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Abstract

Given a sequence of convex functions f0, f1, . . . , fT , we study the problem of
sampling from the Gibbs distribution ⇡t / e�

Pt
k=0 fk for each epoch t in an

online manner. Interest in this problem derives from applications in machine
learning, Bayesian statistics, and optimization where, rather than obtaining all the
observations at once, one constantly acquires new data, and must continuously
update the distribution. Our main result is an algorithm that generates roughly
independent samples from ⇡t for every epoch t and, under mild assumptions,
makes polylog(T ) gradient evaluations per epoch. All previous results imply a
bound on the number of gradient or function evaluations which is at least linear
in T . Motivated by real-world applications, we assume that functions are smooth,
their associated distributions have a bounded second moment, and their minimizer
drifts in a bounded manner, but do not assume they are strongly convex. In
particular, our assumptions hold for online Bayesian logistic regression, when the
data satisfy natural regularity properties, giving a sampling algorithm with updates
that are poly-logarithmic in T . In simulations, our algorithm achieves accuracy
comparable to an algorithm specialized to logistic regression. Key to our algorithm
is a novel stochastic gradient Langevin dynamics Markov chain with a carefully
designed variance reduction step and constant batch size. Technically, lack of
strong convexity is a significant barrier to analysis and, here, our main contribution
is a martingale exit time argument that shows our Markov chain remains in a ball
of radius roughly poly-logarithmic in T for enough time to reach within " of ⇡t.

1 Introduction

In this paper, we study the following online sampling problem:
Problem 1.1. Consider a sequence of convex functions f0, f1, . . . , fT : Rd ! R for some T 2 N,
and let " > 0. At each epoch t 2 {1, . . . , T}, the function ft is given to us, so that we have oracle
access to the gradients of the first t + 1 functions f0, f1, . . . , ft. The goal at each epoch t is to
generate a sample from the distribution ⇡t(x) / e�

Pt
k=0 fk(x) with fixed total-variation (TV) error

". The samples at different time steps should be almost independent.

Various versions of this problem have been considered in the literature, with applications in Bayesian
statistics, optimization, and theoretical computer science; see [NR17, DDFMR00, ADH10] and
references therein. If f is convex, then a distribution p / e�f is logconcave; this captures a large
class of useful distributions such as gaussian, exponential, Laplace, Dirichlet, gamma, beta, and
chi-squared distributions. We give some settings where online sampling can be used:

• Online posterior sampling. In Bayesian statistics, the goal is to infer the probability distribution
(the posterior) of a parameter, based on observations; however, rather than obtaining all the
observations at once, one constantly acquires new data, and must continuously update the posterior
distribution, rather than only after all data is collected. Suppose ✓ ⇠ p0 / e�f0 for a given
prior distribution, and samples yt drawn from the conditional distribution p(·|✓, y1, . . . , yt�1)
arrive in a streaming manner. By Bayes’s rule, letting pt(✓) = e�ft(✓) := p(✓|y1, . . . , yt) be
the posterior distribution, we have the following recursion: pt(✓) / pt�1(✓)p(yt|✓, y1, . . . , yt�1).
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Hence, pt(✓) / e�
Pt

k=0 fk(✓). The goal is to sample from pt(✓) for each t. This fits the setting of
Problem 1.1 if p0 and all updates p(yt|✓, y1, . . . yt�1) are logconcave.

One practical application is online logistic regression; logistic regression is a common model
for binary classification. Another is inference for Gaussian processes, which are used in many
Bayesian models because of their flexibility, and where stochstic gradient Langevin algorithms
have been applied [FE15]. A third application is latent Dirichlet allocation (LDA), often used for
document classification [BNJ03]. As new documents are published, it is desirable to update the
distribution of topics without excessive re-computation.1

• Optimization. One online optimization method is to sample a point from the exponential of
the (weighted) negative loss ([CBL06, HAK07], Lemma 10 in [NR17]). There are settings such
as online logistic regression where the only known way to achieve optimal regret is a Bayesian
sampling approach [FKL+18], with lower bounds known for the naive convex optimization
approach [HKL14].

• Reinforcement learning (RL). Thompson sampling [RVRK+18, DFE18] solves RL problems
by maximizing the expected reward at each period with respect to a sample from the Bayesian
posterior for the environment parameters, reducing it to the online posterior sampling problem.

In all of these applications, because a sample is needed at every epoch t, it is desirable to have a fast
online sampling algorithm. In particular, the ultimate goal is to design an algorithm for Problem
1.1 such that the number of gradient evaluations is almost constant at each epoch t, so that the
computational requirements at each epoch do not increase over time. This is challenging because at
epoch t, one has to incorporate information from all t+ 1 functions f0, . . . , ft in roughly O(1) time.

