
Supplementary Material

Proofs for Propositions 1 and 2

Definition. We define the k-coupled autoencoding tuple (k-CAE) Φ as

Φ = ({(Ei,Di, ri)}i∈K , c, λ),

where K is an ordered, finite index set, Ei, Di are continuous operators such that they can express
any linear transformation, codomain(Ei) = domain(Dj), i, j ∈ K, λ ≥ 0, and ri and c are
non-negative convex functions.

Definition. Let X denote a set of inputs, X = {(xs1, xs2, . . . , xsk), s ∈ S}. The loss of the k-CAE
Φ on X is defined as

CΦ(X) = Crecon,Φ(X) + λCcoupling,Φ(X), (1)

where
Crecon,Φ(X) =

∑
s∈S

∑
i∈K

ri(xsi −Di(Ei(xsi))),

Ccoupling,Φ(X) =
∑
s∈S

∑
i,j∈K,
i<j

c(Ei(xsi)− Ej(xsj)).

We assume xsi ∈ Rp′ , zsi = Ei(xsi) ∈ Rp, p < p′, and |S| > 1. In what follows, we simplify the
notation for the coupling cost as CΦ

c = Ccoupling,Φ(X).

Remark. The reconstruction loss Crecon,Φ(X) is invariant under invertible transformations of the
latent representations zsi = Ei(xsi). In particular, for an invertible matrix T , ri(xsi−Di(Ei(xsi))) =

ri(xsi −Di(zsi)) = ri(xsi − D̂i(ẑsi)), where D̂i = Di ◦ T−1, and ẑsi = Tzsi.

We also note, for a diagonal matrix A with non-negative diagonal entries, and a matrix B with
non-negative diagonal entries, we have

tr(AB) =
∑
m

A(m,m)B(m,m) ≤ max
m

A(m,m) tr(B). (2)

Proposition 1. Latent representations of the k-CAE minimizing the loss in Eq. 1 with Ccoupling > 0
satisfy ‖zsi‖ < ε, for any norm ‖ · ‖, input set X , ε > 0, and all s, i.

Proof. Let Φ = ({(Ei,Di, ri)}i∈K , c, λ) denote an optimal k-CAE on input set X with latent
representations zsi = Ei(xsi), maxs,i ‖zsi‖ ≥ ε, for some ε > 0. Consider

Φ̂ = ({(βI ◦ Ei,Di ◦ β−1I, ri)}i∈K , c, λ) (3)

β = min(
1

2
,

ε

2 maxs,i ‖zsi‖
). (4)

The latent representations due to Φ̂, ẑsi = βzsi, satisfy ‖ẑsi‖ = β‖zsi‖ < ε and
∑
s∈S,i<j c(ẑsi −

ẑsj) ≤
∑
s∈S,i<j βc(zsi − zsj) <

∑
s∈S,i<j c(zsi − zsj). Thus, Crecon,Φ̂(X) = Crecon,Φ(X) and

Ccoupling,Φ̂(X) < Ccoupling,Φ(X), contradicting optimality with maxs,i ‖zsi‖ ≥ ε.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Let µi = 1
|S|
∑
s∈S zsi, Vi = 1

|S|−1

∑
s∈S(zsi − µi)(zsi − µi)T denote empirical estimates of the

mean vector and the covariance matrix for the latent representations of the i-th agent of a k-CAE
across the set S. Also, let Wij =

∑
s∈S(zsi − zsj)(zsi − zsj)T , W =

∑
i<jWij , and 1 denote a

p× 1 vector with 1(m) = 1 for all m.
Definition. We define the k-coupled batch-normalized autoencoding tuple (k-CBNAE), Φ =
({(Ei,Di, ri)}i∈K , c, λ), as a k-CAE whose latent representations satisfy µi = 0, and diag(Vi) =
diag(I), for any input set X .
Proposition 2. If c is the squared Euclidean norm and the diagonal values of W are not all identical,
latent representations of the k-CBNAE minimizing the loss in Eq. 1 with Ccoupling > 0 satisfy
|zsi(m)− zsi(m̄)| < ε, for any 1 ≤ m, m̄ ≤ p, s ∈ S, 1 ≤ i ≤ k, ε > 0.

