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Appendix

To simplify notation, we denote
t
Si(t) =Y gi(7)?,
T7=0

foralli € {1,--- ,p}andt=0,1,2,--- .
Lemma3.1. L(w(t+1)) < L(w(t)) (¢=0,1,---).

Proof. Since [ is f—smooth, so is £ . Thus we have

L(w(t+1))
< L{w(t) + VEwD) (w(t+1) — w(?))
2 o+ 1) w(n)P
= C(w(t) — ng(t)” (h(t) © g(1))
I ny © g7
! a(t)?.
Thus
Liw()) - Lw(t+1))
> g(t)” (h(t) © 9(1) ~ P (1) © (1)
& G R at?
B "; Sit)+e 2 ;Sz(t)ﬂ
N~y B gi(t)?
B n; ! 2\/51(75)—1—6) V/Si(t) + e
> 0

Lemma3.2. > ;2 |lg(t)]* <oo.
Proof. We use reduction of absurdity. Suppose

Yo lg@lF = oo.
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Then there is some k € {1,-- -, p} such that

hm Sk (t ng = 00. (2)

Thus we can find a time £ such that, for all ¢ > ¢y,

S;(t) > max(8n, 1).

Noting that positive series

at
Z“f’ Zﬁ

converge or diverge simultaneously, so we obtain from (2)
i gr()?
=0 Sklt) +e

Therefore,

7)?

N 1 Bn g
=0 2\/Sk +6 \/Sk t)+6
T
+ 1-—
sz()( 2\/Sk ) \/Sk t

_|_
;:()\/Sk +6

—(, Bn g1 (7)?
; (1 2/ Sk(t) > VSk(t) +e
(
(

v

vV
Q
+
|
n
<
=|=
+
o

= (C+oc0=00, (3)

where the constant

On the other hand, from we have
zt: 1 Bn gr(7)°
S\ 2B Te) Vo e
~N~ (P 9i(7)?
=0 i=1 2V/Si(T) +€) \/Si(T) +e€

" Bn gi(1)*
= 1_
Pl {TZO 2\/Si(T)+6> \/SZ'(T)-FE}

(L(w(0)) = L(w(t +1))) < ;

(]
(]

<

implying, for sufficiently small 7,

—(, _ Bn gi(7)? L(w(0))
;(1 2\/Sk(t)+e> \/Sk(t)+e§ no

which contradicts to (3).




Lemma 3.3. The following statements hold:
@ llg@®)ll =0 (t — o).
(i) [Jw(t)[ = oo (& — o0).
(i) L(w(t)) =0 (t = o0).
(iv) VYn, limy . w(t)Tx, = cc.
(v) 3tg, Yt>ty, w(t) 'z, >0.
Proof. Lemma 3.2 implies (i), which yields (ii).
To prove (iii), we use reduction to absurdity. Assume

tli)rgoﬁ(w(t)) =c>0.

Then there exists an index m € {1,---, N} such that

t—o00

— c

lim I (w(t) @) > — > 0.

im ! (wt) xm) > N

By Assumption 2, we have [(u) — 0 (u — 00). Thus we can find a constant M > 0 such that

lim w(t)’x,, < M,
t—o00

which implies that there exists a sequence of times

t <ty <tg<---

such that
lim w (tx)” @ = < M.
k—o0
Choose a vector w, such that w!z, > 0 foralln € {1,---, N}. Noting that —I' > 0, we have
N
—wligt) = - U'(wt) z,) w!z,
n=1
> r (w(t)Tmm) w*Twm
Thus
T T
lim —w, g (tx)
k—oo
> lim ! (w (tk)T wm> wlz,,
k—oo
= (wlz,) lim! ('w (ti)" mm)
k—o0
= (wl'zy,)l'(7)>0.
Note that
lg () =0 (t — o0)
implies

—w g (t) < [lw.| [lg (tx)]| = 0 (k= o0),
which contradicts to (@), meaning (iii) has to be true.