Our main contribution is an algorithm for Problem 1.1 that computes eOT (1) gradients per epoch,
under mild assumptions on the functions2. All previous rigorous results (even with comparable
assumptions) imply a bound on the number of gradient or function evaluations which is at least linear
in T ; see Table 1. Our assumptions are motivated by real-world considerations and hold in the setting
of online Bayesian logistic regression when the data vectors satisfy natural regularity properties.

In the offline setting, our result also implies the first algorithm to sample from a d-dimensional
log-concave distribution / e�

PT
t=1 ft where the ft’s are not assumed strongly convex and the total

number of gradient evaluations is roughly T log(T ) + poly(d), instead of T ⇥ poly(d) implied by
prior works (Table 1).

A natural approach to online sampling is to design a Markov chain with the right steady state
distribution [NR17, DMM19, DCWY18, CFM+18]. The main difficulty is that running a step of
a Markov chain that incorporates all previous functions takes time ⌦(t) at epoch t; all previous
algorithms with provable guarantees suffer from this. To overcome this, one must use stochasticity
– for example, sample a subset of the previous functions. However, this fails because of the large
variance of the gradient. Our result relies on a stochastic gradient Langevin dynamics (SGLD)
Markov chain with a carefully designed variance reduction step and fixed batch size.

We emphasize that we do not assume that the functions ft are strongly convex. This is important
for applications such as logistic regression. Even if the negative log-prior f0 is strongly convex, we
cannot obtain the same bounds by using existing results on strongly convex f , because the bounds
depend on the condition number of

P
T

t=0 ft, which grows as T . Lack of strong convexity is a
technical barrier to analyzing our Markov chain and, here, our main contribution is a martingale exit
time argument that shows that our Markov chain is constrained to a ball of radius roughly 1/

p
t for

time that is sufficient for it to reach within " of ⇡t.

1Note that LDA requires sampling from non-logconcave distributions. Our algorithm can be used for
non-logconcave distributions, but our theoretical guarantees are only for logconcave distributions.

2The subscript T in eOT means that we only show the dependence on the parameters t, T , and exclude
dependence on non-T, t parameters such as the dimension d, sampling accuracy " and the regularity parameters
C,D, L which we define in Section 2.1.
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2 Our algorithm and results

2.1 Assumptions

Denote by L(Y ) the distribution of a random variable Y . For any two probability measures µ, ⌫,
denote the 2-Wasserstein distance by W2(µ, ⌫) := inf(X,Y )⇠⇧(µ,⌫)

p
E[kX � Y k2], where ⇧(µ, ⌫)

denotes the set of all possible couplings of random vectors (X̂, Ŷ ) with marginals X̂ ⇠ µ and Ŷ ⇠ ⌫.
For every t 2 {0, . . . , T}, define Ft :=

P
t

k=0 fk, and let x?

t
be a minimizer of Ft(x) on Rd. For any

x 2 Rd, let �x be the Dirac delta distribution centered at x. We make the following assumptions:
Assumption 1 (Smoothness/Lipschitz gradient (with constants L0, L > 0)). For all 1  t  T
and x, y 2 Rd, krft(y)�rft(x)k  L kx� yk. For t = 0, krf0(y)�rf0(x)k  L0 kx� yk.

We allow f0 to satisfy our assumptions with a different parameter value, since in Bayesian applications
f0 models a “prior" which has different scaling from f1, f2, . . . fT .
Assumption 2 (Bounded second moment with exponential concentration (with constants
A, k > 0, c � 0)). For all 0  t  T and all s � 0, PX⇠⇡t(kX � x?

t
k � s/pt+c)  Ae�ks.

Note Assumption 2 implies a bound on the second moment, m
1/2

2 := (Ex⇠⇡t kx� x?

t
k22)

1
2  C/pt+c

for C := (2 + 1/k) log(A/k2). For conciseness, we write bounds in terms of this parameter C.3

Assumption 3 (Drift of mode (with constants D � 0, c � 0)). For all 0  t, ⌧  T such that
⌧ 2 [t,max{2t, 1}], kx?

t
� x?

⌧
k  D/pt+c.

