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Appendix A: A product prior leads to a product posterior

Suppose that we place an independent prior on the three model parameters F , π and m. Assuming the
feature distribution F has a density f , we recall that the likelihood for data Dn = {(Xi, Ri, Yi)}ni=1
arising from model (2) is
n∏
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Since this factorizes as LfnL
π
nL

m
n , where each term is a function of only f , π and m, respectively,

the posterior will again factorize so that f , π and m are also independent under the posterior (i.e.
conditional on the data). We assign F a Dirichlet process prior, which does not give probability
one to a dominated set of measures, meaning that the posterior of (F, π,m) cannot be derived using
Bayes formula. Nonetheless, we can still obtain the form of the posterior, in particular establishing
the posterior independence of the three parameters.

The following argument is found in Section 3.1 of [4] and we reproduce it for the convenience
of the reader. It is well-known that in the model consisting of sampling F from the Dirichlet
process prior with base measure α and next sampling observations X1, . . . , Xn from F , the posterior
of F |X1 . . . , Xn is again a Dirichlet process with updated base measure α + nPn, where Pn =
n−1

∑n
i=1 δXi is the empirical distribution of X1, . . . , Xn (see Chapter 4 of [3] for further details).

Let Q denote the prior distribution of (π,m). The parameters (F, π,m) and data are generated via
the hierarchical scheme:

• F ∼ DP (α) and (π,m) ∼ Q independently.

• The features satisfy X1, . . . , Xn|(F, π,m) ∼iid F .

• Ri|(F, π,m,X1, . . . , Xn) ∼ Bin(1, π(Xi)) and Y
(t)
i |(F, π,m,X1, . . . , Xn) ∼

N(m(Xi, t), σ
2
n), t = 0, 1, are (conditionally) independent.

• The observations are Dn = {(X1, R1, Y1), . . . , (Xn, Rn, Yn)} with Yi = RiY
(1)
i + (1 −

Ri)Y
(0)
i .

Using this scheme, we can observe that F and (R1, . . . , Rn, Y1, . . . , Yn) are conditionally inde-
pendent given (π,m,X1, . . . , Xn). Similarly, F and (π,m) are conditionally independent given
Dn. It thus follows that the posterior distribution of F given Dn is identical to the posterior of
F given X1, . . . , Xn, namely the DP (α + nPn) distribution. Moreover, the posterior of (π,m)
given (F,Dn) can then be obtained using Bayes rule with the likelihood of (R1, . . . , Rn, Y1, . . . , Yn)
given X1, . . . , Xn, which is indeed dominated. Denoting the full prior by Π, this yields posterior
distribution
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where LπnL
m
n is the likelihood (1) with f set to 1. Since the above integrals separate, the three

parameters are independent under the posterior (since also π and m were assumed independent under
the prior). The above formula also extends to the Bayesian bootstrap (BB), which has base measure
α = 0, which we consider in our simulations.

Appendix B: A technical motivation for the prior correction

We provide a brief technical motivation for readers familiar with semiparametric estimation theory
(see for example Chapter 25 of [7]). Recall that we work in the nonparametric regression model:

Yi = m(Xi, Ri) + εi, (2)

where εi ∼iid N(0, σ2
n), Ri ∈ {0, 1} and Xi ∈ Rd represents measured feature information about

individual i. We further assume that Xi ∼iid F and define the propensity score π(x) = P (R =
1|X = x). Our goal is to estimate the ATE ψ =

∫
Rd m(x, 1)−m(x, 0)dF (x).

We very briefly summarize some facts concerning the semiparametric estimation theory of the ATE
ψ in the model (2) (see e.g. [5]). Let Ψ(t) = 1/(1 + e−t) denote the logistic function. Consider the
one-dimensional submodels t 7→ (ft, πt,mt) of (2) defined via the paths

ft = fetφ−log
∫
fetφ , πt = Ψ(Ψ−1(π) + tα), mt(x, r) = m(x, r) + tγ(x, r),

for given ‘directions’ (functions) (φ, α, γ) with
∫
φf = 0. Set qt = (ft, πt,mt). The difficulty

of estimating ψ(q) in the one-dimensional submodel {qt : t ∈ (−ε, ε)} depends on the functions
(φ, α, γ). This can be quantified via the best possible asymptotic variance achievable by any estimator
when estimating ψ(q) in this model, with larger such variance indicating a more difficult problem.
The most difficult such submodel, if it exists, has the largest asymptotically optimal variance for
estimating ψ and the corresponding functions (φ, α, γ) are called the ’least favourable direction’. In
model (2) this equals

(φ, α, γ) =

(
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n
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)
,

where one can see the third term mirrors our prior correction.