(iv) follows from (iii). (v) follows directly from (iv).

Theorem 3.1. The sequence {h(t)},-, converges as t — oo to a vector
ho = (hoo,lv T hoom)
satisfying hoo; >0 (i =1,---,p).
Proof. By Lemma 3.2 {h;(t)},Z, is decreasing and has a lower bound

1
VS +e

>0,

“4)



where

o0

S = lim Si(t <> lg®? <

t=0

then converges, foreach i € {1,--- ,p} .

Lemma A.1. Let a, b= (by,---

(i) Associativity. (a ©@b)Ov=a® (bOv) .
(i) Commutativity. a ©b=b ® a;

(iii) Distributivity. a © (b+c¢) =a®b+a G c.
(iv) min [bi [[a]| < [|b© af < max |bi] [l -

Proof. Obviously.

Lemma 3.4. The following statements hold:
) [VLina()[| =0 (t — o0).
(i) [[o(t)]] = 0o (t = o).
(iiil) Lina(v(t)) =0 (t — o0).
(iv) VYn, lim;_ .o v(t)T€, = oco.
(v) 3to, Yt>ty, v(t)TE, >0.
Proof. 1t directly follows from Lemma 3.3.

Lemma A.2. For t=0,1,2---,

where

Proof. From Assumption 2. we have —I’ (v7'¢,,) > 0. By the definition of & we have

Thus

N N
)T = —nVLing (v(t)) @ =—p Z U(v"¢,) Elu > —nz U (v"¢,) > 0.
n=1 n=1

X @l
s(Ta=|Ps@t) > — — 1€nll”
4= argmin [ul®.

uTﬁnzl’vn

e'4>1 (n=1,---,N).

Note that I’ < 0. We have

6|l
or
On the other hand,
Pé(t)

nzl/ T€n n 77z:l/
< nyﬂ@ﬂ(n}jr T&>,

AWE:W e > 1901

max &,
n

= —-nP Z l/ TSn £n =N Z l/
= - Z U(v®)7"¢) (¢ha)a.

,bp) € RP . Then the following relations hold.

t)7&n) [1€x ]

571 ) PSn

®)



Noting ¢fu > 1 (n € {1,--- ,N}), from (3) we obtain

o) —nzw O7e) (€78) > nz, e > 1901

max [ &
n

Lemma A.3. For sufficiently large ¢,

%HJ(QH < |d@)| < g||5(t)||7

_la®ll

IPd(t)]| > dmax [l€,]°

dt)"@ = |Pd(t)| > 0.

Proof. Let B(t) = (B1(t), -, B(t))" . Noting that
18(t) = 1| = 0 (t = o0),

we can find some ¢, such that for t > %,

N W

5 < min|5:(0)] < max |5,()] <

and

max |5;(t) — 1| < —————— .
IO =S S
The inequality (6)) follows directly from (9). On the other hand,

Pd(t) = P(B(t) ©4(t)) = Pé(t) + P ((B(t) - 1) © 4(1))

By (10) we have
1P (B(1) ~ 1) © 8(6) || < [(8(1) 1) © 8(2)]| < max [3:(8) — 11 150)]| < 5 m‘siﬁ!
Hence
IPAW = P80+ P(B(0) 1)@ 5(1)]
> Pa(t)] - P ((B(1) 1) & 8(2)]
IOl el s
= [0l Zmax€nl] ~ 2max ]

Thus (7)) follows from the left part of (6).

Noting that
dt)'a = 5( )Ta + (ﬂ( ) —1)oa )TA

>4 —(B(t) —1) @ 6(t)"a

= ||P5( )|| - HP(( () -1) ®5( I
@Il

% S [, 2max [€.]
||5( _le@®I

" omax ]

we obtain (B).