Assumption 2 says that the “data is informative enough” – the current distribution ⇡t (posterior)
concentrates near the mode x?

t
as t increases. The 1

t
decrease in the second moment is what one would

expect based on central limit theorems such as the Bernstein-von Mises theorem. Assumption 2 is a
weaker condition than strong convexity: if the ft’s are ↵-strongly convex, then ⇡t(x) / e�

Pt
k=0 fk(x)

concentrates to within
p
d/
p

↵(t+1); however, many distributions satisfy Assumption 2 without being
strongly log-concave. For instance, posterior distributions used in Bayesian logistic regression satisfy
Assumption 2 under natural conditions on the data, but are not strongly log-concave with comparable
parameters (Section 2.4). Hence, together Assumptions 1 and 2 are a weaker condition than strong
convexity and gradient Lipschitzness, the typical assumptions under which the offline algorithm is
analyzed. Similar to the typical assumptions, our assumptions avoid the “ill-conditioned” case when
the distribution becomes more concentrated in one direction than another as the number of functions
t increases.

Assumption 3 is typically satisfied in the setting where the ft’s are iid. This is the case when
we observe iid random variables and define functions ft based on them, as will be the case for
our application to Bayesian logistic regression (Problem 2.2). To help with intuition, note that
Assumption 3 is satisfied for the problem of Gaussian mean estimation: the mode is the same as the
mean, and the assumption reduces to the fact that a random walk drifts on the order of

p
t, and hence

the mean of the posterior drifts by OT (1/
p
t), after t time steps. We need this assumption because our

algorithm uses cached gradients computed ⇥T (t) time steps ago, and in order for the past gradients
to be close in value to the gradient at the current point, the points where the gradients were last
calculated should be at distance OT (1/

p
t) from the current point. We give a simple example where

the assumptions hold (Appendix G of the supplement).

In Section 2.4 we show these assumptions hold for functions arising in online Bayesian logistic
regression; unlike previous work on related techniques [NDH+17, CFM+18], our assumptions are
weak enough to hold in such applications, as they do not require f0, . . . , fT to be strongly convex.

2.2 Algorithm for online sampling

At every epoch t = 1, . . . , T , given gradient access to the functions f0, . . . , ft, Algorithm 2 generates
a point Xt approximately distributed according to ⇡t / e�

Pt
k=0 fk(x). It does so by running SAGA-

LD (Algorithm 1), with step size ⌘t that decreases as the epoch, and a given number of steps imax.
3Having a bounded second moment suffices to obtain (weaker) polynomial bounds (by replacing the use

of the concentration inequality with Chebyshev’s inequality). We use this slightly stronger condition because
exponential concentration improves the dependence on ", and is typically satisfied in practice.

3



Our main Theorem 2.1 says that for each sample to have fixed TV error ", at each epoch the number
of steps imax only needs to be poly-logarithmic in T .

Algorithm 1 makes the following update rule at each step for the SGLD Markov chain Xi, for a
certain choice of stochastic gradient gi, where E[gi] =

P
t

k=0rfk(Xi):

Xi+1 = Xi � ⌘tgi +
p
2⌘t⇠i, ⇠i ⇠ N(0, Id). (1)

Key to our algorithm is the construction of the variance reduced stochastic gradient gi. It is constructed
by taking the sum of the cached gradients at previous points in the chain and correcting it with a
batch of constant size b.

This variance reduction is only effective when the points where the cached gradients were computed
stay within eOT (1/

p
t) of the current mode x?

t
. Algorithm 2 ensures that this holds with high probability

by resetting to the sample at the previous power of 2 if the sample has drifted too far.

The step size ⌘t is determined by an input parameter ⌘0 > 0. We set ⌘t = ⌘0/t+c for the following
reason: Assumption 2 says that the variance of the target distribution ⇡t decreases at the rate C

2/t+c,
and we want to ensure that the variance of each step of Langevin dynamics decreases at roughly
the same rate. With the step size ⌘t = ⌘0/t+c, the Markov chain can travel across a sub-level set
containing most of the probability measure of ⇡t in roughly the same number imax = eOT (1) of
steps at each epoch t. We will take the acceptance radius to be C 0 = 2.5(C1 + D) where C1 is
given by (65) in the supplement, and show that with good probability this choice of C 0 ensures
kXt�1 �Xt

0k  4(C1+D)/pt+c in Algorithm 2. Note that in practice, one need not know the values
of the regularity constants in Assumptions 1-3 but can instead use heuristics to “tune” the Markov
chain’s parameters.

Algorithm 1 SAGA-LD
Input: Oracles forrfk for k 2 [0, t], step size ⌘ > 0, batch size b 2 N, number of steps imax, initial
point X0, cached gradients Gk = rfk(uk) for some points uk, and s =

P
t

k=1 G
k. Output: Ximax

1: for i from 0 to imax � 1 do
2: (Sample batch) Sample with replacement a (multi)set S of size b from {1, . . . , t}.
3: (Calculate gradients) For each k 2 S, let Gk

new = rfk(Xi).
4: (Variance-reduced gradient estimate) Let gi = rf0(Xi) + s+ t

b

P
k2S

(Gk

new �Gk).
5: (Langevin step) Let Xi+1 = Xi � ⌘gi +

p
2⌘⇠i where ⇠i ⇠ N(0, I).

