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1 Derivations of posterior probabilities

1.1 Dynamic Beta Process posterior

The departing point for arriving at MAP estimation algorithm for the Dynamic Beta Process proposed
in Section 3.1 of the main text is the posterior derivation at a time point t (Eq. (4) of the main text):

P(θ(t), B(t)|θ(t−1), {B(a)}t−1a=1)P(v(t)|θ(t), B(t)) ∝
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Starting with the vMF emission probabilities,

P(v(t)|θ(t), B(t)) ∝ exp(τ1
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we obtain the last term of Eq. (1). The conditional distribution of θ(t), B(t) given θ(t−1), {B(a)}t−1a=1,
obtained when random variables {qi}∞i=1 are marginalized out, can be decomposed into two parts:
parametric part – time t-th incarnations of subset of previously observed global topics θ(t−1) and
nonparametric part – number of new topics appearing at time t. The middle term can be seen to come
from the Poisson prior on the number of new topics induced by the Indian Buffet Process (see [4] for
details):

Lt − Lt−1 ∼ Pois(γ0/t)

P(Lt − Lt−1 = lt − lt−1) =
exp(−γ0t )(γ0/t)

lt−lt−1

(lt − lt−1)!
.

(3)
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Finally, the first term of Eq. (1) is composed of a probability of previously observed global topic to
appear at time t:

P(
∑
k

B
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where m(t−1)
i denotes the number of times topic i appeared up to time t. Also, the base measure

probability of the vMF dynamics is:
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i |θ
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Combining Equations (2)–(5) we arrive at Eq. (1) (Eq. (4) of the main text).

1.2 Posterior of the Beta process for multiple topic polytopes

First recall Eq. (8) of the main text:

P(B, θ|v) ∝ exp(τ1
∑
j,i,k

Bjik〈θi, vjk〉)IBP({mi}), (6)

To arrive at this result first note that P(B, θ|v) ∝ P(v|θ,B)P(B)P(θ), where P(θ) is a uniform
distribution on sphere from the model specification of Section 3.2 of the main text and hence is a
constant. Next, the likelihood

P(v|θ,B) ∝ exp(τ1
∑
i,j,k

Bjik〈θi, vjk〉).

Integrating the latent Beta Process, it can be verified that B follows an IBP marginally [4], i.e.
P(B) = IBP({mi}).

2 Proofs for Lemma 1 and Propositions

2.1 Proof for Lemma 1.

Lemma 1. Γ : {β = (β1, . . . , βV ) ∈ ∆V−1 : βi = 0 for some i} → {θ ∈ SV−1 : 1TV θ = 0} is
a homeomorphism, where Γ(β) = (β − C) /‖β − C‖2, and Γ−1(θ) = − θ

maxi θi/ci
+ C, for any

C = (c1, . . . , cV ) ∈ ∆V−1.

Proof. Given any β ∈ {β = (β1, . . . , βV ) ∈ ∆V−1 : βi = 0 for some i} let Γ(β) = (β − C) /‖β−
C‖2. Clearly this is a continuous map. Consider the maps Γη(θ) = ηθ + C. We show Γηθ = Γ̃−1,
for ηθ = − 1

maxi θi/ci
. Notice that Γηθ (x) ∈ ∆V−1, since Γηθ (θ) = 1 and Γηθ (θ)i ≥ 0 for all i. The

boundary condition Γηθ (θ)i = 0 for some i is also satisfied, therefore the range of the map Γη·(·)
is {β = (β1, . . . , βV ) ∈ ∆V−1 : βi = 0 for some i}, when θ ∈ {θ ∈ SV−1 : 1TV θ = 0}. For any
θ ∈ {θ ∈ SV−1 : 1TV θ = 0},Γηθ � Γ̃(θ) = θ

‖θ‖2 = θ as ‖θ‖2 = 1. The right inverse property is
proved similarly.

2.2 Proof for Proposition 1.

Proposition 1. Given the cost
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ik is 1
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and the rest are 0. Then, the MAP estimate for Eq. (1) can be obtained by the Hungarian algorithm,
which solves for ((B

(t)
ik )) to obtain:

θ
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τ1v
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i

‖τ1v(t)k +τ0θ
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i ‖2

, if ∃ k s.t. B(t)
ik = 1 and i ≤ Lt−1

v
(t)
k , if ∃ k s.t. B(t)

ik = 1 and i > Lt−1 (new topic)
θ
(t−1)
i otherwise (topic is dormant at t).

