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Abstract

This paper focuses on Bayesian Optimization (BO) for objectives on combinatorial
search spaces, including ordinal and categorical variables. Despite the abundance
of potential applications of Combinatorial BO, including chipset configuration
search and neural architecture search, only a handful of methods have been pro-
posed. We introduce COMBO, a new Gaussian Process (GP) BO. COMBO
quantifies “smoothness” of functions on combinatorial search spaces by utilizing
a combinatorial graph. The vertex set of the combinatorial graph consists of all
possible joint assignments of the variables, while edges are constructed using the
graph Cartesian product of the sub-graphs that represent the individual variables.
On this combinatorial graph, we propose an ARD diffusion kernel with which the
GP is able to model high-order interactions between variables leading to better
performance. Moreover, using the Horseshoe prior for the scale parameter in the
ARD diffusion kernel results in an effective variable selection procedure, making
COMBO suitable for high dimensional problems. Computationally, in COMBO
the graph Cartesian product allows the Graph Fourier Transform calculation to
scale linearly instead of exponentially.We validate COMBO in a wide array of real-
istic benchmarks, including weighted maximum satisfiability problems and neural
architecture search. COMBO outperforms consistently the latest state-of-the-art
while maintaining computational and statistical efficiency.

1 Introduction

This paper focuses on Bayesian Optimization (BO) [42] for objectives on combinatorial search
spaces consisting of ordinal or categorical variables. Combinatorial BO [21] has many applications,
including finding optimal chipset configurations, discovering the optimal architecture of a deep
neural network or the optimization of compilers to embed software on hardware optimally. All these
applications, where Combinatorial BO is potentially useful, feature the following properties. They
(i) have black-box objectives for which gradient-based optimizers [47] are not amenable, (ii) have
expensive evaluation procedures for which methods with low sample efficiency such as, evolution
[12] or genetic [9] algorithms are unsuitable, and (iii) have noisy evaluations and highly non-linear
objectives for which simple and exact solutions are inaccurate [5, 11, 40].

Interestingly, most BO methods in the literature have focused on continuous [29] rather than combi-
natorial search spaces. One of the reasons is that the most successful BO methods are built on top of
Gaussian Processes (GPs) [22, 33, 42]. As GPs rely on the smoothness defined by a kernel to model
uncertainty [37], they are originally proposed for, and mostly used in, continuous input spaces. In
spite of the presence of kernels proposed on combinatorial structures [17, 25, 41], to date the relation
between the smoothness of graph signals and the smoothness of functions defined on combinatorial
structures has been overlooked and not been exploited for BO on combinatorial structures. A simple
solution is to use continuous kernels and round them up. This rounding, however, is not incorporated
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when computing the covariances at the next BO iteration [14], leading to unwanted artifacts. Further-
more, when considering combinatorial search spaces the number of possible configurations quickly
explodes: for M categorical variables with k categories the number of possible combinations scales
with O(kM ). Applying BO with GPs on combinatorial spaces is, therefore, not straightforward.

We propose COMBO, a novel Combinatorial BO designed to tackle the aforementioned problems
of lack of smoothness and computational complexity on combinatorial structures. To introduce
smoothness of a function on combinatorial structures, we propose the combinatorial graph. The
combinatorial graph comprises sub-graphs –one per categorical (or ordinal) variable– later com-
bined by the graph Cartesian product. The combinatorial graph contains as vertices all possible
combinatorial choices. We define then smoothness of functions on combinatorial structures to be
the smoothness of graph signals using the Graph Fourier Transform (GFT) [35]. Specifically, we
propose as our GP kernel on the graph a variant of the diffusion kernel, the automatic relevance
determination(ARD) diffusion kernel, for which computing the GFT is computationally tractable
via a decomposition of the eigensystem. With a GP on a graph COMBO accounts for arbitrarily
high order interactions between variables. Moreover, using the sparsity-inducing Horseshoe prior [6]
on the ARD parameters COMBO performs variable selection and scales up to high-dimensional.
COMBO allows for accurate, efficient and large-scale BO on combinatorial search spaces.