Proof. Let Φ = ({(Ei,Di, ri)}i∈K , c, λ) denote an optimal k-CBNAE on input set X with latent
representations zsi = Ei(xsi), satisfying |zsi(m) − zsi(m̄)| ≥ ε for some 1 ≤ m, m̄ ≤ p, s ∈ S,
1 ≤ i ≤ k, ε > 0. Let 1 ≤ n ≤ p be such that bTWb is minimized for the p × 1 vector b with
b(m) = 0 for m 6= n and b(n) = 1: bTWb ≤ γW (m,m) for any m, γ ≤ 1. Note that

CΦ
c = tr(W ), (5)

bTWb < tr(W )/p, (6)

tr(1bTW ) =
∑
m

W (n,m)

≤
∑
m

√
W (n, n)W (m,m) <

∑
m

W (n, n) +W (m,m)

2
< tr(W ), (7)

where the strict inequality in Eq. 6 is due to the non-identical diagonal values assumption, the first
inequality in Eq. 7 is due to the Cauchy-Schwartz inequality, and the strict inequalities in Eq. 7 are due
to inequality of arithmetic and geometric means and the non-identical diagonal values assumption.

|Vi(n,m)| ≤ 1 due to the Cauchy-Schwartz inequality. Moreover,

min
m

Vi(n,m) < 1 (8)

because equality implies |zsi(m)− zsi(m̄)| < ε, for any 1 ≤ m, m̄ ≤ p, s ∈ S, 1 ≤ i ≤ k, ε > 0,
again due to Cauchy-Schwartz.

Consider Φ̂ = ({(Mi ◦ Ei,Di ◦Mi
−1, ri)}i∈K , c, λ), 0 < β < 1, where

Mi = Di1b
T + βDi, (9)

and Di is a diagonal matrix with diagonal entries

Di(m,m) = [1 + β2 + 2βVi(n,m)]−1/2. (10)

Therefore, 1
1+β ≤ Di(m,m) ≤ 1

1−β , (Di(m,m)−Dj(m,m))2 ≤ 4β2

(1−β2)2 . By Eq. 8,

tr(Di) <
p

1− β
(11)

tr(DiDi) <
p

(1− β)2
. (12)

Then,

m̂i =
1

|S|
∑
s∈S

ẑsi = (Di1b
T + βDi)

1

|S|
∑
s∈S

zsi = 0 (13)

V̂i =
1

|S| − 1

∑
s∈S

(ẑsi − m̂i)(ẑsi − m̂i)
T = Mi

(
1

|S| − 1

∑
s∈S

zsiz
T
si

)
MT
i

= Di[1b
TVib1

T + β(1bTVi + Vib1
T ) + β2Vi]D

T
i . (14)

Using Eq. 10, the diagonal entries of V̂i are

V̂i(m,m) = Di(m,m)2[Vi(n, n) + 2βVi(n,m) + β2Vi(m,m)] = 1. (15)
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We now calculate upper bounds for two intermediate quantities, Γ1 and Γ2:

Γ1 =
∑
s∈S

∑
i<j

[Mi(zsi − zsj)]T [Mi(zsi − zsj)] (16)

=
∑
i<j

tr([Di1b
T + βDi]Wij [b1

TDT
i + βDT

i ]) (17)

=
∑
i<j

tr(1TDT
i Di1(bTWijb)) + 2β

∑
i<j

tr(DT
i Di1b

TWij) + β2
∑
i<j

tr(DT
i DiWij)(18)

=
∑
m

Di(m,m)2 tr(bTWb) + 2β
∑
i<j

tr(DT
i Di1b

TWij) + β2
∑
i<j

tr(DT
i DiWij) (19)

<
pbTWb

(1− β)2
+

2β

(1− β)2
tr(1bTW ) +

β2

(1− β)2
tr(W ) (20)

<
γCΦ

c

(1− β)2
+

2βCΦ
c

(1− β)2
+

β2CΦ
c

(1− β)2
(21)

<
(γ + 3β)CΦ

c

(1− β)2
, (22)

where we used Eq. 2 in Eq. 20, and Eqs. 5, 6 and 7 in Eq. 22.