Proof. First we express the logarithm of the posterior distribution Eq. (1) in a form of a matching
problem by splitting the terms related to previously observed topics and new topics:
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Next, consider the simultaneous maximization of B(t) and θ(t). For i ∈ {1, . . . , Lt−1}, if B(t)
ik = 1,

i.e., v(t)k is a noisy version of θ(t)i , then the increment in the posterior probability is:

log
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On the other hand, if B(t)
ik = 0, this increment becomes
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Von Mises-Fisher distribution is conjugate to itself and so it admits a closed form MAP estimator:
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Plugging this in, the difference between increments defining the cost of the Hungarian objective
function is:

C
(t)
ik = log

m
(t−1)
i

t−m(t−1)
i

+ ‖τ1v(t)k + τ0θ
(t−1)
i ‖2 − τ0.

For i > Lt−1, it is seen easily from our representation in Eq. (7) and recalling uniform prior for the
new global topics, that the reward term of the objective becomesC(t)

ik = τ1+log(γ0/t)−log(i−Lt−1)

and that given B(t)
ik = 1, objective function is maximized for θ(t)i ∈ SV−2, when θ(t)i = v

(t)
k .

2.3 Proof for Proposition 2.

Proposition 2. Given the cost

Cjik =

{
τ1‖vjk +

∑
−j,i,k B−jikv−jk‖2 −−τ1‖

∑
−j,i,k B−jikv−jk‖2 + log

m−ji
J−m−ji

, if i ≤ L−j
τ1 + log γ0

J − log(i− L−j), if L−j < i ≤ L−j +Kj ,

where −j denotes groups excluding group j and L−j is the number of global topics before group j
(due to exchangeability of the IBP, group j can always be considered last). Then, a locally optimum
MAP estimate for Eq. (6) can be obtained by iteratively employing the Hungarian algorithm to solve:
for each group j, (((Bjik))) which maximizes

∑
j,i,k BjikCjik, subject to constraints: (a) for each

fixed i and j, at most one of Bjik is 1, rest are 0 and (b) for each fixed k and j, exactly one of Bjik is
1, rest are 0. After solving for (((Bjik))), θi is obtained as:

θi =

∑
j,k Bjikvjk

‖
∑
j,k Bjikvjk‖2

. (8)
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Proof. First, express the logarithm of the posterior probability given in Eq. (6):

log(P(B, θ|v)) = τ1
∑
i,j,k

Bjik〈θi, vjk〉+ log IBP({mi}) (9)

Given B, due to vMF conjugacy, MAP estimate of θi is:

θi =

∑
j,i,k Bjikvjk

‖
∑
j,i,k Bjikvjk‖2

(10)

Plugging this into the first part of Eq. (9):
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Consider the above objective w.r.t. {Bjik}i,k, i.e. for some fixed j, and note that
∑
k Bjik ∈ {0, 1}.

Then equivalent objective function is:

τ1
∑
i,k

Bjik‖vjk +
∑
−j,k

B−jikv−jk‖2 − τ1
∑
i,k

Bjik‖
∑
−j,k

B−jikv−jk‖2. (12)

Now consider second term of Eq. (9):

log IBP({mi}) = logP({
∑
k

Bjik}i|{m−ji}) + log IBP({m−ji}), (13)

where m−ji is the number of topics assigned to global topic i outside of group j. Due to exchange-
ability of the IBP, group j can always be considered last and since we optimize for a fixed j given the
rest, we can ignore log IBP({m−ji}).

logP({
∑
k

Bjik}i|{m−ji}) =

=

L−j∑
i=1

Kj∑
k=1

Bjik log
m−ji

J −m−ji
+

L−j+Kj∑
i=L−j+1

Kj∑
k=1

Bjik

(
log

γ0
J
− log(i− L−j)

)
.

(14)

Finally observe that when i > L−j , Eq. (12) reduces to τ1. Combining this observation, Eq. (12)
and Eq. (14) we arrive at the desired cost formulation.

3 Algorithms description

Streaming Dynamic Matching. SDM algorithm is described in Section 3 of the main text. Ob-
taining topic estimates with CoSAC [6] for different time steps can be performed in parallel if data is
available in advance as it was done in the Wiki experiments for SDM with 20 cores.

Distributed Matching. Using CoSAC, for groups j = 1, . . . , J , we obtain topics {βjk ∈
∆V−1}Kjk=1 from {xjm ∈ NV }Mj

m=1, collection of Mj documents of group j. The above step
can trivially be done in parallel. Estimated topics are then transformed to {vjk ∈ SV−2}Kjk=1 using
Lemma 1 and reference point C =

∑J
j=1

∑Mj

m=1
xjm
Njm

/
∑J
j=1Mj , where Njm is the number of

words in the corresponding document. This reference point is simply a mean of the normalized
documents across groups. Finally we compute MAP estimates of global topics by iterating over
groups and updating assignments based on Proposition 2. Distributed Matching (DM) is summarized
in Algorithm 1. For initializing the algorithm we can use SDM over random sequence of groups.
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Algorithm 1 Distributed Matching (DM)