In this work, we make the following contributions. First, we show how to introduce smoothness
on combinatorial search spaces by introducing combinatorial graphs. On top of a combinatorial
graph we define a kernel using the GFT. Second, we present an algorithm for Combinatorial BO
that is computationally scalable to high dimensional problems. Third, we introduce individual scale
parameters for each variable making the diffusion kernel more flexible. When adopting a sparsity
inducing Horseshoe prior [6, 7], COMBO performs variable selection which makes it scalable to
high dimensional problems. We validate COMBO extensively on (i) four numerical benchmarks,
as well as two realistic test cases: (ii) the weighted maximum satisfiability problem [16, 39], where
one must find boolean values that maximize the combined weights of satisfied clauses, that can be
made true by turning on and off the variables in the formula, (iii) neural architecture search [10, 48].
Results show that COMBO consistently outperforms all competitors.

2 Method

2.1 Bayesian optimization with Gaussian processes

Bayesian optimization (BO) aims at finding the global optimum of a black-box function f over a
search space X , namely, xopt = arg minx∈X f(x). At each round, a surrogate model attempts to
approximate f(x) based on the evaluations so far, D = {(xi, yi = f(xi))}. Then an acquisition
function suggests the most promising point xi+1 that should be evaluated. The D is appended by the
new evaluation, D = D∪({xi+1, yi+1)}. The process repeats until the evaluation budget is depleted.

The crucial design choice in BO is the surrogate model that models f(·) in terms of (i) a predictive
mean to predict f(·), and (ii) a predictive variance to quantify the prediction uncertainty. With a GP
surrogate model, we have the predictive mean µ(x∗ | D) = K∗D(KDD + σ2

nI)−1y and variance
σ2(x∗ | D) = K∗∗ −K∗D(KDD + σ2

nI)−1KD ∗ where K∗∗ = K(x∗,x∗), [K∗D]1,i = K(x∗,xi),
KD ∗ = (K∗D)T , [KDD]i,j = K(xi,xj) and σ2

n is the noise variance.

2.2 Combinatorial graphs and kernels

In BO on continuous search spaces the most popular surrogate models rely on GPs [22, 33, 42]. Their
popularity does not extend to combinatorial spaces, although kernels on combinatorial structures
have also been proposed [17, 25, 41]. To design an effective GP-based BO algorithm on combina-
torial structures, a space of smooth functions –defined by the GP– is needed. We circumvent this
requirement by the notion of the combinatorial graph defined as a graph, which contains all possible
combinatorial choices as its vertices for a given combinatorial problem. That is, each vertex corre-
sponds to a different joint assignment of categorical or ordinal variables. If two vertices are connected
by an edge, then their respective set of combinatorial choices differ only by a single combinatorial
choice. As a consequence, we can now revisit the notion of smoothness on combinatorial structures
as smoothness of a graph signal [8, 35] defined on the combinatorial graph. On a combinatorial graph,
the shortest path is closely related to the Hamming distance.
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The combinatorial graph To construct the combinatorial graph, we first define one sub-graph per
combinatorial variable Ci, G(Ci). For a categorical variable Ci, the sub-graph G(Ci) is chosen to be
a complete graph while for an ordinal variable we have a path graph. We aim at building a search
space for combinatorial choices, i.e., a combinatorial graph, by combining sub-graphs G(Ci) in such
way that a distance between two adjacent vertices corresponds to a change of a value of a single
combinatorial variable. It turns out that the graph Cartesian product [15] ensures this property. Then,
the graph Cartesian product of subgraphs G(Cj) = (Vj , Ej) is defined as G = (V, E) = �i G(Ci),
where V = ×i Vi and (v1 = (c

(1)
1 , · · · , c(1)

N ), v2 = (c
(2)
1 , · · · , c(2)

N )) ∈ E if and only if ∃j such that
∀i 6= j c

(1)
i = c

(2)
i and (c

(1)
j , c

(2)
j ) ∈ Ej .