It is known from the Bayesian nonparametric asymptotics literature that a condition for the semipara-
metric Bernstein-von Mises theorem (Chapter 12 of [3]) to hold, and hence for the marginal posterior
for ψ to be statistically optimal in a frequentist sense, is that the prior be invariant under a shift of
the nonparametric component in the least favourable direction [1, 2]. The prior correction for our
method, which takes the form of the (estimated) least favourable direction, exactly provides such an
invariance by giving the prior an explicit component in this direction (otherwise the shift may be in
some sense ‘orthogonal’ to the underlying prior). One can thus view the bias correction as an attempt
to provide additional robustness against posterior inaccuracy in the ‘most difficult direction’, namely
the one which will induce the largest bias in the ATE ψ. For a theoretical analysis of such an idea in
a related idealized model, see [4].

Appendix C: Brief description of the benchmark methods

The BART method consists of two parts: a sum-of-trees model on the response surface and a prior
distribution on the trees for regularization. One can use MCMC methods to compute summary
statistics (e.g. point estimators, credible sets), which in practice provides a stable solution. For
implementation we use the “bartCause” R package and consider two alternatives. First, we fit a BART
model to both the treatment variable and response surface (we call the bartc() function with arguments
method.rsp="bart" and method.trt="bart"). Second, we fit a BART to the response surface with the
propensity score (estimated with logistic regression) included as a predictor, and use propensity score
weighted averages of the treatment effect to estimate the ATE (we call the bartc() function with
arguments method.rsp="p.weight" and method.trt="glm").

In Bayesian Causal Forests (BCF) the estimated PS is added as an additional input feature to a BART
model. In the implementation we use the “bcf” R package to estimate the ATE and call the bcf()
function with nsim = 2000 and nburn = 2000. The propensity score is estimated via logistic
regression using the glm() function.
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Table 1: Results for synthetic dataset (HET) with n = 500.

Method Abs. error± sd Size CI± sd Coverage Type II error

GP 0.319± 0.042 0.871 ± 0.043 0.98 0.0

GP (noRand) 0.319± 0.042 0.606± 0.029 0.36 0.0

GP PS 0.106 ± 0.081 1.368± 0.090 1.00 0.00

GP PS (noRand) 0.106 ± 0.081 1.218± 0.086 1.00 0.00

BART 0.712± 0.371 2.251± 0.571 0.98 0.91
BART (PS) 0.239± 0.185 1.225± 0.157 0.96 0.24

BCF 0.234± 0.182 0.830± 0.127 0.83 0.06

CF (AIPW) 0.181± 0.139 1.059± 0.190 0.98 0.07

CF (TMLE) 0.183± 0.137 1.223± 0.246 0.99 0.08

OLS 0.460± 0.261 0.855± 0.112 0.48 0.30
CB (IPW) 0.422± 0.314 1.726± 0.421 0.93 0.09
PSM 0.295± 0.225 1.729± 0.232 0.98 0.29

In the Causal Forest methods, we train a random forest to estimate the response surface and then
estimate the ATE by using either average inverse propensity weighting (AIPW) or targeted maximum
likelihood estimation (TMLE). In the implementation we use the “grf” R package and call the aver-
age_treatment_effect() function with arguments model="AIPW" and model="TMLE", respectively.

In the propensity score matching algorithm, the PS π(x) is first estimated, for instance by logistic
regression, and then the samples in the treatment and control groups are matched based on the
estimated PS. The key idea behind this approach is that“if a subclass of units or a matched treatment-
control pair is homogeneous in π(x), then the treated and control units in that subclass or matched
pair will have the same distribution of x” [6], or in other words the treatment and control groups will
be balanced in the covariates. Then the average treatment effect can be easily estimated using the
matched pairs even in case of large dimensional feature spaces. To obtain balanced covariates, one
typically has to use an iterative algorithm while assessing at each iteration the balance of the features
in the control and treatment groups and correcting the propensity score estimates accordingly. In
the implementation we use the “Matching” R package and call the Match() function with arguments
estimand= "ATE", Z = x and M = 1.

Ordinarily Least Squares estimator for ATE is the difference between the predicted value of the linear
least squares estimators in the treatment and control groups. This is a simple, straightforward method
which works well only for models close to linear.

In our analysis we consider two type of CB methods, one based on the standard inverse propensity
score weighting and the other on the constrained optimization method. For the former one we used
the “balanceHD” R package calling the ipw.ate() with arguments prop.method = "elnet", fit.method =
"none", prop.weighted.fit = T and targeting.method = "AIPW". For the second one we have applied
the “ATE” R package and called the ATE() function.

Appendix D: Additional simulation results

We provide the remaining numerical results for the synthetic simulations with heterogeneous treatment
effects (n = 500) and homogeneous treatment effects (n = 500, 1000). Note that for n = 500 (Tables
1 and 2) not randomizing the feature distribution F (noRand) leads to a dramatic drop in coverage
when using a vanilla GP to perform uncertainty quantification for the ATE.
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