(6)

(7

®)

©))

(10)



Lemma A.4. For sufficiently large ¢,

[v@)l
| Po(t)] > W-

Proof. By Lemma A.3 there there exists some ¢y such that for ¢ > ¢,

()]
| Pd(t)| > W-

Note that ||v(t)|| = oo, which implies
[d(to)[| + -+ [ld(®)]| = [[o(@)[] — [[v(to)l = o0 (& — o0).
Thus there exists some 1 > tg such that for ¢t > tq,
ld(to)]l + -+ + ld(t)[| > 2[|lv(to)]l,

Hence, meanwhile,

[Po@)|| = [Pv(to) + Pd(to) + -+ Pd(t — 1)
= |[Pu(to)l| + [|[Pd(to)|| + - - + || Pd(t — 1)||
1
> W (lato)[| + --- +[[d(t = 1)I))
1
> W(HU@O)”+Hd(to)H+"'+||d(t—1)||)
2 an(to)'i'd(to)+"'+d(t—1)||
el
8max [|€,]°

Lemma A.5. Let
K={n:¢&u=1}.

Then there is a set of nonnegative numbers {c,, : n € K} such that

u= Z ankn .
nex

Proof. This is Lemma 12 in Appendix B of Soudry et al., [2018].

Lemma 3.5. Given ¢ > 0. Let a, b, c be positive numbers as defined in Assumption 3 in
Section 2. If ||Qu(t)|| > 2N (c+ 1)(acee)~!, then for sufficiently large t,

Qu(t)Ta(t) < e|Qut) o)l -
Proof. Since for eachn € {1,--- , N},
v(t)T€n — 00 (t = 00),
we have, for sufficiently large ¢,

T
=l (v(t)Tfn) = cemw® & (v(t)TSn)
—av ()€, _ —(atbo()7E,

IV

ce
e—av(®)&n (C _ efbv(t)Te">

ge_“”(t)%". (11)



Similarly, we can prove for sufficiently large ¢,
U(v(t)7¢,) < 2ce= 101 &n.

Denote
p(t) =v(t)"a, q(t) = Qu(1).
Thus we have
v(t) = p(t)u+q(t).
Denote
Un =8 &, s = q(t) &n.
We then have

q(t)"(t)
N
= —ngt)" ) U (v(t)"&) &

= —nZZ’ ()7¢,) a(t)"n

= -n Z l/ £n qn,t
-n Z Tﬁn Qnt

n: qn,t>0

IN

Applying (I2)) we obtain

q(t)"8(t)

IN

T
n Z 2ce” (™) g"Qn,t

n: Q7L,t>0

= 2 Y eeCOEHa0) 6y

n: gn,:>0

= 2cny Z e—ap(t)une—aqn,f,qmt

n: gn,:>0

2en —ap(t)un
ae d. e
n: qn,+>0
< 2N ),
ae

IN

The last step is derived from u,, > 1 forn € {1,--- ,N}.

On the other hand, by Lemma A.5 there is a set of positive coefficients {«,, :

K ={n: u, =1}, such that

u= Z an&y, .

nex
Thus
0= q(t)Ta = Z anq(t)Tgn )

nek

implying there is at least one index k € /C such that

g =q(t) & <0.

12)

n € K}, where



Hence
IPs(HIl = PZz/ (1)7€) € ’

= 7 Zl’ ()7 &n) PEn

n=1

= 7N Z l, T&n UpU
= N Z unl/ T£n

-n Z l/ Tén
> —nl’ (v( )Tﬁk) )
Noting that ug, > 1, g 1 < 0, and the estimation (TT)), we obtain
IP6@t)| > —nl' (v(t) &)
ﬁe—a”(t)Tﬁk

>
2
— 9 —ap(tyur ,—ag,

Y

N —ap(t)
2

v

Thus

a()78(t) < mlet1) e

2N (c+1)
ace

VD) sy

< ellg®lHia@ll,

IN

(Nl

IN

for ||q(t)|| > 2(aces)"IN(c+1).