As an example, let us consider a simplistic hyperparameter optimization problem for learning a
neural network with three combinatorial variables: (i) the batch size, c1 ∈ C1 = {16, 32, 64},
(ii) the optimizer c2 ∈ C2 = {AdaDelta,RMSProp,Adam} and (iii) the learning rate annealing
c3 ∈ C3 = {Constant,Annealing}. The sub-graphs {G(Ci)}i=1,2,3 for each of the combinatorial
variables, as well as the final combinatorial graph after the graph Cartesian product, are illustrated
in Figure 1. For the ordinal batch size variable we have a path graph, whereas for the categorical
optimizer and learning rate annealing variables we have complete graphs. The final combinatorial
graph contains all possible combinations for batch size, optimizer and learning rate annealing.

Figure 1: Combinatorial Graph: graph Cartesian product of sub-graphs G(C1)�G(C2)�G(C3)

Cartesian product and Hamming distance The Hamming distance is a natural choice of distance
on categorical variables. With all complete sub-graphs, the shortest path between two vertices in the
combinatorial graph is exactly equivalent to the Hamming distance between the respective categorical
choices.
Theorem 2.2.1. Assume a combinatorial graph G = (V, E) constructed from categorical variables,
C1, . . . , CN , that is, G is a graph Cartesian product �i G(Ci) of complete sub-graphs {G(Ci)}i.
Then the shortest path s(v1, v2;G) between vertices v1 = (c

(1)
1 , · · · , c(1)

N ), v2 = (c
(2)
1 , · · · , c(2)

N ) ∈ V
on G is equal to the Hamming distance between (c

(1)
1 , · · · , c(1)

N ) and (c
(2)
1 , · · · , c(2)

N ).

Proof. The proof of Theorem 2.2.1 could be found in Supp. 1

When there is a sub-graph which is not complete, the below result follows from the Thm. 2.2.1:
Corollary 2.2.1. If a sub-graph is not a complete graph, then the shortest path is equal to or bigger
than the Hamming distance.

The combinatorial graph using the graph Cartesian product is a natural search space for combinatorial
variables that can encode a widely used metric on combinatorial variables like Hamming distance.

Kernels on combinatorial graphs. In order to define the GP surrogate model for a combinatorial
problem, we need to specify a a proper kernel on a combinatorial graph G = (V, E). The role of
the surrogate model is to smoothly interpolate and extrapolate neighboring data. To define a smooth
function on a graph, i.e., a smooth graph signal f : V 7→ R, we adopt Graph Fourier Transforms
(GFT) from graph signal processing [35]. Similar to Fourier analysis on Euclidean spaces, GFT can
represent any graph signal as a linear combination of graph Fourier bases. Suppressing the high
frequency modes of the eigendecomposition approximates the signal with a smooth function on
the graph. We adopt the diffusion kernel which penalizes basis-functions in accordance with the
magnitude of the frequency [25, 41].

To compute the diffusion kernel on the combinatorial graph G, we need the eigensystem of graph
Laplacian L(G) = DG −AG , where AG is the adjacency matrix and DG is the degree matrix of
the graph G. The eigenvalues {λ1, λ2, · · · , λ| V |} and eigenvectors {u1, u2, · · · , u| V |} of the graph
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Laplacian L(G) are the graph Fourier frequencies and bases, respectively. Eigenvectors paired with
large eigenvalues correspond to high-frequency Fourier bases. The diffusion kernel is defined as

k([p], [q]|β) =
∑n

i=1
e−βλiui([p])ui([q]), (1)

from which it is clear that higher frequencies, λi � 1, are penalized more. In a matrix form, with
Λ = diag(λ1, · · · , λ| V |) and U = [u1, · · · , u| V |], the kernel takes the following form:

K(V,V) = U exp(−βΛ)UT , (2)
which is the Gram matrix on all vertices whose submatrix is the Gram matrix for a subset of vertices.

2.3 Scalable combinatorial Bayesian optimization with the graph Cartesian product

The direct computation of the diffusion kernel is infeasible because it involves the eigendecomposition
of the Laplacian L(G), an operation with cubic complexity with respect to the number of vertices
| V |. As we rely on the graph Cartesian product �i Gi to construct our combinatorial graph, we can
take advantage of its properties and dramatically increase the efficiency of the eigendecomposition
of the Laplacian L(G). Further, due to the construction of the combinatorial graph, we can propose
a variant of the diffusion kernel: automatic relevance determination (ARD) diffusion kernel. The
ARD diffusion kernel has more flexibility in its modeling capacity. Moreover, in combination with
the sparsity-inducing Horseshoe prior [6] the ARD diffusion kernel performs variable selection
automatically that allows to scale to high dimensional problems.