6: (Update sum) Update s [ s+
P

k2set(S)(G
k

new �Gk).
7: (Update gradients) For each k 2 S, update Gk  [ Gk

new.
8: end for

2.3 Result in the online setting

In this section we give our main result for the online sampling problem; for additional results in the
offline sampling problem, see Appendix A in the supplement.
Theorem 2.1 (Online variance-reduced SGLD). Suppose that f0, . . . , fT : Rd ! R are (weakly)
convex and satisfy Assumptions 1-3 with c = L0/L. Let C = (2 + 1/k) log(A/k2). Then there exist
parameters b = 9, ⌘0 = e⇥

⇣
"
4

L2 log6(T )(C+D)2d

⌘
, and imax = eO

⇣
(C+D)2 log2(T )

⌘0"
2

⌘
, such that at each

epoch t, Algorithm 2 generates an "-approximate independent sample Xt from ⇡t.4 The total number
of gradient evaluations imax required at each epoch t is polynomial in d, L,C,D, "�1 and log(T ).
Here, e⇥ and eO hide polylogarithmic factors in d, L,C,D, "�1 and log(T ).

Note that the dependence of imax on " is imax = eO"

�
1
"6

�
. See Section B.4 in the supplement for the

proof of Theorem 2.1. Note that the algorithm needs to know the parameters, but bounds are enough.

Previous results all imply a bound on the number of gradient or function evaluations5 at each epoch
which is at least linear in T . Our result is the first to obtain bounds on the number of gradient

4See Definition B.1 in the supplement for the formal definition. Necessarily, kL(Xt)� ⇡tkTV  ".
5In our setting a gradient can be computed in at worst 2d function evaluations. In many applications

(including logistic regression) gradient evaluation takes the same number of operations as function evaluation.
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Algorithm 2 Online SAGA-LD
Input: T 2 N and gradient oracles for functions ft : Rd ! R, for all t 2 {0, . . . , T} , where only
the gradient oracles rf0, . . . ,rft are available at epoch t, an initial point X0 2 Rd.
Input: step size ⌘0 > 0, batch size b > 0, imax > 0, constant offset c, acceptance radius C 0.
Output: At each epoch t, a sample Xt

1: Set s = 0. . Initial gradient sum
2: for epoch t = 1 to T do
3: Set t0 = 2blog2(t�1)c if t > 1, and t0 = 0 if t = 1. . The previous power of 2
4: if

���Xt�1 � Xt
0
���  C

0/pt+c then Xt

0  [ Xt�1 . If the previous sample hasn’t drifted too far,
use the previous sample as warm start

5: else Xt

0  [ Xt
0

. If the previous sample has drifted too far, reset to the sample at time t0

6: end if
7: Set Gt  [ rft(Xt

0)
8: Set s [ s+Gt.
9: For all gradients Gk = rfk(uk) which were last updated at time t/2, replace them by
rfk(Xt

0) and update s accordingly.
10: Draw it uniformly from {1, . . . , imax}.
11: Run Algorithm 1 with step size ⌘0/t+c, batch size b, number of steps it, initial point Xt

0, and
precomputed gradients Gk with sum s. Keep track of when the gradients are updated.

12: Return the output Xt = Xt

it
of Algorithm 1.

13: end for
evaluations which are poly-logarithmic, rather than linear, in T at each epoch. We are able to do better
by exploiting the sum structure of �

P
t

k=0 ft and the fact that the ⇡t evolve slowly. See Section 4
for a detailed comparison.

2.4 Application to Bayesian logistic regression

Next, we show that Assumptions 1-3, and therefore Theorem 2.1, hold in the setting of online
Bayesian logistic regression, when the data satisfy certain regularity properties. Logistic regression
is a fundamental and widely used model in Bayesian statistics [AC93]. It has served as a model
problem for methods in scalable Bayesian inference [WT11, HCB16, CB19, CB18], of which online
sampling is one approach. Additionally, sampling from the logistic regression posterior is the key
step in the optimal algorithm for online logistic regret minimization [FKL+18].