Γ2 =
∑
s∈S

∑
i<j

[(Mi −Mj)zsj ]
T [(Mi −Mj)zsj ] (23)

=
∑
i<j

tr((Mi −Mj)
∑
s∈S

zsjz
T
sj(Mi −Mj)

T ) (24)

= (|S| − 1)
∑
i<j

tr((Mi −Mj)Vj(Mi −Mj)
T ) (25)

= (|S| − 1)
∑
i<j

tr((Di −Dj)
T (Di −Dj)(1b

T + βI)Vj(b1
T + βI)) (26)

≤ 4β2(|S| − 1)

(1− β2)2

∑
i<j

tr((1bT + βI)Vj(b1
T + βI)) (27)

≤ 4β2(|S| − 1)

(1− β2)2

∑
i<j

[
tr(bTVjb1

T1) + 2β tr(1bTVj) + β2 tr(Vj)
]

(28)

<
4pβ2(|S| − 1)

(1− β2)2

∑
i<j

[
bTVjb+ 2β + β2

]
(29)

<
4pβ2(|S| − 1)

(1− β2)2

p(p− 1)

2
(1 + 2β + β2) <

2p3β2(|S| − 1)(1 + 3β)

(1− β2)2
(30)

<
fβ2

(1− β)2
, (31)

where f = 8p3(|S| − 1) > 0, 0 < β < 1, and we used Eq. 2 in Eq. 27, and Eq. 8 in Eq. 29.

CΦ̂
c =

∑
s∈S

∑
i<j

(Mizsi −Mjzsj)
T (Mizsi −Mjzsj) (32)

=
∑
s∈S

∑
i<j

[Mi(zsi − zsj) + (Mi −Mj)zsj ]
T [Mi(zsi − zsj) + (Mi −Mj)zsj ] (33)

≤ Γ1 + Γ2 + 2
√

Γ1Γ2 (34)

<
(γ + 3β)CΦ

c

(1− β)2
+

fβ2

(1− β)2
+

2
√

(γ + 3β)fβ2CΦ
c

(1− β)2
(35)

<
(γ + 3β)CΦ

c + fβ + 4β
√
fCΦ

c

(1− β)2
, (36)
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where the inequality in Eq. 34 is due to Cauchy-Schwartz. Then,

CΦ
c − CΦ̂

c ≥
((1− β)2 − γ − 3β)CΦ

c − fβ − 4β
√
fCΦ

c

(1− β)2
(37)

≥
CΦ

c β
2 − [5CΦ

c + f + 4
√
fCΦ

c ]β + CΦ
c (1− γ)

(1− β)2
. (38)

The determinant of the quadratic (in β) Q = CΦ
c β

2 − [5CΦ
c + f + 4

√
eCΦ

c ]β + CΦ
c (1 − γ) is

positive, the coefficient of the quadratic term, CΦ
c , is positive, and the coefficient of the linear term,

−(5CΦ
c + f + 4

√
fCΦ

c ), is negative. When β = 0, Q > 0. Therefore, both roots of Q, r1 and r2,
are positive (0 < r1 ≤ r2), and for β < min( 1

2 ,
r1
2 ),

CΦ̂
c < CΦ

c . (39)

Finally, the latent representations due to Φ̂, ẑsi = Mizsi, satisfy

|ẑsi(m)− ẑsi(m̄)| = |(Di(m,m)−Di(m̄, m̄))zsi(n)

+β(Di(m,m)zsi(m)−Di(m̄, m̄)zsi(m̄))| (40)

≤ 2β

1− β2
‖zsi‖+

β

1− β
‖zsi‖+

β

1− β
‖zsi‖ (41)

≤ 4β

1− β
‖zsi‖ (42)

so that |ẑsi(m)− ẑsi(m̄)| < ε for β ≤ ε
4 maxs,i ‖zsi‖ .

