
A Model Details390

We use a convolutional encoder for part capsules and a set transformer encoder (Lee et al., 2019) for391

object capsules. Decoding from object capsule to part capsules is done with MLPs, while the input392

image is reconstructed with affine-transformed learned templates. Details of the architectures we393

used are available in Table 3.394

Table 3: Architecture details. S in the last column means that the entry is the same as for SVHN.395

Dataset MNIST SVHN CIFAR10

num templates 24 24 32
template size 11× 11 14× 14 S
num capsules 24 32 64
part CNN 2x(128:2)-2x(128:1) 2x(128:1)-2x(128:2) S
set transformer 3x(1-16)-256 3x(2-64)-128 S

396

We use ReLu nonlinearities except for presence probabilities, for which we use sigmoids. (128:2) for397

a CNN means 128 channels with a stride of two. All kernels are 3× 3. For set transformer (1-16)-256398

means one attention head, 16 hidden units and 256 output units; it uses layer normalization (Ba et al.,399

2016) as in the original paper (Lee et al., 2019) but no dropout. We use a 4 layer CNN as the primary400

encoder with ReLU nonlinearities. All layers have a kernel size of 3× 3 and the last two of them401

have a stride of 2. Templates are 11× 11 for MNIST and 14× 14 for SVHN and CIFAR10.402

For SVHN and CIFAR10, we use normalized sobel filtered images as the target of the reconstruction403

to emphasize the shape importance. Fig. 6 shows examples of svhn reconstruction and templates.404

The filtering procedure is as follows: 1) apply sobel filtering, 2) subtract the median color, 3) take the405

absolute value from the image, 4) normalize for image values to be ∈ [0, 1]406

All models are trained with the RMSProp optimizer (Tieleman and G. Hinton, 2012). We run407

hyper-parameter search on learning rates in the range of .00005 to .0005 and exponential learning408

rate decay of 0.96 every 10000 or 30000 weight updates. The linear transformation accuracy on a409

validation set is used as a proxy to select the best hyperparameters.410

B Attention-based Pooling Encoder411

The part object encoder described in Section 2.2 consists of a CNNs followed by attention-based412

pooling. The intuition that has lead to this design is that it should be possible to instantiate a given part413

capsule in any place in the image. Therefore, we have a CNN which predicts feature maps of capsule414

parameters as well as single-channel attention masks for every part capsule. The attention mask is415

multiplied with the parameter feature map of the corresponding part capsule, which effectively allows416

to choose parameters from a specific location in the image.417

Table 4 contains results of an ablation study, where we use a CNN which is followed by a different418

kind of a predictor: either a fully-connected layer or 1× 1 convolutions with global average pooling.419

Changing the type of the part encoder does not affect performance on the original task much but it420

has significant impact on generalization to novel viewpoints.421

Table 4: Ablation of the part capsule encoder. Study conditions are the same as in Section 3.3.422

Method MNIST 40× 40 MNIST AFFNIST

full model 97.0 (.87) 98.5 (.1) 92.2 (.59)

linear part enc 94.8 (3.0) 98.1 (.26) 76.3 (2.22)
conv part enc 96.3 (.85) 97.8 (.95) 80.1 (2.58)
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Figure 7: Constellation Autoencoder. The set
transformer encoder hcaps predicts parame-
ters of two object capsules, which predict
affine transformations, precisions and pres-
ences of object and part capsules. Finally,
input points are explained by a mixture of
predictions, where the size of the circle cor-
responds to its precision.
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Figure 6: Caption427
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