Lemma 3.6. Forany ¢ > 0, there exist R > 0 such that for sufficiently large ¢ and [|Qu(¢t)|| >
Rs

1Qu(t + 1| = [[Qu(t)|| < elld(t)]]-

Proof. Again we denote q(t) = Qu(t). By Lemma 3.5 we can choose a number R > 0 such that
for sufficiently large ¢t and ||q(t)| > R,

a()"3(0) < < la()18(0)] (13)
and
S8 < o) (14)
from (6). Noting
latt + DI ~ a1 = 2917 Qd(t) + @A)



we have

la(t + DI* — llg(®)|?
lg(t+ D) + [lg@)]
2q(t)"Qd(t) + [|Qd(t)||?
lg(t+ Dl + [lg@)]
2q(t)"d(t) + [|Qd(t)||?

lg( + 1)l = lla@]

la(@)ll
_ 2q®)T (8(t) + (B(t) —1) © 8(1)) + |Qd(®)]?
la(®)
_ 2q(t)"a(1) N 2q(t)" (B(t) —1) @ &(t) . Qd(t)|?
la(®)]l la(@)ll la(@)]l
ello() ()]

< 5 T2ABOH-nesml+ —5

Since
Bt) = (Bi(t), -~ Bp(t)" = 1 (t = o0)

and

(@) =0 (t — o),
we can see that for sufficiently large t,
maxc [6(t) 1] < <
and
Re

) < =

Now we have
1(B() = 1) © ()| < max |B:(t) — 1[[6(1)]| < %II(W)H ;
ld(t)]1?

<
By (14), we obtain
lg(t+ 1) = lla@

< PO o180 - 1) 0 a(ey + 110
8ol |, ISl =I5l
= 8 + 4 + 8
2
Lemma 3.7. 0
A% o] — ™ (>

Proof. Since ||d(7)|| = 0 (7 — o0), we we can find a time ¢ such that for 7 > g,
ld(r)]] < 1.
By Lemma A.3 we can find a time ¢; > t( such that for 7 > ¢4,
ldm)] < (4max €]} | Pd(r)]. (16)
Givene > 0, by Lemma 3.6 we can choose R > 1 and t5 > t; such that for 7 > ¢5 and ||q(7)| > R,
lg(r+ DIl = lla(m)|| < elld(7)]].

9



Since ||v(7)|| = oo (7 — 00), we can choose t3 > to such that for 7 > t3,

lo(m) 7 R <e (17)
and
lo@)I~* (latt2)ll + 42 max €[ Po(t2)]]) <. (1s)
Now let t > t3. To simplify notation we denote
& = max €,
Case 1. If ||q(t)|| < R, then from (7)) we directly obtain
lo@®I~ " la@®)ll <e. (19)
Case 2. If for each 7 € {to,--- ,t}, ||g(7)|| > R, then from (I6),
t—1
lall = lla(t2)ll + Y (lalr + DIl = lla()])
T=t2
< gl +e(lidt2)] + -+ [l - D)
< llq(t2)ll +4e&" ([[Pd(t)ll + -+ - + [[Pd(t — 1))
= lla(t2)l + 4" ([Pd(tz) + - -+ Pd(t - 1))
= llg(t)l| + 4 [P (d(t2) +--- +d(t - 1))
= llg()ll +4e€ [Po(t) — Po(ta)]|
< lla(t)ll + 4" ([[Po(t2)] + [[Po(d)]]) -
From (T8) we have
lo@I M la@l < Jo@®17 (la(t2)l| + 4e ([P (t2)) + 4 € [o(®)| 71| Po ()]
< e4def=(1+48)e. (20)
Case 3. If ||q(t)|| > R and there is a time ¢, € {t,--- ,¢ — 1} such that
lg(toll < R,
then we can find the time ¢* € {t,,--- ,t — 1} such that
lgt)l < R
and foreach 7 € {t*+1,--- ,t},
lg(m)] = R.
Thus we have
t—1
la® = la@)Il + (la@ + Dl = la) D+ > (latr+ 1)l = lla(7)])
T=t*+1
< RA[QA(t")|| +e(ld™ + )] +--- +[d( — 1))
< RA ()] +4e& ((|PA(E™ + Dl +-- -+ [|Pd(t = 1)]])
< R+ |[d(t")| +4eg ([Pdt2)] +-- -+ [[Pdt = 1))
= R+1+4e€ (|Pd(te) +---+ Pd(t — 1))
= 2R+ 4e&"||Pv(t) — Po(ta)]]
< 2R A4ed" ([|[Po(ta)] + [[Po(@)]) -
Noting (I7) and (I8), we obtain
lo@I la@®)Il < @)™ 2R+ 4 &||Po(t)l]) + 4 € [o(@)| 7 | Pu(t)]]

