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A Proof of Theorem 1

To prove Theorem 1, we need to prove the interchange of the expectation and the gradient operators
is valid.

We fix X1 and A(�). We then choose i 2 [q] = {1, . . . , q} representing a point within the first stage
of points X1 and a component j 2 [d] = {1, . . . , d} of that point. For real-valued ✏, we then let
X1(✏) be X1 but with this component replaced by its sum with ✏. Then,

\2-OPT�(X1(✏), Z) = max(f⇤
0 � µ0(X1(✏))� C0(X1(✏))Z)+ + EI1(X1(✏), x

⇤
2(✏, Z), Z),

We then choose an open set ⇥ ⇢ R containing 0 such that K0(X1(✏), X1(✏)) and hence C0(X1(✏))
is (strictly) positive definite for each ✏ 2 ⇥. This is possible because K0(X1(0), X1(0)) was assumed
positive definite. We also choose ⇥ with the requirement that sup✏2⇥ |✏|  �/2.

Here, we have modified our notation to x⇤
2(✏, Z) 2 argminx22AEI1(X1(✏), x2, Z) (called x⇤

2 in the
body of the paper) to note dependence on ✏ and Z.

With this notation, the claimed validity of this interchange can be restated as the claim that

@

@✏
2-OPT�(X1(✏)) = E0


@

@✏
\2-OPT�(X1(✏), Z)

�
(6)

To prove that (6) is valid, we use Theorem 1 in L’Ecuyer [1990]. This theorem requires three sufficient
conditions:

• (i) \2-OPT�(X1(✏), Z) is continuous in ✏ over ⇥ for any fixed Z;

• (ii) \2-OPT�(X1(✏), Z) is differentiable in ✏ except on a denumerable set in ⇥ for any given
Z;

• (iii) the derivative of \2-OPT�(X1(✏), Z) with respect to ✏ (when it exists) is uniformly
bounded by a random variable M(Z) for all ✏ 2 ⇥ and the expectation of M(Z) is finite.

Before proving these conditions, we first state several lemmas.
Lemma 1. EI(m, v) = m�(m/

p
v) +

p
v'(m/

p
v) is continuously differentiable in m, v for any

m 2 R and any v in (0,1).

Proof. The following expressions can be verified from direct differentiation, and also appear in
slightly modified form in Jones et al. [1998]:

@

@
p
v
EI(m, v) = '

✓
mp
v

◆
,

@

@m
EI(m, v) = �

✓
mp
v

◆

The chain rule then implies
@

@v
EI(m, v) =

1

2
p
v
'

✓
mp
v

◆

These expressions for @
@mEI(m, v) and @

@vEI(m, v) are continuous in m and v over the claimed
ranges, which notably exclude v = 0.

Lemma 2. K1(x2, ✏) := K0(x2)�K0(x2, X1(✏))K0(X1(✏))�1K0(X1(✏), x2) and �0(x2, X1(✏))
are continuously differentiable in x2 and ✏ for all ✏ 2 ⇥ and all x2 2 A(�).

Proof. Recall �0(x2, X1(✏)) = K0(x2, X1(✏))C0(X1(✏))�1 and C0(X1(✏)) is the Cholesky decom-
position of K0(X1(✏)).
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K0(X1(✏)) is positive definite for all ✏ 2 ⇥ (we chose ⇥ so this would be true). Also, (1) the
Cholesky decomposition is continuously differentiable Smith [1995]; (2) the matrix inverse is
continuously differentiable for positive definite matrices; and (3) K0 is continuously differentiable.
The result follows since compositions, products, and sums of continuously differentiable functions
are continuously differentiable.

Lemma 3. K1(x2, ✏) is bounded below by a strictly positive constant r > 0 across all x2 2 A(�)
and all ✏ 2 ⇥.

Proof. All points in A(�) have K0(x2) > 0. Also, since ✏  �/2 for all ✏ 2 ⇥ (we chose ⇥ so this
would be true), all points in A(�) are separated from all points in X1(✏) by at least � � ✏ � �/2 > 0.
Thus, by the assumption that the kernel is non-degenerate in the statement of the theorem, the
posterior variance K1(x2, ✏) is strictly positive for all x2 2 A(�).

