
A Experimental Settings

A.1 Neural Machine Translation

For neural machine translation tasks, we re-implement Transformer with the released code of
Fairseq [Ott et al., 2019]1.
IWSLT 2015 English-Vietmanese Translation It contains 133K training sentence pairs provided
by the IWSLT 2015 Evaluation Campaign. Following the pre-processing steps in the work of Raffel
et al. [2017], we use TED tst2012 (1,553 sentences) as the validation set and TED tst2013 (1,268
sentences) as the test set. BPE is used to get input and output vocabularies. The English and
Vietnamese vocabulary sizes are 7,669 and 6,669 respectively. The dropout rate is 0.1. The learning
rate is 0.001. The training batch size is 4,096 tokens. The number of warmup steps is 8K. We use
“transformer_wmt_en_de” as our basic model. The setting of PreNorm is adopted. We use optimizer
Adam with β1 = 0.9 and β2 = 0.98. For AdaNorm, the hyper-parameter C is set to 1. We average
the last 10 checkpoints for evaluation and set the beam size to 5.

IWSLT 2014 German-English Translation It is provided by the IWSLT 2014 Evaluation Campaign.
We use the same dataset splits following previous work [Ott et al., 2019, Ranzato et al., 2016,
Wiseman and Rush, 2016]. It contains 153K sentences for training, 7K sentences for validation, and
7K sentences for testing. BPE is used to get vocabularies. We use the shared embedding setting and
the vocabulary size is 10,149. We use “transformer_iwslt_de_en” as our basic model. The setting of
PreNorm is adopted. The dropout rate is 0.3. The attention dropout rate is 0.1. The activation dropout
is 0.1. The initialization learning rate is 1e-07 and the learning rate is 0.0015. The training batch size
is 4,096 tokens. We use optimizer Adam with β1 = 0.9 and β2 = 0.98. We update the gradients for
every 2 steps. The number of warmup steps is 8K. For AdaNorm, the hyper-parameter C is set to 2.
We average the last 10 checkpoints for evaluation and set the beam size to 5.

WMT English-German Translation Following previous work [Vaswani et al., 2017], we use the
same dataset splits and the same compound splitting. The pre-processing code is provided by Fairseq.
BPE is used to get vocabularies. We use the shared embedding setting and the vocabulary size is
32,765. We use “transformer_wmt_en_de_big_t2t” as our basic model. The setting of PreNorm is
adopted. The dropout rate is 0.3. The learning rate is 0.001. The training batch size is 4,096 tokens.
We use optimizer Adam with β1 = 0.9 and β2 = 0.98. The number of warmup steps is 4K. For
AdaNorm, the hyper-parameter C is set to 2. We average the last 10 checkpoints for evaluation and
set the beam size to 4.

A.2 Language Modeling

Enwiki-82 This is a character-level language model dataset with 100M bytes. We use the same
preprocessed dataset as in the work [Chung et al., 2017]. We use the code provided by Transformer-
XL3. We use the default hyper-parameters in the code. The model contains 12 decoder layers and
the dimension of each layer is 512. Multi-head attention contains 8 heads and the dimension of each
head is 64. The dropout rate is 0.1. The batch size is 22. We use optimizer Adam with a learning rate
0.00025. For AdaNorm, the hyper-parameter C is set to 1. We choose the best checkpoint on the
validation set to evaluate the result on the test set.

A.3 Classification

RT The rating inference dataset [Pang and Lee, 2005] is a binary sentiment classification dataset
from online movie reviews. Due to the lack of the standard split, we randomly divide all examples
into 8,608 for training, 964 for validation, and 1,089 for testing. We implement a 4-layer Transformer
encoder. The setting of PreNorm is adopted. The batch size is 4,096 tokens. The word embedding
dimension is 128, the hidden dimension is 128. The dropout rate is 0.2. The optimization method
is Adam optimizer [Kingma and Ba, 2015] with β1 = 0.9, β2 = 0.998. For AdaNorm, the hyper-
parameter C is set to 0.3.