Thus, for

β =
1

2
min(

1

2
,
r1

2
,

ε

4 maxs,i ‖zsi‖
), (43)

Crecon,Φ̂ = Crecon,Φ and Ccoupling,Φ̂ < Ccoupling,Φ, contradicting optimality with |ẑsi(m) −
ẑsi(m̄)| ≥ ε for some 1 ≤ m, m̄ ≤ p, s ∈ S, 1 ≤ i ≤ k, any ε > 0.

Calculation of the minimum singular value

We are interested in calculating the minimum singular value of a full-rank matrix B. Noting that the
singular values of B are square roots of the eigenvalues of BTB, it suffices to calculate the minimum
eigenvalue of A = BTB. The following basic power iteration algorithm obtains an estimate: We

Algorithm 1 Simple power iteration to find minimum eigenvalue, ε determines the precision of
convergence.

initialize x0 randomly, and i← 0
solve for x1: Ax1 = x0

while |xi+1 − xi| > ε do
solve for xi+1: Axi+1 = xi
i← i+ 1

end while
return xi+1

refer the reader to the vast literature on power iterations (e.g. [Baglama et al., 17]) for more efficient
implementations. Note that the algorithm corresponds to a power iteration of A−1 without explicit
matrix inversion. Therefore, the result will be an approximation to the largest eigenvalue of A−1,
which is the smallest eigenvalue of A.

Datasets, network architectures, and training

Experiments with the MNIST dataset: The architecture for the autoencoders processing MNIST
transcriptomic data is Input(28×28)→ Conv2D(10)→MaxPooling(2×)→ Flatten()→Dropout(0.4)
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→ Dense(49)→ Dense(49)→ Dense(49)→ Dense(2)→ BatchNormalization(2D latent representa-
tion z)→ Dense(49)→ Dense(49)→ Dense(196)→ Reshape()→ UpSampling(2×)→ Conv2D(10)
→ Conv2D(1)→. pixels. Numbers in brackets indicate the number of units in the 2D convolutional
(Conv2D) and fully connected (Dense) layers. All convolutional filters are of size (3×3) pixels. The
downsampling (MaxPool) and upsampling operations change the dimensions of the input to those
layers by a factor of 2. The networks were trained for 500 epochs, with a batch size of

Experiments with the Patch-seq dataset: The architecture for the autoencoder processing the Patch-
seq transcriptomic data is Input(1252)→ Dropout(p)→ Dense(60)→ Dense(60)→ Dense(60)→
Dense(60)→ Dense(d)→ Batch Normalization (latent representation zt)→ Dense(60)→ Dense(60)
→ Dense(60) → Dense(60) → Dense(1252). For the electrophysiology data, the architecture is
Input(54) → Dropout(pe) → Gaussian Noise(σ) → Dense(50) → Dense(50) → Dense(50) →
Dense(50)→ Dense(d)→ Batch Normalization (latent representation ze)→ Dense(50)→ Dense(50)
→ Dense(50)→ Dense(50)→ Dense(54). Numbers in parentheses denote the number of units in
that layer, the numbers of input/output units in each network match the number of input genes and
electrophysiology features respectively.
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Figure S1: For the Patch-seq
transcriptomic data, dropout prob-
ability of p = 0.5 results in the
lowest Crecon on the validation
set (mean ± SE, n = 10).