Also, K1(x2, X1(✏)) is continuous by Lemma 2. Thus, since A(�) is compact, the infimum over
x2 2 A(�) is attained within A(�). This infimum is thus strictly positive.

Lemma 4. Consider any fixed Z. Then, maxx22A(�) EI1(X1(✏), x2, Z) is differentiable for almost

every ✏ 2 ⇥. At each ✏0 for which this derivative exists, the derivative is equal to

d

d✏
EI1(X1(✏), x

⇤
2(✏0, Z), Z), (7)

where either x⇤
2(✏0, Z) 2 argminx22A(�)EI1(X1(✏0), x2, Z) is unique or (7) does not depend on the

choice within this set.

Proof. To show this result, the envelope theorem (Corollary 4 of Milgrom and Segal 2002) tells us
that it is sufficient to verify the following conditions:

1. A(�) is a non-empty compact space;

2. EI1(X1(✏), x2, Z) is continuous in x2;

3. d
d✏EI1(X1(✏), x2, Z) is continuous in ✏ and x2.

This will then imply absolute continuity of maxx22A(�) EI1(X1(✏), x2, Z) (implying differentiability
for almost every ✏) and the claimed expression for the derivative.

The first condition is assumed in the statement of Theorem 1.

We now verify the second and third conditions. Recall that

EI1(X1(✏), x2, Z) = EI(f⇤
1 � µ0(x2)� �0(x2, X1(✏))Z,K1(x2, ✏))

The second condition follows from continuity of EI (Lemma 1), µ0 (assumed in the statement of the
Theorem), �0(x2, X1(✏)) (Lemma 2), and K1(x2, ✏) (Lemma 2).

The third condition follows from the fact that K1(x2, ✏) stays bounded away from 0 (Lemma 3),
EI(m, v) is continuously differentiable when v > 0 (Lemma 1), continuous differentiability of
µ0(x2) (assumed in the statement of the Theorem), and continuous differentiability of �0(x2, X1(✏))
and K1(x2, ✏) (Lemma 2).

With these lemmas, we now proceed to show the conditions required by L’Ecuyer [1990].

A.1 Proof of condition (i)

Because the the mean function µ0 and the kernel K0 are assumed continuous, µ0(X1(✏)) and
C0(X1(✏)) are continuous in ✏.

Since the maximum of several continuous functions is continuous, max(f⇤
0 � µ0(X1(✏)) �

C0(X1(✏))Z)+ is continuous in ✏.

Continuity of EI1(X1(✏), x⇤
2(✏, Z), Z) was shown in Lemma 4.

Since the sum of continuous functions is continuous, \2-OPT�(X1(✏), Z) is continuous in ✏.
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A.2 Proof of condition (ii)

Fix any Z. Leveraging Lemma 4, it is sufficient to show that max(f⇤
0 �µ0(X1(✏))�C0(X1(✏))Z)++

EI1(X1(✏), x⇤
2, Z) is differentiable with respect to ✏ except on a denumerable set in ⇥.

Let D ✓ ⇥ be the set of values of ✏ such that max(f⇤
0 � µ0(X1(✏)) � C0(X1(✏))Z)+ is not

differentiable. We have

D ⇢ [i,j20:q

n
✏ 2 ⇥ : hi(✏) = hj(✏),

dh✏(i)
d✏ 6= dhj(✏)

d✏

o

where h0(✏) = 0 and hi(✏) for i > 0 is a component i of f⇤
0 � µ0(X1(✏))� C0(X1(✏))Z. Thus it is

sufficient to show that ⇢
✏ 2 ⇥ : hi(✏) = hj(✏),

dh✏(i)

d✏
6= dhj(✏)

d✏

�

is denumerable.

Define ⌘(✏) := hi(✏)� hj(✏). Observe that differentiability of µ0 and K0 imply differentiability of
⌘. We would like to show that E :=

n
✏ 2 ⇥ : ⌘(✏) = 0, d⌘(✏)

d✏ 6= 0
o

is denumerable. To prove this, it
is sufficient to show that E contains only isolated points because any set of isolated points in R is
denumerable (see the proof of statement 4.2.25 on page 165 in Thomson et al. [2008]).