< 3e+44eg = (3+4&e. (1)

10



Verifying (T9), (20) and (ZT)), we can see that, in any case, (ZI) is valid. Since ¢ can be any
positive number, we have

la®)l _
B @]
Ths |Pu(t)| a(t)
S el " A ) = °
Therefore,
w() L Pealty  Pol) [P0
P @l ~ AR TG AR Rl T AR ] T

Theorem 3.2. AdaGrad iterates

has an asymptotic direction:

w(t) w
im ——— = ——,
t=oo lw(t)]|  |lwl|
where )
W= argmin |20 'wH . (23)

wlx,>1,Vn

Proof. By hypothesis

2 2 )
Hh})f@wocH = min héf@w” = min [l
wle,>1,Vn (hééz@u)Tngl,Vn
. 2 . 2
- min_ fulP=  min_ [l
uT (R0, )21, vn uTg,>1,n
Noting that both
u= argmin [ul?.
uT¢,>1,Vn
and w,,, are unique, we must have @ = h 1/2 O Wy , OF
we =hl/?0a.
From Lemma 3.7 and the relation
’U(t) = h;ol/z © ’l.l)(t) (t = 0, 1727 e ) ;
we obtain 12
t hss t
h1/2®1 ﬁzlim Gv()—lim ﬂ
t=oo lo(t)]| - tmee u(t)]] t=o0 [[u(t)|]
Thus
wit) o] w(t)  we
t=oo w@)||  t=oe lw(t)]| tmee [lo(d)]] [lwel|
Proposition 3.1. Let a = (aq,--- 7ap)T be a vector satisfying a’x,, >1 (n=1,---,N)
and aq ---ap, # 0. Suppose that w = (wq, - - - ,wp)T satisfies w’x, >1 (n=1,---,N) and
a;(w; —a;)) >0 (t=1,---,p). (24)

Then for any b = (by, - ,bp)T such that by ---b, # 0,

argmin |bOw|’ = argmin ||w|*=a,
wlx,>1,Vn wle,>1,Vn

11



and therefore the asymptotic directions of AdaGrad (22)) and GD

wg(t+1) =we(t) — VL (we(t)) (t=0,1,2,---), (25)
are equal.
Proof. Without any loss of generality we may assume a; >0 (¢ = 1,---,p). Then (24) implies
w;>a; >0 (i=1,---,p),
and thus
Ib®w|? = biwi + -+ b2w? > blad + -+ b2a2.
Hence

a=argmin|bow|’ = argmin |[bow|>.
we wTx,>1,Vn

By taking b = hi% we get w = w, where

@ = argmin ||lw|?>.
wTlx,>1,Vn

Thus the asymptotic direction of GD iterates (23), w/||w||, is equal to w/||w||, which is the
asymptotic direction of AdaGrad iterates (22).