In Bayesian logistic regression, one models the data (ut 2 Rd, yt 2 {�1, 1}) as follows: there is
some unknown ✓0 2 Rd such that given ut (the “independent variable"), for all t 2 {1, . . . , T} the
“dependent variable” yt follows a Bernoulli distribution with “success” probability �(u>

t
✓) (yt = 1

with probability �(u>
t
✓) and �1 otherwise) where �(x) := 1/(1+e

�x). The problem we consider is:
Problem 2.2 (Bayesian logistic regression). Suppose the yt’s are generated from ut’s as Bernoulli
random variables with “success” probability �(u>

t
✓). At every epoch t 2 {1, . . . , T}, after observing

(uk, yk)tk=1, return a sample from the posterior distribution6 ⇡̂t(✓) / e�
Pt

k=0 f̂k(✓), where f̂0(✓) :=
e�↵k✓k2/2 and f̂k(✓) := � log[�(yku>

k
✓)].

We show that Algorithm 2 succeeds for Bayesian logistic regression under reasonable conditions on
the data-generating distribution – namely, that inputs are bounded and we see data in all directions.7

Theorem 2.3 (Online Bayesian logistic regression). Suppose that for some B,M,� > 0, we have
k✓0k  B and that ut ⇠ Pu are iid, where Pu is a distribution satisfying the following: For u ⇠ Pu,
(1) kuk  M (“bounded”) and (2) Eu[uu>

|u>✓0|2] ⌫ �Id (“restricted” covariance matrix is
bounded away from 0). Then for the functions f̂0, . . . , f̂T in Problem 2.2, and any " > 0, there exist
parameters L, log(A), k�1,D = poly(M,��1,↵,B, d, "�1, log(T )) such that Assumptions 1, 2,
and 3 hold for all t with probability at least 1 � ". Therefore Alg. 2 gives "-approximate samples
from ⇡t for t 2 [1, T ] with poly(M,��1,↵,B, d, "�1, log(T )) gradient evaluations at each epoch.

6Here we use a Gaussian prior but this can be replaced by any e
�f0 where f0 is strongly convex and smooth.

7For simplicity, we state the result (Theorem 2.3) in the case where the input variables u are iid, but note that
the result holds more generally (see Lemma E.1 in the supplement for a more general statement of our result).
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In Section 5 we show that in numerical simulations, our algorithm achieves competitive accuracy
with the same runtime compared to an algorithm specialized to logistic regression, the Pólya-Gamma
sampler. However, the Pólya-Gamma sampler has two drawbacks: its running time at each epoch
scales linearly as t (our algorithm scales as polylog(t)), and it is unknown whether Pólya-Gamma
attains TV-error " in time polynomial in 1

"
, t, d, and other problem parameters.

3 Proof overview for online problem

For the online problem, information theoretic constraints require us to use “information" from at least
⌦(t) gradients to sample with fixed TV error at the t’th epoch (see Appendix H). Thus, to use only
eOT (1) gradients at each epoch, we must reuse gradient information from past epochs. We accomplish
this by reusing gradients computed at points in the Markov chain, including points at past epochs.
This saves a factor of T over naive SGLD, but only if we can show that these past points in the chain
track the distributions’ mode, and that our chain stays close to the mode (Lemma B.2 in supplement).

The distribution is concentrated to OT (1/
p
t) at the tth epoch (Assumption 2), and we need the Markov

chain to stay within eOT (1/
p
t) of the mode. The bulk of the proof (Lemma B.3 in supplement) is to

show that with high probability (w.h.p.) the chain stays within this ball. Once we establish that the
Markov chain stays close, we combine our bounds with existing results on SGLD from [DMM19]
to show that we only need eOT (1) steps per epoch (Lemma B.6). Finally, an induction with careful
choice of constants finishes the proof (Theorem 2.1). Details of each of these steps follow.

Bounding the variance of the stochastic gradient (see Lemma B.2). We reduce the variance of
our stochastic gradient by using the gradient evaluated at a past point uk and estimating the difference
in the gradients between our current point Xt

i
and past point uk. Using the L-Lipschitz property

(Assumption 1) of the gradients, we show that the variance of this stochastic gradient is bounded by
t
2
L

2

b
maxk kXt

i
� ukk

2. To obtain this bound, observe that the individual components {rfk(Xt

i
)�

rfk(uk)}k2S of the stochastic gradient gt
i

have variance at most = t2L2 maxk kXt

i
� ukk

2 by the
Lipschitz property. Averaging with a batch saves a factor of b. For the number of gradient evaluations
to stay nearly constant at each step, increasing the batch size is not a viable option to decrease our
stochastic gradient’s variance. Rather, showing that kXt

i
�ukk decreases as kXt

i
�ukk = eOT (1/

p
t),

implies the variance of our stochastic gradient decreases at each epoch at the desired rate.

