usually incorporated with DoG detector for correspondence estimation. LF-Net [45] provides a
complete pipeline of feature detection and description. The detector network of LF-Net not only
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detector Superpoint [11] DoG [36] LF-Net [45]

dataset
descriptor GIFT Superpoint GIFT SIFT GeoDesc GIFT LF-Net

[11] [36] [37] [45]
Illum-HP 62.49 61.13 56.58 28.38 34.41 52.17 34.55
View-HP 67.15 53.66 62.53 34.33 42.75 15.93 1.22
SUN3D 27.32 26.4 19.97 15.2 14.53 21.73 12.93
ES-HP 27.29 12.16 22.07 18.25 19.63 7.89 0.3
ER-HP 48.93 24.77 44.44 29.39 37.36 12.50 0.05
ES-SUN3D 12.37 5.94 7.40 4.09 3.42 7.61 0.55
ER-SUN3D 22.29 14.01 15.77 15.16 15.39 15.98 10.59

Table 4: PCK of GIFT and the state-of-the-art methods on HPSequences, SUN3D and the extreme
rotation (ER-) and scaling (ES-) datasets.

Reference GIFT VCNN Daisy [47]

Figure 4: Visualization of estimated dense correspondences. Matched points are drawn with the same
color in the reference and query images. Only correctly estimated correspondences are drawn.

localizes keypoints but also estimates their scales and orientations. Then the local patches are fed
into the descriptor network to generate descriptors. For fair comparison, we use the same keypoints
as the compared method for evaluation. Results are summarized in Table 4, which shows that GIFT
outperforms all other state-of-the-art methods. Qualitative results are shown in Fig. 3.

To further validate the robustness of GIFT to scaling and rotation, we add synthetic scaling and
rotation to images in HPatches and report the matching performances under different scaling and
rotations. The results are plotted in Fig. 5, which show that the PCK of GIFT drops slowly with the
increase of scaling and rotation.

4.4 Performance for dense correspondence estimation

GIFT VCNN Daisy [47]
Illum-HP 27.82 26.96 17.08
View-HP 37.92 32.92 19.6
ES-HP 12.52 4.64 1.05
ER-HP 26.61 14.02 5.69

Table 5: PCK of dense correspondence esti-
mation.

We also evaluate GIFT for the task of dense corre-
spondence estimation on HPSequence, ES-HP and
ER-HP. The quantitative results are listed in Table 5
and qualitative results are shown in Fig. 4. The pro-
posed GIFT outperforms the baseline Vanilla CNN
and the traditional method Daisy [47], which demon-
strates the ability of GIFT for dense correspondence
estimation.

4.5 Performance for relative pose estimation.

We also evaluate GIFT for the task of relative pose estimation of image pairs on the MVS dataset [51].
For a pair of images, we estimate the relative pose of cameras by matching descriptors and computing
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Figure 5: PCKs on the HPatches dataset as scaling and rotation increase. GIFT-SP uses Superpoint as
the detector while GIFT-DoG uses DoG as the detector.

essential matrix. Since the estimated translations are up-to-scale, we only evaluate the estimated
rotations using the metric of rotation error as mentioned in Section 4.1. We further finetune GIFT
on the outdoor GL3D dataset [50] and denote the finetuned model with GIFT-F. The results are
listed in Table 6. GIFT-F outperforms all other methods on most sequences, which demonstrates the
applicability of GIFT to real computer vision tasks.

Detector DoG [36] Superpoint [11]

Sequence
Descriptor GIFT GIFT-F SIFT GIFT GIFT-F Superpoint

[36] [11]
Herz-Jesus-P8 0.656 0.582 0.662 0.848 0.942 1.072
Herz-Jesus-P25 4.968 2.756 5.296 4.484 2.891 2.87
Fountain-P11 0.821 1.268 0.587 1.331 1.046 1.071

Entry-P10 1.368 1.259 3.844 1.915 1.059 1.076
Castle-P30 3.431 1.741 2.706 1.526 1.501 1.588
Castle-P19 1.887 1.991 3.018 1.739 1.500 1.814

Average 2.189 1.600 2.686 1.974 1.490 1.583
Table 6: Rotation error (°) of relative pose estimation on the MVS Dataset [51].

4.6 Running time

Given a 480×360 image and randomly-distributed 1024 interest points in the image, the PyTorch [46]
implementation of GIFT-6 costs about 65.2 ms on a desktop with an Intel i7 3.7GHz CPU and a GTX
1080 Ti GPU. Specifically, it takes 32.5 ms for image warping, 27.5 ms for processing all warped
images with the vanilla CNN and 5.2 ms for group feature embedding by the group CNNs.

5 Conclusion

We introduced a novel dense descriptor named GIFT with provable invariance to a certain group
of transformations. We showed that the group features, which are extracted on the transformed
images, contain structures which are stable under the transformations and discriminative among
different interest points. We adopt group CNNs to encode such structures and applied bilinear pooling
to construct transformation-invariant descriptors. We reported state-of-the-art performance on the
task of correspondence estimation on the HPSequence dataset, the SUN3D dataset and several new
datasets with extreme scale and orientation changes.

Acknowledgement. The authors would like to acknowledge support from NSFC (No. 61806176),
Fundamental Research Funds for the Central Universities and ZJU-SenseTime Joint Lab of 3D
Vision.
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