Speeding up the eigendecomposition with graph Cartesian products. Direct computation of
the eigensystem of the Laplacian L(G) naively is infeasible, even for problems of moderate size. For
instance, for 15 binary variables, eigendecomposition complexity is O(| V |3) = (215)3.

The graph Cartesian product allows to improve the scalability of the eigendecomposition. The
Laplacian of the Cartesian product of two sub-graphs G1 and G2, G1�G2, can be algebraically
expressed using the Kronecker product ⊗ and the Kronecker sum ⊕ [15]:

L(G1�G2) = L(G1)⊕ L(G2) = L(G1)⊗ I1 + I2 ⊗ L(G2), (3)

where I denotes the identity matrix. Considering the eigensystems {(λ(1)
i , u

(1)
i )} and {(λ(2)

j , u
(2)
j )}

of G1 and G2, respectively, the eigensystem of G1�G2 is {(λ(1)
i + λ

(2)
j , u

(1)
i ⊗ u

(2)
j )}. Given Eq. (3)

and matrix exponentiation, for the diffusion kernel of m categorical (or ordinal) variables we have

K = exp
(
− β

⊕m

i=1
L(Gi)

)
=
⊗m

i=1
exp

(
− β L(Gi)

)
. (4)

This means we can compute the kernel matrix by calculating the Kronecker product per sub-graph
kernel. Specifically, we obtain the kernel for the i-th sub-graph from the eigendecomposition of its
Laplacian as per eq. (2).

Importantly, the decomposition of the final kernel into the Kronecker product of individual kernels in
Eq. (4) leads to the following proposition.
Proposition 2.3.1. Assume a graph G = (V, E) is the graph cartesian product of sub-graphs
G = �i,Gi. The graph Fourier Transform of G can be computed in O(

∑m
i=1 |Vi|3) while the direct

computation takes O(
∏m
i=1 |Vi|3).

Proof. The proof of Proposition 2.3.1 could be found in the Supp. 1.

Variable-wise edge scaling. We can make the kernel more flexible by considering individual
scaling factors {βi}, a single βi for each variable. The diffusion kernel then becomes:

K = exp
(⊕m

i=1
−βi L(Gi)

)
=
⊗m

i=1
exp

(
− βi L(Gi)

)
, (5)

where βi ≥ 0 for i = 1, . . . ,m. Since the diffusion kernel is a discrete version of the exponential
kernel, the application of the individual βi for each variable is equivalent to the ARD kernel [27, 31].
Hence, we can perform variable (sub-graph) selection automatically. We refer to this kernel as the
ARD diffusion kernel.

Prior on βi. To determine βi, and to prevent GP with ARD kernel from overfitting, we apply
posterior sampling with a Horseshoe prior [6] on the {βi}. The Horseshoe prior encourages sparsity,
and, thus, enables variable selection, which, in turn, makes COMBO statistically scalable to high
dimensional problems. For instance, if βi is set to zero, then L(Gi) does not contribute in Eq (5).
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Algorithm 1 COMBO: Combinatorial Bayesian Optimization on the combinatorial graph
1: Input: N combinatorial variables {Ci}i=1,··· ,N
2: Set a search space and compute Fourier frequencies and bases: # See Sect. 2.2
3: B Set sub-graphs G(Ci) for each variables Ci.
4: B Compute eigensystem {(λ(i)

k , u
(i)
k )}i,k for each sub-graph G(Ci)

5: B Construct the combinatorial graph G = (V, E) = �i G(Ci) using graph Cartesian product.
6: Initialize D.
7: repeat
8: Fit GP using ARD diffusion kernel to D with slice sampling : µ(v∗| D), σ2(v∗| D)
9: Maximize acquisition function : vnext = arg maxv∗∈V a(µ(v∗| D), σ2(v∗| D))

10: Evaluate f(vnext), append to D = D∪{(vnext, f(vnext))}
11: until stopping criterion

2.4 COMBO algorithm

We present the COMBO approach in Algorithm 1. More details about COMBO could be found in
the Supp. Sections 2 and 3.