Bounding the escape time from a ball where the stochastic gradient has low variance (see
Lemma B.3). Our main challenge is to bound the distance kXi � ukk. Because we do not assume
strong convexity, we cannot use proof techniques of past papers analyzing variance-reduced SGLD
methods. [CFM+18, NDH+17] used strong convexity to show that w.h.p., the Markov chain does
not travel too far from its initial point, implying a bound on the variance of their stochastic gradients.
Unfortunately, many important applications, including logistic regression, lack strong convexity.

To deal with the lack of strong convexity, we instead use a martingale exit time argument to show
that the Markov chain remains inside a ball of radius r = eOT (1/

p
t) w.h.p. for a large enough time

imax for the Markov chain to reach a point within TV distance " of the target distribution. Towards
this end, we would like to bound the distance from the current state of the Markov chain to the mode
kXt

i
� x?

t
k by eOT (1/

p
t), and bound kx?

t
� ukk by eOT (1/

p
t). Together, this allows us to bound the

distance kXt

i
� ukk = OT (1/

p
t). We can then use our bound on kXt

i
� ukk = eOT (1/

p
t) together

with Lemma B.2 to bound the variance of the stochastic gradient by roughly eOT (1/t).

Bounding kx?

t
� ukk. Since uk is a point of the Markov chain, possibly at a previous epoch

⌧  t, roughly speaking we can bound this distance inductively by using bounds obtained at
the previous epoch ⌧ (Lemma B.6). Noting that uk = X⌧

i
for some i  imax, we use our bound for

kuk � x?

⌧
k = OT (1/

p
⌧) = OT (1/

p
t) obtained at the previous epoch ⌧ , together with Assumption 3

which says that kx?

t
� x?

⌧
k = OT (1/

p
t), to bound kx?

t
� ukk.

Bounding kXt

i
� x?

t
k. To bound the distance ⇢i := kXt

i
� x?

t
k to the mode, we would like to bound

the increase ⇢i+1 � ⇢i at each step i in the Markov chain. Unfortunately, the expected increase in the
distance kXt

i
� x?

t
k is much larger when the Markov chain is close to the mode than when it is far

away from the mode, making it difficult to get a tight bound on the increase in the distance at each
step. To get around this problem, we instead use a martingale exit time argument on kXt

i
� x?

t
k2, the
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squared distance from the current state of the Markov chain to the mode. The advantage in using
squared distance is that the expected increase in squared distance due to the Gaussian noise termp
2⌘t⇠i in the Markov chain update rule (Equation (1)) is the same regardless of the position of the

chain, allowing us to obtain tighter bounds on the increase regardless of the Markov chain’s current
position. We then use weak convexity to bound the component of the increase in kXt

i
� x?

t
k2 that is

due to the gradient term �⌘tgi, and apply Azuma’s martingale concentration inequality to bound the
exit time from the ball, showing the chain remains at distance of roughly eOT (1/

p
t) from the mode.

Bounding the TV error (Lemma B.6). We now show that if uk is close to x?

⌧
, then Xt will be a

good sample from ⇡t. More precisely, we show that if at epoch t the Markov chain starts at Xt

0 such
that kXt

0 � x?

⌧
k  R/pt+c (R to be chosen later), then

��L(Xt

imax
)� ⇡t

��
TV
 O("/log2(T )).

To do this, we use two bounds: a bound on the Wasserstein distance between the initial point Xt

0 and
the target density ⇡t, and a bound on the variance of the stochastic gradient. We then plug the bounds
into Corollary 18 of [DMM19] (reproduced as Theorem B.4 in the supplementary material), to show
that imax = eO",T (poly(1/")) steps per epoch are sufficient to obtain a bound of " on the TV error.

Bounding the number of gradient evaluations at each epoch. Working out constants, we see
imax = poly(d, L,C,D, "�1, log(T )) suffices to obtain TV-error " each epoch. A constant batch
size suffices, so the total number of evaluations is O(imaxb) = poly(d, L,C,D, "�1, log(T )).

4 Related work

Online convex optimization. Our motivation for studying the online sampling problem comes
partly from the successes of online (convex) optimization [Haz16]. In online convex optimization,
one chooses a point xt 2 K at each step and suffers a loss ft(xt), where K is a compact convex set
and ft : K ! R is a convex function [Zin03]. The aim is to minimize the regret compared to the best
point in hindsight, where Regret

T
=

P
T

t=1 ft(xt)�minx⇤
P

T

t=1 ft(x
⇤). The same offline convex

optimization algorithms such as gradient descent and Newton’s method can be adapted to the online
setting [Zin03, HAK07].