1https://github.com/pytorch/fairseq
2http://www.mattmahoney.net/dc/text.html
3https://github.com/kimiyoung/transformer-xl

1

SST The Stanford sentiment treebank [Socher et al., 2013] is a single-sentence classification dataset
built on movie reviews. We run experiments on a five label set. It provides the standard spit, with
8,544 for training, 1,101 for validation, and 2,210 for testing. We use the same model structure in RT.
For AdaNorm, the hyper-parameter C is set to 0.3. The rest of parameters are set exactly the same as
in RT settings.

MNIST Image Recognition The MNIST handwritten digit dataset [LeCun et al., 1998] consists
of 55,000 training images, 5,000 validation images, and additional 10,000 testing images. This task
aims to recognize the numerical digit (0-9) of each image. We implement a CNN based classifier. The
first 2D-convolution layer has 1 in-channel, 20 out-channels. The second 2D-convolution layer has 20
in-channels, 50 out-channels. We flatten the output of the second 2D-convolution layer and send it to
a linear layer. The batch size is 32. We use Adam optimizer with a learning rate of 0.001. We apply
LayerNorm before activation in every linear layer. When applying AdaNorm, we set hyper-parameter
C to 2. We train the model for 20 epochs. We choose the best checkpoint on the validation set for
evaluation.

A.4 Dependency Parsing

Transition-based Dependency Parsing Following previous work, we use English Penn TreeBank
(PTB) [Marcus et al., 1993] for experiments. We follow the standard split of the corpus with sections
2-21 as the training set (39,832 sentences, 1,900,056 transition examples), section 22 as the validation
set (1,700 sentences, 80,234 transition examples), and section 23 as the testing set (2,416 sentences,
113,368 transition examples). We implement a MLP-based parser following the work [Chen and
Manning, 2014]. The dimension of the hidden state is 512, the batch size is 1, 024, the dropout rate is
0.2. We use optimizer Adam and initialize the learning rate to 0.001. We apply LayerNorm before
activation in every linear layer. When applying AdaNorm, we set hyper-parameter C to 1. We train
20 epochs on the training set. We evaluate the model on the development set every epoch and find the
best checkpoint to evaluate the test results.

References
D. Chen and C. D. Manning. A fast and accurate dependency parser using neural networks. In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 740–750, 2014.

J. Chung, S. Ahn, and Y. Bengio. Hierarchical multiscale recurrent neural networks. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of english:
The penn treebank. Computational Linguistics, 19(2):313–330, 1993.

M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli. fairseq: A fast,
extensible toolkit for sequence modeling. arXiv preprint arXiv:1904.01038, 2019.

B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the Association for Computational Linguistics (ACL),
pages 115–124, 2005.

C. Raffel, M. Luong, P. J. Liu, R. J. Weiss, and D. Eck. Online and linear-time attention by enforcing
monotonic alignments. In Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pages 2837–2846, 2017.

2

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba. Sequence level training with recurrent neural
networks. In 4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive deep
models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013
conference on empirical methods in natural language processing, pages 1631–1642, 2013.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pages 6000–6010, 2017.

S. Wiseman and A. M. Rush. Sequence-to-sequence learning as beam-search optimization. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 1296–1306, 2016.

3

B Proof of Theorem 1

Proof. Define 1H = (1, 1, · · · , 1)T. It is easy to verify

yTy =

H∑
i=1

y2i =

H∑
i=1

(
xi − µ
σi

)2 = H

1T
H1H =

H∑
i=1

12 = H

yT1H =

H∑
i=1

yi =

H∑
i=1

xi − µ
σi

= 0

(1)

The forward propagation

y =
x− µ1H

σ
(2)