We start the algorithm with defining all sub-graphs. Then, we calculate GFT (line 4 of Alg. 1),
whose result is needed to compute the ARD diffusion kernel, which could be sped up due to the
application of the graph Cartesian product. Next, we fit the surrogate model parameters using slice
sampling [30, 32] (line 8). Sampling begins with 100 steps of the burn-in phase. With the updated D
of evaluated data, 10 points are sampled without thinning. More details on the surrogate model fitting
are given in Supp. 2.

Last, we maximize the acquisition function to find the next point for evaluation (line 9). For this
purpose, we begin with evaluating 20,000 randomly selected vertices. Twenty vertices with highest
acquisition values are used as initial points for acquisition function optimization. We use the breadth-
first local search (BFLS), where at a given vertex we compare acquisition values on adjacent vertices.
We then move to the vertex with the highest acquisition value and repeat until no acquisition value on
adjacent vertices are higher than the acquisition value at the current vertex. BFLS is a local search,
however, the initial random search and multi-starts help to escape from local minima. In experiments
(Supp. 3.1) we found that BFLS performs on par or better than non-local search, while being more
efficient.

In our framework we can use any acquisition function like GP-UBC, the Expected Improvement
(EI) [37], the predictive entropy search [18] or knowledge gradient [49]. We opt for EI that generally
works well in practice [40].

3 Related work

While for continuous inputs, X ⊆ RD, there exist efficient algorithms to cope with high-dimensional
search spaces using Gaussian processes(GPs) [33] or neural networks [44], few Bayesian Optimiza-
tion(BO) algorithms have been proposed for combinatorial search spaces [2, 4, 20].

A basic BO approach to combinatorial inputs is to represent all combinatorial variables using one-hot
encoding and treating all integer-valued variables as values on a real line. Further, for the integer-
valued variables an acquisition function considers the closest integer for the chosen real value. This
approach is used in Spearmint [42]. However, applying this method naively may result in severe
problems, namely, the acquisition function could repeatedly evaluate the same points due to rounding
real values to an integer and the one-hot representation of categorical variables. As pointed out in
[14], this issue could be fixed by making the objective constant over regions of input variables for
which the actual objective has to be evaluated. The method was presented on a synthetic problem
with two integer-valued variables, and a problem with one categorical variable and one integer-valued
variable. Unfortunately, it remains unclear whether this approach is suitable for high-dimensional
problems. Additionally, the proposed transformation of the covariance function seems to be better
suited for ordinal-valued variables rather than categorical variables, further restricting the utility of
this approach. In contrast, we propose a method that can deal with high-dimensional combinatorial
(categorical and/or ordinal) spaces.
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Another approach to combinatorial optimization was proposed in BOCS [2] where the sparse Bayesian
linear regression was used instead of GPs. The acquisition function was optimized by a semi-definite
programming or simulated annealing that allowed to speed up the procedure of picking new points
for next evaluations. However, BOCS has certain limitations which restrict its application mostly to
problems with low order interactions between variables. BOCS requires users to specify the highest
order of interactions among categorical variables, which inevitably ignores interaction terms of orders
higher than the user-specified order. Moreover, due to its parametric nature, the surrogate model of
BOCS has excessively large number of parameters even for moderately high order (e.g., up to the 4th
or 5th order). Nevertheless, this approach achieved state-of-the-art results on four high-dimensional
binary optimization problems. Different from [2], we use a non-parametric regression, i.e., GPs and
perform variable selection both of which give more statistical efficiency.