Lemma A.6. Suppose N > p and the p x N—matrix X = [y, - ,xy] , where
Ly = (xn,h'" awn,p)T (n:L ,N)7

satisfies the following conditions:

(i)FOf ’I’L:17 P
{ >0, fori=n,
Ln,i

<0, fori#n.
(i) The p x p—matrix X, = [x1,--- ,x,] is nonsingular.
(iii) The unique solution a = (ay, - - , ap)T of the linear system in w
zfw=1 (n=1,---,p). (26)
satisfies a; >0 (i =1,---,p).
Furthermore, suppose a vector © = (uq,--- , up)T satisfies
zfu>1 (n=1,---,N), 27)
then
w,>a; (i=1,---,p). (28)

Proof. Forn = 1, we set

hlzi(m{u—l) >0
Z1,1

and
U =u —h1 <up.

_ T
Denote w1 = (Uy, ug,--- ,up) . Then
T — T T
Tiur = 11U +TioUs + -+ Tl = Tu— (T{u—1) =1.
Since x2; < 0 and u; < uq, we have

T —
Ty UL = T2 U1 + T2 2U2 + -+ - + T2 nUp
> T2 Uy + X 2U2 + -+ + To pUp

ZaczTuz 1.

12



Now we set )
hgz—(wgul—l) ZO

x22
and
Uy = ug — hg <uy.
Denote us = (U1, Ug, Uz, « - - ,up)T . Then
$2Tu2 = T2,1U1 + T2 2U2 + T2 3U3 + -+ + T2 nUn

=alu; — (acQTul — 1) =1
Sequentially, we can define %y, - - - , %, such that
Denote w, = (uy,--- ,%,)" . Then

mT'u,pzl (n:l’-..7p).

n
Noting that a is the unique solution of (26), we must have u, = a, or
Uy = Ay, (n:L 7p)a

which combined with (29) yields @28) .

Proposition 3.2. Suppose N > pand X = [z, - ,xy]| € RP*¥ is sampled from any
distribution whose density function is nonzero almost everywhere. Then with a positive probability
the asymptotic directions of AdaGrad (22)) and GD (23) are equal.

Proof. Let 11, ; : RP*N — R be the projections defined as
IL,; (X)=xn; (n,i=1,---,p)
andlet G, ; C RP*N defined as
Grpm ={X |1, , (X) >0}, Gup={X|IL,x(X)<0} (n,k=1,---,p; k#n).

Then G, ;’s are open, for all the projections are continuous.

Let IT : RP*N — RPXP be the projection defined as

I(X) = [@y, -+, @y
and let D C RP*N defined as
D={X| det(II(X)) #£0}.

Since both IT and det(-) are continuous, D is open.

Let II; : R? — R be the projections defined as

I (w, - ywp) =w; (i=1,---,p)

and let A € RP*N defined as
R
A{X‘XGD,Hi((H(X) ) 1)>0 (i1,~~,p)},

where 1= (1,---, l)T € RP. Since all II; are continuous, A is open.
Clearly, for a matrix X € RP*"V_ we have:
1) the condition (i) in Lemma A.6 holds, if and only if X € G,,; (n, i=1,---,p);
2) the condition (ii) in Lemma A.6 holds, if and only if X € D;
3) the condition (iii) in Lemma A.6 holds, if and only if X € A.

13



Suppose P is a distribution over RP*¥ and the density function of P is nonzero almost every-
where. Let S be the set of all p x N—matrices X satisfying conditions (i), (ii) and (iii). Then

S= ﬁ Gni | (1P )A

n,i=1

is open in RP*Y . Thus P(S) > 0.

Forany X € S,if w = (wy,--- ,w,) satisfies zlw >1(n=1,---,N), then by Lemma
A.6 we have

w; >a;,0r w;—a; >0 (i=1,---,p),
where a = (aq,- - ,ap)T is the unique solution of (26 with
a; >0 (i=1,---,p).

Thus

w=a+(w—a)c€ {a+u: u=(up, - ,up)T such that a;u; >0(i=1,--- 7p)} ,

and the required conclusion follows from Proposition 3.1.
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