Calculating the gradient in backward propagation

∂y
∂x

=
∂
(
(Ix− µ1H)/σ

)
∂x

=
1

σ
IT =

1

σ
I

∂y
∂µ

=
∂
(
(Ix− µ1H)/σ

)
∂µ

= − 1

σ
1T
H

∂y
∂σ

=
∂
(
(Ix− µ1H)/σ

)
∂σ

= − (Ix− µ1H)T

σ2
= − 1

σ
yT

∂µ

∂xi
=

H∑
i=1

xi/H

∂xi
=

1

H
=⇒ ∂µ

∂x
=

1H
H

∂σ

∂xi
=

∂

√
(
H∑
i=1

x2i −Hµ2)/H

∂xi
=

1

2σ

∂(σ2)

∂xi

=
1

2σ

∂
(
(
H∑
i=1

x2i −Hµ2)/H
)

∂xi
=

1

2σ
(2xi/H − 2µ

∂µ

∂xi
)

=
xi − µ
Hσ

=
yi
H

=⇒ ∂σ

∂x
=

y
H

(3)

To conclude
∂y
∂x

=
1

σ
I

∂y
∂µ

= − 1

σ
1T
H

∂y
∂σ

= − 1

σ
yT ∂µ

∂x
=

1H
H

∂σ

∂x
=

y
H

(4)

If we detach the gradient of µ and σ, in backward propagation
∂`

∂x
=
∂y
∂x

∂`

∂y
=

1

σ

∂`

∂y
(5)

namely
ai =

gi
σ

(6)

Calculating ā and Da

Hā =

H∑
i=1

ai =

H∑
i=1

gi
σ

=
Hḡ

σ

HDa =

H∑
i=1

(ai − ā)2 =

H∑
i=1

(
gi − ḡ
σ

)2 =
HDg

σ2

(7)

4

To conclude, ā = ḡ/σ and Da = Dg/(σ
2).

Proof of (1)

(1) In standard layernorm, we do not detach the gradients of µ and σ, in backward propagation

∂`

∂x
= (

∂y
∂x

+
∂µ

∂x
∂y
∂µ

+
∂σ

∂x
∂y
∂σ

)
∂`

∂y
=

1

σ
(I − yyT

H
− 1H1T

H

H
)
∂`

∂y
(8)

Define W1 = 1
σ (I − yyT

H −
1H1T

H

H), we can verify that

1T
HW1 = 1T

H

1

σ
(I − 1H1T

H + yyT

H
) =

1

σ
(1H −

1T
H1H
H

1T
H −

1T
Hy
H

yT) =
1H − 1H − 0

σ
= 0 (9)

Therefore,

Hb̄ =

H∑
i=1

bi = 1T
H(b1, b2, ..., bH)T = 1T

HW1(g1, g2, ..., gH)T = 0 (10)

For any vector u vertical to 1H and y (1H is vertical to y), we have

W1u =
1

σ
(I − 1H1T

H + yyT

H
)u =

1

σ
(u− 1H

1T
Hu
H
− y

yTu
H

) =
1

u− 0− 0
=

1

σ
u

W1y =
1

σ
(I − 1H1T

H + yyT

H
)y =

1

σ
(y− 1H

1T
Hy
H
− y

yTy
H

) =
y− 0− y

σ
= 0

W11H =
1

σ
(I − 1H1T

H + yyT

H
)1H =

1

σ
(1H − 1H

1T
H1T

H

H
− y

yT1T
H

H
) =

1T
H − 1T

H − 0

σ
= 0

(11)

We expand 1H and y to a standard orthogonal basis u1 = 1H/
√
H,u2 = y/

√
H, u3, ...,uH , then for

any vector v =
H∑
i=1

λiui, we have

W1v =

H∑
i=1

λiW1ui = W11H/
√
H +W1y/

√
H +

H∑
i=3

λiW1ui =
1

σ

H∑
i=3

λiui

‖W1v‖2 =
1

σ2

H∑
i=3

λ2i ≤
1

σ2

H∑
i=1

λ2i =
1

σ2
‖v‖2

(12)

Therefore,

HDb =

H∑
i=1

(bi − b̄)2

=

H∑
i=1

b2i

= ‖(b1, b2, ..., bH)T‖2

= ‖W1(g1, g2, ..., gH)T‖2

= ‖W1(g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T +W1ḡ1H‖2

= ‖W1(g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T‖2

≤ 1

σ2
‖(g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T‖2

=
1

σ2

H∑
i=1

(gi − g)2 (Ineq. 12)

=
1

σ2
HDg

= HDa

(13)

5

To conclude, b̄ = 0 and Db ≤ Da = Dg/(σ
2).