4 Experiments

We evaluate COMBO on two binary variable benchmarks, one ordinal and one multi-categorical
variable benchmarks, as well as in two realistic problems: weighted Maximum Satisfiability and
Neural Architecture Search. We convert all into minimization problems. We compare SMAC [20],
TPE [4], Simulated Annealing (SA) [45], as well as with BOCS (BOCS-SDP and BOCS-SA3)1 [2].
All details regarding experiments, baselines and results are in the supplementary material. The code
is available at: https://github.com/QUVA-Lab/COMBO

4.1 Bayesian optimization with binary variables 2

Table 1: Results on the binary benchmarks (Mean ± Std.Err. over 25 runs)
CONTAMINATION CONTROL ISING SPARSIFICATION

METHOD λ = 0 λ = 10−4 λ = 10−2 λ = 0 λ = 10−4 λ = 10−2

SMAC 21.61±0.04 21.50±0.03 21.68±0.04 0.152±0.040 0.219±0.052 0.350±0.045
TPE 21.64±0.04 21.69±0.04 21.84±0.04 0.404±0.109 0.444±0.095 0.609±0.107
SA 21.47±0.04 21.49±0.04 21.61±0.04 0.095±0.033 0.117±0.035 0.334±0.064
BOCS-SDP 21.37±0.03 21.38±0.03 21.52±0.03 0.105±0.031 0.059±0.013 0.300±0.039

COMBO 21.28±0.03 21.28±0.03 21.44±0.03 0.103±0.035 0.081±0.028 0.317±0.042

Contamination control The contamination control in food supply chain is a binary optimization
problem with 21 binary variables (≈ 2.10×106 configurations) [19], where one can intervene at each
stage of the supply chain to quarantine uncontaminated food with a cost. The goal is to minimize
food contamination while minimizing the prevention cost. We set the budget to 270 evaluations
including 20 random initial points. We report results in Table 1 and figures in Supp. 4.1.2. COMBO
outperforms all competing methods. Although the optimizing variables are binary, there exist higher
order interactions among the variables due to the sequential nature of the problem, showcasing the
importance of the modelling flexibility of COMBO.

Ising sparsification A probability mass function(p.m.f) p(x) can be defined by an Ising model Ip.
In Ising sparsification, we approximate the p.m.f p(z) of Ip with a p.m.f q(z) of Iq . The objective is
the KL-divergence between p and q with a λ-parameterized regularizer: L(x) = DKL(p||q)+λ‖x‖1.
We consider 24 binary variable Ising models on 4× 4 spin grid (≈ 1.68× 107 configurations) with a
budget of 170 evaluations, including 20 random initial points. We report results in Table 1 and figures
in Supp. 4.1.1. We observe that COMBO is competitive, obtaining slightly worse results, probably
because in Ising sparsification there exist no complex interactions between variables.

1We exclude BOCS from ordinal/multi-categorical experiments, because at the time of the paper submission
the open source implementation provided by the authors did not support ordinal/multi-categorical variables. For
the explanation on how to use BOCS for ordinal/multi-categorical variables, please refer to the supplementary
material of [2].

2In [34], the workshop version of this paper, we found that the methods were compared on different sets
of initial evaluations and different objectives coming from the random processes involved in the generation of
objectives, which turned out to be disadvantageous to COMBO. We reran these experiments making sure that
all methods are evaluated on the same set of 25 pairs of an objective and a set of initial evaluations.
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4.2 Bayesian optimization with ordinal and multi-categorical variables

Table 2: Non-binary benchmarks results
(Mean ± Std.Err. over 25 runs).

METHOD BRANIN PEST CONTROL

SMAC 0.6962±0.0705 14.2614±0.0753
TPE 0.7578±0.0844 14.9776±0.0446
SA 0.4659±0.0211 12.7154±0.0918

COMBO 0.4113±0.0012 12.0012±0.0033

We exclude BOCS, as the open source implementation provided by
the authors does not support ordinal/multi-categorical variables.

Ordinal variables The Branin benchmark is an op-
timization problem of a non-linear function over a
2D search space [21]. We discretize the search space,
namely, we consider a grid of points that leads to an
optimization problem with ordinal variables. We set
the budget to 100 evaluations and report results in Ta-
ble 2 and Figure 9 in the Supp. COMBO converges
to a better solution faster and with better stability.