Online sampling. To the best of our knowledge, all previous algorithms with provable guarantees in
our setting require computation time that grows polynomially with t. This is because any Markov
chain taking all previous data into account needs ⌦T (t) gradient (or function) evaluations per step.
On the other hand, there are many streaming algorithms that are used in practice which lack provable
guarantees, or which rely on properties of the data (such as compressibility [HCB16, CB19]).

The most relevant theoretical work in our direction is [NR17]. The authors consider a changing
log-concave distribution on a convex body, and show that under certain conditions, they can use
the previous sample as a warm start and only take a constant number of steps of their Dikin walk
chain at each stage. They consider the online sampling problem in the more general setting where
the distribution is restricted to a convex body. However, [NR17] do not achieve optimal results in
our setting, since they do not separately consider the case when Ft =

P
t

k=0 fk has a sum structure
and therefore require ⌦(t) function evaluations at epoch t. Moreover, they do not consider how
concentration properties of the distribution translate into more efficient sampling. When the ft are
linear, they need OT (1) steps and OT (t) evaluations per epoch. However, in the general convex
setting with smooth ft’s, they need OT (t) steps per epoch and OT (t2) evaluations per epoch.

There are many other online sampling and other approaches to estimating changing distributions, used
in practice. The Laplace approximation, perhaps the simplest, approximates the posterior distribution
with a Gaussian [BDT16]; however, most distributions cannot be well-approximated by Gaussians.
Stochastic gradient Langevin dynamics [WT11] can be used in an online setting; however, it suffers
from large variance which we address in this work. The particle filter [DMHW+12, GDM+17] is a
general algorithm to track changing distributions. Another approach (besides sampling) is variational
inference, which has also been considered in an online setting ([WPB11], [BBW+13]).

Variance reduction techniques. Variance reduction techniques for SGLD were initially proposed
in [DRW+16], when sampling from a fixed distribution ⇡ / e�

PT
t=0 ft . [DRW+16] propose two

variance-reduced SGLD techniques, CV-ULD and SAGA-LD. CV-ULD re-computes the full gradient
rF at an “anchor” point every r steps and updates the gradient at intermediate steps by subsampling
the difference in the gradients between the current point and the anchor point. SAGA-LD, on the
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Algorithm oracle calls per Other assumptions
epoch

Online Dikin walk
OT (T )

Strong convexity
[NR17, §5.1] Bounded ratio of densities

Langevin [DMM19, DCWY18] OT (T ) —
SGLD [DMM19] OT (T ) —

SAGA-LD [CFM+18] OT (T )
Strong convexity
Lipschitz Hessian

CV-ULD [CFM+18] OT (T ) Strong convexity

This work polylog(T )
bounded second moment

bounded drift of minimizer

Table 1: Bounds on the number of gradient (or function) evaluations required by different algorithms to solve
the online sampling problem. Lipschitz gradient is assumed for all algorithms. [NR17] analyzed the online Dikin
walk for a different setting where the target has compact support; here we give the result one should obtain for
support Rd, where it reduces to the ball walk. Thus it is possible the assumptions we give for the online Dikin
walk can be weakened. Note that the number of gradient or function evaluations for the basic Langevin and
SGLD algorithms and online Dikin walk depend multiplicatively on T (i.e., T⇥poly(d, L, other parameters)),
while the number of evaluations for variance-reduced SGLD methods depend only additively on T (i.e.,
T+poly(d, L, other parameters)).

other hand, keeps track of when each gradient rft was computed, and updates individual gradients
with respect to when they were last computed. [CFM+18] show that CV-ULD can sample in the
offline setting in roughly T + d

2/"(L/m)6 gradient evaluations, and that SAGA-LD can sample in
T + T

p
d/"(L/m)3/2(1 + LH) evaluations, where LH is the Lipschitz constant of the Hessian of

� log(⇡).8

5 Simulations

We test our algorithm against other sampling algorithms on a synthetic dataset for logistic regression.
The dataset consists of T = 1000 data points in dimension d = 20. We compare the marginal
accuracies of the algorithms.

The data is generated as follows. First, ✓ ⇠ N(0, Id), b ⇠ N(0, 1) are randomly generated. For each
1  t  T , a feature vector xt 2 Rd and output yt 2 {0, 1} are generated by

xt,i ⇠ Bernoulli
⇣ s
d

⌘
1  i  d, (2)

yt ⇠ Bernoulli(�(✓>xt + b)), (3)

where the sparsity is s = 5 in our simulations, and �(x) = 1
1+e�x is the logistic function. We chose

xt 2 {0, 1}d because in applications, features are often indicators.

