- We thank the reviewers for their thorough reviews, helpful comments, and for the various references and related areas
- 2 they pointed us to. We will address all issues raised by the reviewers, add the missing references and clarify ambiguous
- 3 paragraphs. Below we address the reviewers' main concerns.
- 4 Reply to reviewer 1 We thank the reviewer for suggesting additional applications for motivating this problem. We will
- 5 put more emphasis on the alternative motivations and discuss their suggested applications.
- 6 The reviewer writes: "Interviews in practice are used to learn more about the candidate and judge their fit for the
- 7 position. In this case $v_i(c)$ is therefore noisily learned during the interview process, not when they arrive...
- 8 In our description of the hiring example (second paragraph of the intro), the first screening phase where candidates
- 9 are retained/discarded corresponds to processing the candidates files **before** deciding who to summon for an interview.
- Thus, the values $v_i(c)$ are determined by the candidates application (CV, skills, reference letters, etc.) and not by
- the interviews. We agree that during the interview more information about the candidate is gathered, and that this
- information is likely affect the values $v_i(c)$. Indeed, in a more realistic model for the hiring problem the values $v_i(c)$
- should be updated after the interviews and before the final recruitment is computed. In other motivating examples (such
- as internet advertising or job scheduling) the values $v_i(c)$ can be assumed to be given. We believe that our abstraction
- does capture the essence of the problem at hand, and is reasonable for a variety of applications.
- Reply to reviewer 2 The reviewer writes: "This question somewhat follows a new research topic called augmented-
- 17 learning algorithms. Only in augmented-learning algorithms, there is usually also a fallback option?. I would be
- 18 interested in seeing how they design an algorithm that performs quite well when the training set matches the actual
- 9 hiring process, but does not perform arbitrarily bad when the training set is completely off of the actual candidates."
- 20 Thanks for pointing out the connection and for suggesting the question. Indeed, our algorithm may fail when the
- thresholds computed in the learning phase are too large such that no item from the real-time data passes them. One simple fix is the following: after processing, say n/2, items from the real-time data, check whether the number of items
- shiple the following, after processing, say tt/2, items from the tear-time data, effects whether the number of from
- 23 retained by the threshold policy is too small than expected, and if this is the case then discard the threshold policy and
- apply the greedy algorithm from Theorem 1 on the remaining n/2 items. One can show that modifying the algorithm
- 25 along these lines yields a "fallback" to the greedy oblivious setting from Theorem 1 in the (unlikely) case when the
- 26 learned threshold policy is bad.
- 27 The reviewer writes: " ... I don't see how is this the case. Both of the results are linear in k. Was is the idea to say that
- there is an exponential improvement in $1/\delta$?"
- We meant to refer in that sentence to the dependence on n the total number of items; the bound in Theorem 1 is
- proportional to $\log(n)$ (which is tight, by Theorem 2), while in Theorem 4 this bound is proportional to $\log\log(n)$. We
- will clarify this sentence.

Reply to reviewer 3 Major concerns:

- 33 (1) "...the authors considered d properties instead of one in previous research with the complex feasibility constraints.
- 34 This makes the problem rather challenge and practical. However, the method the authors adopted for the d scenarios is
- relatively simple due to an independent assumption on the d properties, which may weaken the contribution here."
- We remark that we do not assume anything about the distribution of the d properties per item, and the joint distribution
- on the properties and value per item is arbitrary. (We do assume that the marginal distribution over the values is
- continuous, i.e., atomless). Additionally, note that our algorithm treats the d properties independently by design and
- that our method retains a near-optimal number of candidates (due to Theorem 5). We consider the simplicity of our
- solution as a strength rather than a weak contribution.
- 41 (3) "How to set the number of candidate items, $k_1, k_2, ..., k_d$ with regards to each property in the first stages? And also,
- 42 how to set the total candidate number k here?"
- The numbers of k_1, \ldots, k_d and k are given as part of the problem formulation; they are not set up by the algorithm but
- rather are given as an input.
- 45 Minor concerns:
- 46 (2) We refer to the number of items retained by the **best** algorithm; i.e., the one that retains as few items as possible
- while satisfying the desired optimality guarantee. We will try to clarify.
- 48 (5) No, recall that our goal is to prove that T retains exactly the items in S and so we want to rule out the possibility
- that it retains an item outside S.
- 50 (6) The main purpose of this formulation is demonstrate the connection with matching problems.