Multi-categorical variables The Pest control is a modified version of the contamination control
with more complex, higher-order variable interactions, as detailed in Supp. 4.2.2. We consider 21 pest
control stations, each having 5 choices (≈ 4.77× 1014 combinatorial choices). We set the budget to
320 including 20 random initial points. Results are in Table 2 and Figure 10 in the Supp. COMBO
outperforms all methods and converges faster.

4.3 Weighted maximum satisfiability

The satisfiability (SAT) problem is an important combinatorial optimization problem, where one
decides how to set variables of a Boolean formula to make the formula true. Many other optimization
problems can be reformulated as SAT/MaxSAT problems. Although highly successful, specialized
MaxSAT solvers [1] exist, we use MaxSAT as a testbed for BO evaluation. We run tests on three
benchmarks from the Maximum Satisfiability Competition 2018.3 The wMaxSAT weights are unit
normalized. All evaluations are negated to obtain a minimization problem. We set the budget to 270
evaluations including 20 random initial points. We report results in Table 3 and Figures in Supp. 4.3,
and runtimes on wMaxSAT43 in the figure next to Table 3.on wMaxSAT28 (Figure 14 in the Supp.)4

Table 3: (left) Negated wMaxSAT Minimum and (right) Runtime VS. Minimum on wMaxSAT43.

Method wMaxSAT28 wMaxSAT43 wMaxSAT60

SMAC -20.05±0.67 -57.42±1.76 -148.60±1.01
TPE -25.20±0.88 -52.39±1.99 -137.21±2.83
SA -31.81±1.19 -75.76±2.30 -187.55±1.50
BOCS-SDP -29.49±0.53 -51.13±1.69 -153.67±2.01
BOCS-SA3 -34.79±0.78 -61.02±2.28a N.Ab

COMBO -37.80±0.27 -85.02±2.14 -195.65±0.00
a 270 evaluations were not finished after 168 hours.
b Not tried due to the computation time longer than wMaxSAT43.

COMBO performs best in all cases. BOCS benefits from third-order interactions on wMaxSAT28 and
wMaxSAT43. However, this comes at the cost of large number of parameters [2], incurring expensive
computations. When considering higher-order terms BOCS suffers severely from inefficient training.
This is due to a bad ratio between the number of parameters and number of training samples (e.g., for
the 43 binary variables case BOCS-SA3/SA4/SA5 with, respectively, 3rd/4th/5th order interactions,
has 13288/136698/1099296 parameters to train). In contrast, COMBO models arbitrarily high order
interactions thanks to GP’s nonparametric nature in a statistically efficient way.

Focusing on the largest problem, wMaxSAT60 with ≈ 1.15× 1018 configurations, COMBO main-
tains superior performance. We attribute this to the sparsity-inducing properties of the Horseshoe
prior, after examining non sparsity-inducing priors (Supp.4.3). The Horseshoe prior helps COMBO
attain further statistical efficiency. We can interpret this reductionist behavior as the combinatorial
version of methods exploiting low-effective dimensionality [3] on continuous search spaces [46].

The runtime –including evaluation time– was measured on a dual 8-core 2.4 GHz (Intel Haswell
E5-2630-v3) CPU with 64 GB memory using Python implementations. SA, SMAC and TPE are
faster but inaccurate compared to BOCS. COMBO is faster than BOCS-SA3, which needed 168
hours to collect around 200 evaluations. COMBO–modelling arbitrarily high-order interactions– is
also faster than BOCS-SDP constrained up-to second-order interactions only.

3https://maxsat-evaluations.github.io/2018/benchmarks.html
4The all runtimes were measured on Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz with python codes.
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We conclude that in the realistic maximum satisfiablity problem COMBO yields accurate solutions
in reasonable runtimes, easily scaling up to high dimensional combinatorial search problems.

4.4 Neural architecture search

Figure 2: Result for Neural Architecture
Search (Mean ± Std.Err. over 4 runs)

Last, we compare BO methods on a neural archi-
tecture search (NAS) problem, a typical combi-
natorial optimization problem [48]. We compare
COMBO with BOCS, as well as Regularized Evo-
lution (RE) [38], one of the most successful evolu-
tionary search algorithm for NAS [48]. We include
Random Search (RS) which can be competitive in
well-designed search spaces [48]. We do not com-
pare with the BO-based NASBOT [23]. NASBOT
focuses exclusively on NAS problems and optimizes
over a different search space than ours using an op-
timal transport-based metric between architectures,
which is out of the scope for this work.