The algorithms are tested in an online setting as follows. At epoch t each algorithm has access
to xs,i, ys for s  t, and attempts to generate a sample from the posterior distribution pt(✓) /
e�

k✓k2
2 e�

b2

2
Q

t

s=1 �(✓
>xt + b); the time is limited to t = 0.1 seconds. We estimate the quality of

the samples at t = T = 1000, by saving the state of the algorithm at t = T � 1, and re-running it
1000 times to collect 1000 samples. We replicate this entire simulation 8 times, and the marginal
accuracies of the runs are given in Figure 1.

The marginal accuracy (MA) is a heuristic to compare accuracy of samplers (see e.g. [DMS17],
[FOW11] and [CR+17]). The marginal accuracy between the measure µ of a sample and the target ⇡
is MA(µ,⇡) := 1� 1

2d

P
d

i=1 kµi�⇡ikTV, where µi and ⇡i are the marginal distributions of µ and ⇡
for the coordinate xi. Since MALA is known to sample from the correct stationary distribution for the
class of distributions analyzed in this paper, we let ⇡ be the estimate of the true distribution obtained
from 1000 samples generated from running MALA for a long time (1000 steps). We estimate the TV
distance by the TV distance between the histograms when the bin widths are 0.25 times the sample
standard deviation for the corresponding coordinate of ⇡.

8The bounds of [CFM+18] are given for sampling within a specified Wasserstein error, not TV error. The
bounds we give here are the number of gradient evaluations one would need if one samples with Wasserstein
error e" which roughly corresponds to TV error "; roughly, one requires e" = O("/

p
T) to sample with TV error ".
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Algorithm Mean marginal accuracy
SGLD 0.442

Online Laplace 0.571
MALA 0.901

Polya-Gamma 0.921
Online SAGA-LD 0.921(our algorithm)

Full Laplace 0.924

Figure 1: Marginal accuracies of 5 different sampling algorithms on online logistic regression, with
T = 1000 data points, dimension d = 20, and time 0.1 seconds, averaged over 8 runs. SGLD and
online Laplace perform much worse and are not pictured.
We compare our online SAGA-LD algorithm with SGLD, full and online Laplace approximation,
Pólya-Gamma, and MALA. The Laplace method approximates the target distribution with a multivari-
ate Gaussian distribution. Here, one first finds the mode of the target distribution using a deterministic
optimization technique and then computes the Hessianr2Ft of the log-posterior at the mode. The
inverse of this Hessian is the covariance matrix of the Gaussian. In the online version of the algorithm,
given in [CL11], to speed up optimization, only a quadratic approximation (with diagonal Hessian)
to the log-posterior is maintained. The Pólya-Gamma chain [DFE18] is a Markov chain specialized
to sample from the posterior for logistic regression. Note that in contrast, our algorithm works more
generally for any smooth probability distribution over Rd.

Our results show that our online SAGA-LD algorithm is competitive with the best samplers for
logistic regression, namely, the Pólya-Gamma Markov chain and the full Laplace approximation. We
note that the full Laplace approximation requires optimizing a sum of t functions, which has runtime
that scales linearly with t at each epoch, while our method only scales as polylog(t).

The parameters are as follows. The step size at epoch t is 0.1
1+0.5t for MALA, 0.01

1+0.5t for SGLD, and
0.05

1+0.5t for online SAGA-LD. A smaller step size must be used with SGLD because of the increased
variance. For MALA, a larger step size can be used because the Metropolis-Hastings acceptance step
ensures the stationary distribution is correct. The batch size for SGLD and online SAGA-LD is 64.
The step sizes ⌘0 were chosen by hand from testing various values in the range from 0.001 to 1.0.
We found the reset step of our online SAGA-LD algorithm, and the random number of steps, to be
unnecessary in practice, so the results are reported for our online SAGA-LD algorithm without these
features. The experiments were run on Fujitsu CX2570 M2 servers with dual, 14-core 2.4GHz Intel
Xeon E5 2680 v4 processors with 384GB RAM running the Springdale distribution of Linux.

6 Conclusion and future work

In this paper we obtain logarithmic-in-T bounds at each epoch when sampling from a sequence of
log-concave distributions ⇡t / e�

Pt
k=0 fk , improving on previous results which are linear-in-T in

the online setting. Since we do not assume the ft’s are strongly convex, we also obtain bounds which
have an improved dependence on T for a wider range of applications including Bayesian logistic
regression. While our assumption of Lipschitz gradients requires the target to have full support on
Rd, one can also consider extending our polylog(T ) bounds to log-densities supported on a compact
set. Restricting the distribution to have compact support can cause the target distribution’s covariance
matrix to become increasingly ill-conditioned as the number of functions t increases. To overcome
this, we could modify our algorithm by including an adaptive pre-conditioner which changes along
with the target distribution.
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