We prove that E only contains isolated points by contradiction. Suppose that ✏⇤ 2 E is not an isolated
point. Then, there is a sequence of points ✏1, ✏2, . . . in E that converge to ✏⇤. Then, noting that
⌘(✏n) = ⌘(✏) = 0, we have

0 6= d⌘(✏)

d✏

��
✏=✏⇤

= lim
n!1

⌘(✏n)� ⌘(✏⇤)

✏n � ✏⇤
= lim

n!1
0 = 0,

which is a contradiction. Thus we may conclude that E only contains isolated points, and so is
denumerable.

A.3 Proof of condition (iii)

We first prove that @
@✏ max(f⇤

0 � µ0(X1(✏)) � C0(X1(✏))Z)+, when it exists, has a magnitude
bounded above by

����
@

@✏
max(f⇤

0 � µ0(X1(✏))� C0(X1(✏))Z)+
����  M1 +M2

X

i

|Zi|

where M1 is the maximum of the absolute value of the derivatives of the components of µ0(X1) with
respect to ✏ and, similarly, M2 is the maximum of the absolute value of the derivative of the entries of
C0(X1) with respect to ✏. Because µ0 and K0 are both assumed continuously differentiable, M1 and
M2 are finite. We then have that E[M1 +M2

P
i |Zi|] is finite.

We now concentrate on the second term in \2-OPT�(X1(✏), Z). By Lemma 4, when it exists,
@
@✏ maxx22A EI1(X1(✏), x2, Z)|✏=✏0 = @

@✏EI1(X1(✏), x⇤
2(✏0, Z), Z)|✏=✏0 .

Recall that

EI1(X1(✏), x2, Z) = EI(µ0(x2) + �0(x2, X1(✏))Z,K0(x2)� �0(x2, X1(✏))�0(x2, X1(✏))
T ).

We will bound the derivative of this quantity with respect to ✏ by a constant.

In the proof of Lemma 4, we showed that @
@✏�0(x2, X1(✏)) is continuous in x2 and ✏, and so its

components are bounded over ⇥ (since we assumed ⇥ is contained in a compact set). This bound
does not depend on Z. Call this constant M3.

We then use the chain rule to provide an expression for @
@✏EI1(X1(✏), x2, Z). Recalling that

EI1(X1(✏), x2, Z) can be written more explicitly as EI(f⇤
1 � µ0(x2) � �0(x2, X1)Z,K1(x2, ✏))

we first note that the partial derivatives of EI with respect to its first and second arguments are
non-negative (provided in Lemma 1) and can be bounded above by 1 and '(0)/2

p
r respectively

(leveraging Lemma 3). The derivative of the first argument with respect to ✏ is the sum of:
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• the derivative of f⇤
1 = min(f⇤

0 ,minµ0(X1(✏) + C0(X1(✏))Z), whose absolute value is
bounded by the largest component of @

@✏µ0(X1(✏)) + C0(X1(✏))Z;

• @
@✏�0(x2, X1(✏))Z.

Since µ0, C0, and �0 are all continuously differentiable in ✏, ⇥ is contained within a compact set, and
the maximum of a continuous function over a compact set is finite, the magnitude of these quantities
can all be bounded above by a finite constant times |Z|.
The derivative of the second argument is continuous in ✏ (Lemma 2) and so has a maximum that is
similarly bounded above by a constant over ⇥.

Thus, | @
@✏EI1(X1(✏), x2, Z)| is bounded above by a linear function |Z|, and a linear function of |Z|

is integrable.

B Additional Experiments

Here we include plots of numerical experiments discussed in the main paper, but that could not be
included there due to space constraints. Figure 4 shows computation time compared with EI, KG,
and GLASSES. Figure 5 shows mean performance across a collection of 8 widely used synthetic
benchmarks against common one-step heuristics.

Figure 4: Run time benchmarks: 2-OPT is clear better than GLASSES and comparable to popular
one-step heuristics.
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Figure 5: Benchmarks of 2-OPT with common one-step heuristics: EI, PI, KG and GP-LCB on
eight common synthetic functions. 2-OPT outperforms the competitors on 7 out of 8 test functions,
although some of the one-step algorithms are known to be highly effective on these functions.
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