Table 4: (left) Connectivity (X – no connection, O – states are connected), (right) Computation type.
IN H1 H2 H3 H4 H5 OUT

IN - O X X X O X
H1 - - X O X X O
H2 - - - X O X X
H3 - - - - X O X
H4 - - - - - O O
H5 - - - - - - X

OUT - - - - - - -

MAXPOOL CONV

SMALL ID ≡ MAXPOOL(1×1) CONV(3×3)

LARGE MAXPOOL(3×3) CONV(5×5)

For the considered NAS problem we aim at finding the optimal cell comprising of one input node
(IN), one output node (OUT) and five possible hidden nodes (H1–H5). We allow connections from
IN to all other nodes, from H1 to all other nodes and so one. We exclude connections that could cause
loops. An example of connections within a cell can be found in Table. 4 on the left, where the input
state IN connects to H1, H1 connects to H3 and OUT, and so on. The input state and output state
have identity computation types, whereas the computation types for the hidden states are determined
by combination of 2 binary choices from the table on the right of Table. 4. In total, the search space
consists of 31 binary variables, 21 for the connectivities and 2 for 5 computation types.

The objective is to minimize the classification error on validation set of CIFAR10 [26] with a penalty
on the amount of FLOPs of a neural network constructed with a given cell. We search for an
architecture that balances accuracy and computational efficiency. In each evaluation, we construct a
cell, and stack three cells to build a final neural network. More details are given in the Supp. 4.4.

In Figure 2 we can notice that COMBO outperforms other methods significantly. BOCS-SDP
and RS exhibit similar performance, confirming that for NAS modeling high-order interactions
between variables is crucial. Furthermore, COMBO outperforms the specialized RE, one of the most
successful evolutionary search (ES) algorithms shown to perform better on NAS than reinforcement
learning (RL) algorithms [38, 48]. When increasing the number of evaluations to 500, RE still cannot
reach the performance of COMBO with 260 evaluations, see Figure 17 in the Supp. A possible
explanation for such behavior is the high sensitivity to choices of hyperparameters of RE, and ES
requires far more evaluations in general. Details about RE hyperparameters can be found in the
Supp. 4.4.

Due to the difficulty of using BO on combinatoral structures, BOs have not been widely used for
NAS with few exceptions [23]. COMBO’s performance suggests that a well-designed general
combinatorial BO can be competitive or even better in NAS than ES and RL, especially when
computational resources are constrained. Since COMBO is applicable to any set of combinatorial
variables, its use in NAS is not restricted to the typical NASNet search space. Interestingly, COMBO
can approximately optimize continuous variables by discretization, as shown in the ordinal variable
experiment, thus, jointly optimizing the architecture and hyperparameter learning.
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5 Conclusion

In this work, we propose COMBO, a Bayesian Optimization method for combinatorial search spaces.
To the best of our knowledge, COMBO is the first Bayesian Optimization algorithm using Gaussian
Processes as a surrogate model suitable for problems with complex high order interactions between
variables. To efficiently tackle the exponentially increasing complexity of combinatorial search
spaces, we rest upon the following ideas: (i) we represent the search space as the combinatorial graph,
which combines sub-graphs given to all combinatorial variables using the graph Cartesian product.
Moreover, the combinatorial graph reflects a natural metric on categorical choices (Hamming distance)
when all combinatorial variables are categorical. (ii) we adopt the GFT to define the “smoothness” of
functions on combinatorial structures. (iii) we propose a flexible ARD diffusion kernel for GPs on
the combinatorial graph with a Horseshoe prior on scale parameters, which makes COMBO scale up
to high dimensional problems by performing variable selection. All above features together make
that COMBO outperforms competitors consistently on a wide range of problems. COMBO is a
statistically and computationally scalable Bayesian Optimization tool for combinatorial spaces, which
is a field that has not been extensively explored.
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