1: for j = 1, . . . , J (in parallel) do
2: Estimate topics {βjk}

Kj
k=1 = CoSAC({xjm}

Mj

m=1)
3: Map topics to sphere {vjk}

Kj
k=1 (Lemma 1)

4: end for
5: repeat
6: select random group index j
7: Given {vjk}jk update (((Bjik))) for group j using Proposition 2
8: until convergence
9: Obtain MAP estimates of {θi}i given (((Bjik)))

Streaming Dynamic Distributed Matching. SDDM is a synthesis of our SDM and DM algo-

rithms. At time t, using CoSAC, for groups j = 1, . . . , J , we obtain topics {β(t)
jk ∈ ∆V−1}K

(t)
j

k=1 from

{x(t)jm ∈ NV }M
(t)
j

m=1, collection of M (t)
j documents of group j at time t. The above step is done in

parallel. Estimated topics are then transformed to {v(t)jk ∈ SV−2}K
(t)
j

k=1 using Lemma 1 and reference

point Ct =
∑t
a=1

∑J
j=1

∑M
(a)
j

m=1

x
(a)
jm

N
(a)
jm

/
∑t
a=1

∑J
j=1M

(a)
j , where N (a)

jm is the number of words in

the corresponding document. Then we update estimates of global topics dynamics based on the results
of Section 3.3 of the main text. Streaming Dynamic Distributed Matching (SDDM) is summarized in
Algorithm 2.

Algorithm 2 SDDM

1: for t = 1, . . . , T do
2: for j = 1, . . . , J (in parallel) do

3: Estimate topics {β(t)
jk }

K
(t)
j

k=1 = CoSAC({x(t)jm}
M

(t)
j

m=1)

4: Map topics to sphere {v(t)jk }
K

(t)
j

k=1 (Lemma 1)
5: end for
6: repeat
7: select random group index j
8: Given {v(t)jk }jk and {θ(t−1)i }i update (((B

(t)
jik))) for group j using cost defined in Section

3.3 of the main text
9: until convergence

10: Obtain MAP estimates of {θ(t)i }i given (((B
(t)
jik))) and {θ(t−1)i }i

11: end for

Remark Each time we apply Hungarian algorithm, we can at most discover K topics, where K is
the number of local topics used for constructing the cost. It is possible to control the growth of the
number of topics by setting a saturation value. When number of global topics exceeds saturation value,
we can allow only limited amount of topics to be added each time we apply Hungarian algorithm
by truncating cost to i ≤ L+ c (instead of i ≤ L+K), where L is the number of global topics and
c is the maximum number of topics that can be added when L exceeds the saturation value. When
exploring parameter sensitivity we set saturation value to 250 and c = 1. Our algorithms remain
nonparametric, however this helps to avoid excessively large number of global topics for extreme
cases of parameter values.

Another empirical modification we found useful, especially on the EJC data with large number of
groups, is to truncate popularity counts m at some value (we used 10) when constructing the cost.
This helps to prevent extreme rich-get-richer behavior, i.e. when log mi

J−mi becomes too large for
some popular topic i and this topic continues to be assigned to even when there is potentially a better
match.
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Figure 1: Perplexity and number of topics of SDM

4 Experiments details

Here we provide some additional details and hyperparameter settings for the experiments. The Dy-
namic Topic Model [2] was trained using code from https://github.com/blei-lab/dtm
with default parameter settings and K = 100. In 56 hours we were able to complete LDA
initialization and two EM iterations of the dynamic updates. Streaming Variational Bayes [3]
was trained based on the code from https://github.com/tbroderick/streaming_vb
with default parameters, K = 100, η = 0.01, batch size of 2048 and 4 asynchronous batches
per evaluation. For CoSAC [6], we used code from https://github.com/moonfolk/
Geometric-Topic-Modeling with default parameters and ω = 0.7. Same setting of CoSAC
was used for learning topics on batches in our framework.

To compare perplexity of all algorithms we utilized geometric approach for computing document
topic proportions given topics from Yurochkin & Nguyen [5]. Code for this procedure is available at
https://github.com/moonfolk/Geometric-Topic-Modeling.

5 Extended sensitivity results

We present additional results regarding sensitivity of hyperparameters of SDM in Fig. 1. It is
interesting to see the impact of large τ0. This parameter influences the variability of global topics
across time and when this variability is small, global topics are reluctant to changes, hence more
global topics needed to fit the local topics. We also note that smaller τ0 results in better perplexity on
the EJC corpora, while having little effect on the perplexity of the Wiki dataset. EJC topics appear to
be changing at a faster rate, while Wiki topics are relatively more stable.

