
A SMILe Algorithm

A.1 Algorithm Boxes

The full Meta-IRL algorithm for SMILe is described in Algorithm 1, where Algorithms 2 and 3
denote discriminator and policy update subroutines respectively. We find it crucial to regularize
the discriminator model using a gradient penalty term [14] which we weight by the default factor
of 10. LGP in the Algorithm box below refers to this regularization term, and Ldisc denotes the
discriminator objective. λGP is set to 10 for every SMILe model trained in this work. In the
UpdateDiscriminator function, sampling transitions has a different meaning depending on whether
we operate in the state-only or State-Action setting; in the state-action case transitions are (s, a) pairs
and in the state-only case, transitions are state-next-state pairs (s, s′).

Algorithm 1: SMILe
Meta-Policy πθ
Meta-Discriminator Dψ

Context Encoder of Disciminator Encφ
Meta-Training tasks {Ti}Ni=1

Aquire expert demonstrations per task {Bexp
i }Ni=1

Initialize per task replay buffers {Bi}Ni=1
// Populate buffers with initial rollouts
for every T ∈ {Ti}Ni=1 do

for j times do
E ← Environment for task T
Sample a context C for task T
Do rollout with policy πθ(a|s, Encφ(C)) inside environment E
Add rollout to replay buffer for task T

end
end
// Train loop
while not converged do

for m times do
T ∼ Unif({Ti}Ni=1)
E ← Environment for task T
Sample a context C for task T
Do rollout with policy πθ(a|s, Encφ(C)) inside environment E
Add rollout to replay buffer for task T

end
for d times do

UpdateDiscriminator()
UpdatePolicy()

end
end

A.2 Context Encoder

Inspired by the use of permutation-invariant encoders in recent meta-learning literature [10, 13], our
encoder is composed of two models, one encoding individual transitions (s, a, s′), and a second
aggregating these embeddings. Let TransitionEncoder : S × A × S → Rd and Aggregator :
Rd → Rk both be embedding functions modelled by MLPs with linear output layers5. Let C be a
context composed of multiple expert trajectories {τ i}Pi=1. Let (sit, a

i
t, s

i
t+1) be the state, action, and

next state of timestep t for trajectory i. We use

vC = Aggregator
(P∑
i=1

1

T

T∑
j=1

TransitionEncoder(sit, a
i
t, s

i
t+1)

)
(7)

5We found linear output layers to be important for TransitionEncoder in particular

12

Algorithm 2: UpdateDiscriminator

Uniformly sample a batch of tasks {Ti}Ki=1

{Trexp
i }Ki=1 ← Sample M expert transitions per task from provided demonstrations

{Trπi }Ki=1 ← Sample M policy transitions per task from replay buffers
for Ti ∈ {Ti}Ki=1 do

Sample context Ci for task Ti
end
// Discriminator objective term
L1:K
disc ← 1

K

∑
i Ldisc

(
{Trexp

i }Ki=1, {Trπi }Ki=1, Encφ(Ci)
)

// Gradient penalty term
L1:K
GP ← 1

K

∑
i LGP

(
{Trexp

i }Ki=1, {Trπi }Ki=1, Encφ(Ci)
)

ψ ← ψ − αψ∇ψ
(
L1:K
disc + λGPL1:K

GP

)
φ← φ− αφ∇φL1:K

disc

Algorithm 3: UpdatePolicy

Uniformly sample a batch of tasks {Ti}Ki=1

{Ci}Ki=1 ← Sample context Ci for each task
{Trπi }Ki=1 ← Sample M transitions (s, a, s′, terminal) per task from the task replay buffers
To each sampled transition add the corresponding reward computed as
r ← log Dψ(s, a)− log (1−Dψ(s, a)) or r ← log Dψ(s, s′)− log (1−Dψ(s, s′))
depending on whether we operate in the state-action or state-only setting

Using transitions in {Trπi }Ki=1 update the policy, Q function, and Value function parameters using
Soft-Actor-Critic update step