Proof of (2) (2) If we detach the gradients of µ, in backward propagation

∂`

∂x
= (

∂y
∂x

+
∂σ

∂x
∂y
∂σ

)
∂`

∂y
=

1

σ
(I − yyT

H
)
∂`

∂y
(14)

Define W2 = 1
σ (I − yyT

H), then

1T
HW2 = 1T

H

1

σ
(I − yyT

H
) =

1

σ
(1T
H −

1T
Hy
H

yT) =
1T
H − 0

σ
=

1T
H

σ
(15)

Therefore,

Hc̄ =

H∑
i=1

ci = 1T
H(c1, ..., cH)T = 1T

HW2(g1, ..., gH)T =
1T
H(g1, ..., gH)T

σ
=

H∑
i=1

gi =
Hḡ

σ
(16)

Consider

(I − 1H1T
H/H)W2 = (I − 1H1T

H/H)
1

σ
(I − yyT/H)

=
1

σ
(I − 1H1T

H/H − yyT/H + 1H1T
HyyT/(H2))

=
1

σ
(I − 1H1T

H/H − yyT/H + 0)

= W1

(17)

Therefore,

HDc =

H∑
i=1

(ci − c̄)2

= ‖(c1 − c̄, c2 − c̄, ..., cH − c̄)T‖2

= ‖(I − 1H1T
H/H)(c1, c2, ..., cH)T‖2

= ‖(I − 1H1T
H/H)W2(g1, g2, ..., gH)T‖2

= ‖W1(g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T‖2

≤ 1

σ2
‖(g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T‖2

=
1

σ2

H∑
i=1

(gi − ḡ)2 (Ineq. 12)

=
1

σ2
HDg

= HDa

(18)

To conclude, c̄ = ā = ḡ/σ, Dc ≤ Da = Dg/(σ)2.

Proof of (3)

(3) If we detach the gradient of σ, in backward propagation

∂`

∂x
= (

∂y
∂x

+
∂µ

∂x
∂y
∂µ

)
∂`

∂y
=

1

σ
(I − 1H1T

H

H
)
∂`

∂y
(19)

Define W3 = 1
σ (I − 1H1T

H

H), we can verify that

1T
HW3 = 1T

H

1

σ
(I − 1H1T

H

H
) =

1

σ
(1T
H −

1T
H1H
H

1T
H) =

1T
H − 1T

H

σ
= 0 (20)

6

Therefore,

Hd̄ =

H∑
i=1

di = 1T
H(d1, d2, ..., dH)T = 1T

HW3(g1, g2, ..., gH)T = 0 (21)

For any vector u vertical to 1H

W31H =
1

σ
(I − 1H1T

H

H
)1H =

1

σ
(1H −

1H1T
H1H
H

) =
1H − 1H

σ
= 0

W3u =
1

σ
(I − 1H1T

H

H
)u =

1

σ
(u− 1H1T

Hu
H

) =
u− 0

σ
=

u
σ

(22)

Note that (g1 − ḡ, g2 − ḡ, ..., gH − ḡ)1H =
H∑
i=1

(gi − ḡ) = 0, namely (g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T

is vertical to 1H and W3(g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T = (g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T, therefore

HDd =

H∑
i=1

(di − d̄)2

=

H∑
i=1

(di)
2

= ‖(d1, d2, ..., dH)T‖2

= ‖W3(g1, g2, ..., gH)T‖2

= ‖W3(g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T +W3ḡ1H‖2

= ‖W3(g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T‖2

= ‖(g1 − ḡ, g2 − ḡ, ..., gH − ḡ)T‖2

=
1

σ2

H∑
i=1

(gi − g)2

=
1

σ2
HDg

= HDa

(23)

To concluede d̄ = 0 and Dd = Da = Dg/(σ
2).