Dropout was used to prevent overfitting for both autoencoder sub-
networks. The Dense layers use the rectified linear function as the
nonlinear transformation except for Dense(d) layers and the last
Dense layer for the electrophysiology data which do not use a non-
linear transformation. Each mini-batch consists of randomly chosen
samples of 75 paired cells and 25 unpaired cells. The architectures of
the autoencoder networks for transcriptomics and electrophysiology
were only roughly tuned, independently of one another to prevent
overfitting and obtain interpretable representations. Tests were per-
formed with latent dimensionality d = 2 and 3, and we analyze
the results for d = 3. We set dropout probability p = 0.5 because
the reconstruction error was found to be the least with this value.
While we set p = 0.1 and σ = 0.05, we did not observe a significant
change in performance within a large range for these parameters. We
trained the coupled autoencoders with λ ∈ {0.0, 1.0, 10.0, 100.0}
and α = 0.1, for which the results are presented in the main text.
Training these networks for 2000 epochs with 500 gradient steps
per epoch took ∼3 hours on a standard laptop with the 2.3GHz
quad-core Intel Core i7 processor.

Figure S2: Ground truth cell type labels, and their hierarchical relationships based on Tasic et al.. Bar plot
shows relative distribution of labels assigned to the 1,518 paired recordings in the Patch-seq data (same as Fig.
2B). The color code is chosen to reflect the hierarchical relationships, and serves as a visual guide to interpret
the representations.
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Experiments with the FACS dataset: The FACS dataset was used to compare coupling functions
CFC and CMSV with different latent dimensionality and batch sizes. It was also used to evaluate
whether coupled autoencoders can be used to discover cell types that are either present in only a
subset of the datasets, or to uncover a priori unknown similarities between types across datasets. The
network architecture for individual autoencoder agents in all of these experiments was similar to that
used for the Patch-seq transcriptomic experiments, with the number of inputs set to 5,000 and number
of units in the intermediate layers set to 100.

zt 𝜆 = 10.0 ze

zt 𝜆 = 1.0 ze

zt 𝜆 = 0.0 ze

Figure S3: 3D representations of the Patch-seq tran-
scriptomic and electrophysiological datasets in the un-
coupled setting (λ = 0) and coupled setting (λ =
1.0, 10.0). Colors indicate ground truth cell type labels

To test the utility of coupled autoencoders for
cell type discovery, we first discarded non-
neuronal cells and two outlier cell types, Meis2
Adamts19 and CR Lhx5 (see Tasic et al.) from
the FACS dataset. The dataset was thereafter
split into subsetA and subsetB. Cells labeled as
Vip Igfbp6 Pltp and L5 IT VISp Hsd11b1 Endou
were present only in subset A, whereas those
labeled as Sst Hpse Sema3c and L5 PT VISp
Chrna6 were present only in subset B. All other
types were present in roughly equal proportion
in the two subsets. We selected the top 5,000
genes based on their maximum expression val-
ues calculated over all the cells. The counts per
million (CPM) normalized gene expression val-
ues were incremented by 1, and log transformed
thereafter to use as input to the autoencoders.

To determine the cells that should be consid-
ered as paired across subsets A and B, we first
obtained a 2D representation for the complete
FACS dataset with a single autoencoder. The
resulting representation was used to obtain the
Euclidean pairwise distance matrix DAB for all
cells in subsetA from all cells in subsetB. Next,
considering only one cell type label at a time,
we found the best pairing of cells across subsets
A and B with the Hungarian algorithm using
−DAB as the assignment cost. The pairings
were further pruned using a cell type specific
threshold imposed on the cross correlation co-
efficient of peptidergic gene expression values.
All pairs for the cell type Vip Chat Htr1f were
discarded. This process resulted in 4,397 paired
samples among the 11,093 cells in subset A and
11,272 in subset B. 10% of cells from types that
were specific to either subset A or B, or had
no paired samples across the subsets were held
back to serve as the test set.

We used a warm start for the coupled networks during training. A single autoencoder was first trained
for 5,000 epochs with 20 steps per epoch using only samples from the 4,397 × 2 unique cells paired
across the subsets. The weights of this autoencoder were used to initialize both autoencoders in
the coupled configuration. For tests with the coupled autoencoders, we used λ = 1.0 and α = 1.0.
Mini-batches consisted of 500 samples from each subset, out of which 200 were from among the
paired set of cells. Training the coupled network for 10,000 epochs with 20 steps per epoch took 8
hours on a standard laptop with the 2.3GHz quad-core Intel Core i7 processor.
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