Method 4 demos, 20 sub 16 demos, 20 sub 64 demos, 20 sub 64 demos, 1 sub
Meta-BC (MSE) 0.931 ± 0.620 0.643 ± 0.410 0.468 ± 0.274 0.340 ± 0.188
Meta-BC (MLE) 1.481 ± 0.859 1.467 ± 0.832 1.281 ± 0.798 1.488 ± 0.864
SMILe (State-Action) 0.181 ± 0.095 0.125 ± 0.060 0.102 ± 0.100 0.118 ± 0.078
SMILe (State-Only) 0.186 ± 0.107 0.113 ± 0.058 0.121 ± 0.086 0.138 ± 0.074

Table 3: In the HalfCheetah Random Velocity task, the MSE variant of the baseline performs significantly
better than the MLE variant.

as the representation for C. As this embedding method is fully differentiable, the encoder and
discriminator can be trained end-to-end with backpropagation.

A.3 Soft-Actor-Critic

As our RL algorithm we chose to use Soft-Actor-Critic (SAC) [16]. All optimization parameters used
were default except for the reward scale which was lightly tuned per experiment. We used the policy
parameterization where given a state, the policy outputs mean and diagonal covariance parameters
for a Tanh(Normal(µ(s),Σ(s))) distribution. We used the double Q function approach. The target
value function was updates in the “soft manner" using the default weight 0.005.

B Meta-BC and Meta-DAgger

As mentioned, for each experiment, the Meta-BC baseline is obtained by composing the SMILe
encoder (Section A.2) and policy models. Meta-BC model are trained end-to-end with either
the maximum-likelihood6 or mean-squared error objective, depending on which results in better
performance; we found that for the HalfCheetah Random Velocity and Ant 2D Goal experiments the
MSE objective resulted in better policy performance (as demonstrated in Table 3 and Figure 3).

6Note that given a state s, the policy output is the distribution Tanh(Normal(µ(s),Σ(s)))

13

Meta-BC (MLE) Meta-BC (MSE)

Figure 3: In the Ant 2D Goal experiment, the Meta-BC baselines perform better when trained with the MSE
objective than with the MLE objective.

B.1 Meta-BC Algorithm

The Meta-BC training procedure is described in Algorithm 4. Lobj may refer to either the maximum-
likelihhod or mean-squared error objectives.

Algorithm 4: Meta-BC
Meta-Policy πθ
Context Encoder Encφ
Meta-Training tasks {Ti}Ni=1

Aquire expert demonstrations per task {Bexp
i }Ni=1

// Train loop
while not converged do

Uniformly sample a batch of tasks {Ti}Ki=1

{Ci}Ki=1 ← Sample context Ci for each task
{Tri}Ki=1 ← Sample M state-action pairs per task from the expert denomstrations
L1:K
obj ← 1

K

∑
i Lobj

(
{Tri}Ki=1, Encφ(Ci)

)
ψ ← ψ − αψ∇ψ

(
L1:K
obj

)
φ← φ− αφ∇φL1:K

obj

end

B.2 Meta-DAgger

The Meta-DAgger algorithm is very similar to the Meta-BC algorithm. The main difference is that
after each epoch we generate a set of rollouts using the policy at that point. The states visited in these
rollouts are labelled with an action using the expert policies and added to the dataset for performing
supervised learning (Behavioural Cloning).

C HalfCheetah Random Velocity

C.1 Data

The expert for this task was trained using SAC [16] by concatenating the target velocity to the
observations. As noted we evaluated different models by training on various amounts of expert
demonstrations. At each data amount, we normalized the states of meta-train demos, meta-test demos,
and the environment using the mean and standard deviations computed from the meta-train demos.

14

C.2 Evaluation Protocol

Each model is trained with 4 random seeds on each dataset size. To evaluate each run, per eval task,
for every context size from 1 to 4, for 3 different samples of the context, we do 5 rollouts with th
conditional policy. For each timestep of every rollout, the absolute difference between the velocity
and target velocity is computed. All such computed values are averaged to obtain the evaluation
metric per random seed. Table results show the mean and std of this values across seeds.

C.3 Dependence on Context Size

Figure 4 demonstrates that for this task, additional gains are not made from conditioning on more
expert demonstrations.