6 Relative comparison to other methods

For the Wiki corpus we considered Fast DTM [1], but the implementation available online appeared
not efficient enough (multicore implementation of Fast DTM is not published). We report a relative
comparison to our results based on the best run-time reported in their work. We also note that
approach of Bhadury et al. [1] is not suitable for streaming since computations are parallelized
across time slices. Additionally, Streaming Variational Bayes (SVB) [3] appeared quite slow on
our computing cluster, therefore we consider it for the relative comparison as well. In Table 1 we
compare best run-times reported in the respective papers with the run-time of SDDM. Our method
can be seen to be significantly faster.

Table 1: Running time comparison
Data size Training Time Cores used

SDDM 3mil 20min 20
SVB 3.6mil 125min 32
Fast DTM 2.6mil 28min 58
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7 Datasets

7.1 Early Journal Content

For the EJC dataset we get from http://www.jstor.org, the data is well-structured and the
preprocessed 1-gram format is available along with the corresponding meta data in xml format for each
document. We performed stemming on every word shown in the dataset and removed all stop words
given in ENGLISH_STOP_WORDS from sklearn.feature_extraction.stop_words
and nltk.corpus.stopwords.words. Words the length of which are shorter than 3 are
removed. We also removed those words that appear in more than 99% of the documents and those
appearing in less than 1% of the documents. For documents, we removed those outliers, in which
a same word appears more than 200 times. Those documents which contain less than 100 words
(considering only words in the preprocessed vocabulary) are also excluded. After preprocessing, there
are 4516 words in the vocabulary and approximately 400k documents left. We batch the documents
based on both of their publication years and the journals they are published in.

7.2 Wikipedia data

For Wikipedia data, we need four main components: the vocabulary, the original Wikipedia page texts,
the page view counts (for each Wikipedia page being considered), and the category-title mapping.
The data acquisition and processing for each component is described separately as follows.

The vocabulary We take the vocabulary from Wiktionary:Frequency_lists Originally there are
10000 words. We removed words shorter than 3 characters and removed all stop words given
in ENGLISH_STOP_WORDS from sklearn.feature_extraction.stop_words and
nltk.corpus.stopwords.words After preprocessing, there are 7359 words left in the vocab-
ulary.

The original Wikipedia page texts We downloaded the Wiki data dumps (2017/08/20)
from https://meta.wikimedia.org/wiki/Data_dump_torrents#English_
Wikipedia containing about 9 million Wikipedia pages after decompression. We split the whole
file into multiple text files in which each individual file contains the content of a single Wikipedia
page. We then use MeTA, a modern C++ data sciences toolkit to transform all of these raw texts files
into 1-gram format using the preprocessed vocabulary.

The page view counts We use the Pageview API provided by AQS (Analytics Query Service) to
get the page view count information of each Wikipedia page by specifying the time period of interest
(year 2017) and the granularity (monthly). The API will return the page view count information as a
json file in which the page view count is given for every month in the year 2017.

The category-title mapping Wikipedia pages are categorized in a structure called category tree.
There are 22 top-level categories (e.g., Arts, Culture, Events, etc). Under each category, there could
be relevant Wikipedia pages and subcategories, and each subcategory could also contain another set
of subcategories and corresponding pages. Unlike the name suggests, category tree is cyclic and is in
fact not tree-structured: each category could be under multiple categories and each page could belong
to multiple categories/subcategories and there could be cycles. Thus trying to traverse the whole tree
to get articles under a certain category is infeasible. Considering all the categories/subcategories in
the category tree could also be distractive. Thus, we only focus on the top-level categories and exclude
the category Reference works since it is of little interest. We use wptools to traverse the category tree
for each of the top-level categories of interest individually by specifying the category name during the
traversal. We store the mapping information between each category and the corresponding Wikipage
titles for later processing.

Components aggregation We first perform intersection over the titles of Wikipedia pages extracted
from the original Wikipedia page texts, page view counts and category-title mapping, and drop those
Wikipedia pages the texts in which contain less than 10 words (the total word count) from the
vocabulary. Since there is a severe inconsistency in titles extracted from all the three components,
performing intersection results in loss of a large portion of Wikipedia pages. After dropping all
unqualified Wikipedia pages, we have approximately 500k remaining Wikipedia pages. We assign
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each Wikipedia page a timestamp based on its page view counts across the 12 months in 2017, the
month in which the page gets most view counts is assigned to the page as its timestamp. Since our
model naturally considers data in two-level batches (for example, we batch the Wikipedia pages
based on time and category), and there are overlapping Wikipedia pages among different batches
(one Wikipedia page could belong to multiple categories), we have about three million Wikipedia
pages in the final dataset incarnation across all the batches.
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