7

C Proof of Theorem 2

Proof. Assume dy = (dy1, dy2, ..., dyH). Because φ is derivable, asuume v =
(φ′(y1), φ′(y2), ..., φ′(yH)). It is easy to verify

H∑
i=1

φ(yi) = HC

H∑
i=1

yi = 0

H∑
i=1

y2i = H

(24)

Differential on both sides of following three equations

vTdy =

H∑
i=1

φ′(yi)dyi = 0 (25)

1T
Hdy =

H∑
i=1

dyi = 0 (26)

yTdy =

H∑
i=1

yidyi = 0 (27)

In H-dim Euclidean space, note that yT1H =
H∑
i=1

yi = 0, namely 1H and y are vertical. We

expand 1H and y to an orthogonal basis u1 = 1H ,u2 = y,u3, ...,uH . Suppose dy =
H∑
i=1

αui and

v =
H∑
i=1

βiui, we have

vTdy =

H∑
i=1

αiβi‖ui‖2 = 0

1T
Hdy = α1‖u1‖2 = 0

yTdy = α2‖u2‖2 = 0

(28)

Accoring to Eq. 28,
H∑
i=3

αiβi‖ui‖2 = 0. Because it holds in spite of αi, (i > 2), βi = 0, (i > 2).

Therefore, v = β11H + β2y. Namely

φ′(yi) = β1 + β2yi

φ(yi) = C1 + C2yi + C3y
2
i

(29)

8

Consider zi

M > | 1

H

H∑
i=1

zi|

= | 1

H

H∑
i=1

φ(yi)yi|

= | 1

H

H∑
i=1

C1yi + C2y
2
i + C3y

3
i |

= | 1

H
(C1

H∑
i=1

yi + C2

H∑
i=1

y2i + C3

H∑
i=1

y3i)|

= | 1

H
(C2H + C3

H∑
i=1

y3i)|

= |C2 +
C3

H

H∑
i=1

y3i |

≥ |C3

H

H∑
i=1

y3i | − |C2|

(30)

If we set y1 = 2
√
H/6, y2 = y3 = −

√
H/6, yi = 0 (i > 3), then

∑
i=1 yi = 0 and

∑
i=1 y

2
i =

4H
6 + H

6 + 4H
6 = H hold. Under this circumstances

M > |C3

H

H∑
i=1

y3i | − |C2|

= |C3

H

(
(2
√
H/6)3 + (−

√
H/6)3) + (−

√
H/6)3

)
| − |C2|

= |C3

H
(
4H

3
− H

6
− H

6
)
√
H/6| − |C2|

= |C3

√
H/6| − |C2|

(31)

Therefore |C3| < |C2|+M√
H/6

holds for any H , when H approches infinity, we have |C3| = 0.

H∑
i=1

φ(yi) = C1H + C2(
H∑
i=1

yi) = C1H = CH , therefore C1 = C. Let k = −C2/C, there-

fore φ(yi) = C(1− kyi), then

M > | 1

H

H∑
i=1

zi|

= | 1

H

H∑
i=1

φ(yi)yi|

= | 1

H

H∑
i=1

C1yi + C2y
2
i + C3y

3
i |

= | 1

H
(C

H∑
i=1

yi − k
H∑
i=1

y2i)|

= |k|

(32)

Namely M > | 1H
H∑
i=1

zi| can hold if M > |k|. To conclude φ(yi) = C(1 − kyi) is the only

solution.

9

	Experimental Settings
	Neural Machine Translation
	Language Modeling
	Classification
	Dependency Parsing

	Proof of Theorem 1
	Proof of Theorem 2