Figure 4: Delta from target velocity given different context sizes. For HalfCheetah random velocity
problem, there is little dependence on the number of context trajectories provided to the model.
This plot contains results when models are train using the largest amount of expert demonstrations
(64 demonstrations per task with subsampling 1 (i.e. no subsampling)). Results are similarly flat
regardless of the amount of expert demonstrations used to train models. Due to the mistake detailed
in the caption of Table 3, the Meta-BC results do not match those in the table presented in the main
document. As noted in the caption of Table 3, this mistake will be fixed in the main document given
first opportunity.

D Ant 2D Navigation

D.1 Data

Separate experts for each task were trained using SAC [16]. As noted we evaluated different models
by training on various amounts of expert demonstrations. At each data amount, we normalized
the states of meta-train demos, meta-test demos, and the environment using the mean and standard
deviations computed from the meta-train demos.

D.2 Ant 2D Navigation Evaluation Protocol

Each model is trained with 4 random seeds per dataset size. We evaluate each seed as follows: For
each meta-test direction, sample 3 contexts. For each context do 10 rollouts with the conditional
policy and compute the closest the agent comes to the target. The mean of these 30 rollouts is the
performance of the seed for that target. Plots show mean and std of these values.

D.3 RL is Not Sufficient

To demonstrate the Imitation Learning is necessary for solving this task, we train an RL algorithms
using SAC [16] that receives as part of its state the target goal location. The reward function is 1.0

15

Figure 5: An RL algorithm that observes as part of its state the goal location cannot solve this task due
to the sparsity of the rewards. Imitation Learning is necessary to overcome the exploration problem.

if the agent is within 0.5 radius of the target and 0 otherwise. Figure 5 demonstrates that indeed
Imitation Learning is necessary to overcome the exploration problem in this task.

E Walker Random Dynamics

E.1 Data

To generate expert demonstrations, we initially experimented with training a single expert policy
that receives as part of its state representation the randomization parameters used. However, we
observed that the final performance of this expert varied significantly on different environments. This
could be due to the difficulty of the particular dynamics, or due to subpotimal training of the expert
policy. To remove this confounding factor, we decided to train separate expert policies for each of the
meta-train and meta-test tasks. We normalized the states of meta-train demos, meta-test demos, and
the environment using the mean and standard deviations computed from the meta-train demos.

E.2 Task Design

The dynamics randomizations we perform are identical to the ones found in, https://github.
com/dennisl88/rand_param_envs, also used in [25]. Note that the Walker environment in this
repository uses a timestep rate of 5 instead of the typical 4. We also use 5 timestep rate and keep this
in mind when training all models, including experts and the baseline policy used for our evaluation
metric.

E.3 Evaluation Protocol

Both variants of SMILe and the Meta-BC baseline were trained using 3 random seeds. Each random
seed of each approach was evaluated on the meta-test dynamics. Per dynamics settings, 4 contexts
were samples and per context the conditional policy was used to generate 4 trajectories. The average
return obtained was used as the performance of that random seed on that task/dynamics.

F Ant Linear Classification

F.1 Data

As discussed, expert demonstrations were generated using two of the experts trained for the Ant
2D Goal experiment. We normalized the states of meta-train demos, meta-test demos, and the
environment using the mean and standard deviations computed from the meta-train demos.

F.2 Evaluation Protocol

Both variants of SMILe and the Meta-BC baseline were trained using 3 random seeds. Each random
seed of each approach was evaluated on the meta-test tasks. For each meta-test task, for 4 times we
did the following: We sampled 12 expert trajectories. For every i from 1 to 12 we did the following:
we took the first i trajectories as the context, and evaluated the conditional policy on 20 rollouts. The
success rate from all these rollouts was considered the success rate on this meta-test task.

16

https://github.com/dennisl88/rand_param_envs
https://github.com/dennisl88/rand_param_envs

Architectures & Hyperparameters HalfCheetah Rand Vel Ant 2D Goal Walker Random Dynamics Ant Linear Classification
TransitionEncoder out dim 64 64 64 128
TransitionEncoder arch 2 lay - 256 dim - relu - bn 2 lay - 256 dim - relu - bn 2 lay - 256 dim - relu - bn 2 lay - 256 dim - relu - bn
Aggregator out dim 64 64 64 64
Aggregator arch 1 lay - 64 dim - relu - bn 1 lay - 64 dim - relu - bn 2 lay - 64 dim - relu - bn 2 lay - 64 dim - relu - bn
Disc arch 3 lay - 512 dim - relu 3 lay - 512 dim - relu 3 lay - 512 dim - relu 3 lay - 1024 dim - relu
Policy arch (Q, V fn’s same) 3 lay - 256 dim - relu 3 lay - 512 dim - relu 3 lay - 512 dim - relu 3 lay - 256 dim - relu
Expert Policy arch (Q, V fn’s same) 3 lay - 256 dim - relu 3 lay - 256 dim - relu 2 lay - 256 dim - relu 3 lay - 256 dim - relu
Rollouts per task before training 1 125 25 16
Rollouts between update cycles 5 32 25 8
Max episode length 1000 100 1000 50
Replay buffer size per task 50000 64000 50000 2500
Number of updates per cycle 100 400 1000 50
Number of tasks used per update 8 8 10 8
Discriminator batch size per task [80,128] 250 100 [144,256]
Policy batch size per task 128 128 100 256
SAC reward scale 24.0 4.0 20.0 4.0
Discriminator Logit Clamp Range [-10,10] [-10,10] [-10,10] [-10,10]

Table 4: Various hyperparameters and model sizes used for experimental results

G Hyperparameters

G.1 Optimization Parameters

For all SMILe models we use the Adam optimizer [18] with a learning rate of 3e-4, and default
β2 = 0.999 parameter. However, we find it beneficial to use different β1 parameters for the different
models; for the discriminator we set β1 to 0, for the encoder to 0.9, and for the policy to 0.25. These
β1 parameters were chosen through a small hyperparameter searches at early stages of this work,
tuned on toy proof-of-concept tasks. Works such as [11] may provide additional insight. The gradient
penalty regularization term was weighted by a factor of 10.

For the Meta-BC and Meta-DAgger we use the Adam optimizer [18] with learning rate 3e-4,
β1 = 0.9, and β2 = 0.999. We also tried β1 = 0 and β1 = 0.25 but did not obtain gains.

G.2 Table of Hyperparameters

As there are many model architectures and hyperparameters to consider, we performed very little (or
none) tuning of most of the choices outlined in Table 4. When implementing a new experiment, we
would mainly tune the SAC reward scale, discriminator architecture, policy architecture, and encoder
architecture, typically in that order. For the Ant 2D Goal task, we found that number of “Rollouts per
task before training" should not be small (e.g. 1-5), but we don’t expect such a large number of 125
to be necessary either. We also made very little attempt at searching over dimensionality of model
layers. It is almost certain that much smaller models could perform as well as ours.

The MLPs used for TransitionEncoder and Aggregator end with an additional linear fully
connected layer mapping to the output dimension. The MLPs used for policy architectures end with
two separate linear fully connected layers for outputting the mean and diagonal covariance of the
action distributions.

For the HalfCheetah Random Velocity and Ant Linear Classification tasks, the “Discriminator batch
size per task" entry in the table is a range since the context size for these experiments is a variable
number of expert trajectories.

17

	SMILe Algorithm
	Algorithm Boxes
	Context Encoder
	Soft-Actor-Critic

	Meta-BC and Meta-DAgger
	Meta-BC Algorithm
	Meta-DAgger

	HalfCheetah Random Velocity
	Data
	Evaluation Protocol
	Dependence on Context Size

	Ant 2D Navigation
	Data
	Ant 2D Navigation Evaluation Protocol
	RL is Not Sufficient

	Walker Random Dynamics
	Data
	Task Design
	Evaluation Protocol

	Ant Linear Classification
	Data
	Evaluation Protocol

	Hyperparameters
	Optimization Parameters
	Table of Hyperparameters

