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Abstract

Monotonic neural networks have recently been proposed as a way to define in-
vertible transformations. These transformations can be combined into powerful
autoregressive flows that have been shown to be universal approximators of con-
tinuous probability distributions. Architectures that ensure monotonicity typically
enforce constraints on weights and activation functions, which enables invertibil-
ity but leads to a cap on the expressiveness of the resulting transformations. In
this work, we propose the Unconstrained Monotonic Neural Network (UMNN)
architecture based on the insight that a function is monotonic as long as its deriva-
tive is strictly positive. In particular, this latter condition can be enforced with a
free-form neural network whose only constraint is the positiveness of its output.
We evaluate our new invertible building block within a new autoregressive flow
(UMNN-MAF) and demonstrate its effectiveness on density estimation experi-
ments. We also illustrate the ability of UMNNs to improve variational inference.

1 Introduction

Monotonic neural networks have been known as powerful tools to build monotone models of a
response variable with respect to individual explanatory variables [Archer and Wang, 1993, Sill,
1998, Daniels and Velikova, 2010, Gupta et al., 2016, You et al., 2017]. Recently, strictly mono-
tonic neural networks have also been proposed as a way to define invertible transformations. These
transformations can be combined into effective autoregressive flows that can be shown to be univer-
sal approximators of continuous probability distributions. Examples include Neural Autoregressive
Flows [NAF, Huang et al., 2018] and Block Neural Autoregressive Flows [B-NAF, De Cao et al.,
2019]. Architectures that ensure monotonicity typically enforce constraints on weight and activa-
tion functions, which enables invertibility but leads to a cap on the expressiveness of the resulting
transformations. For neural autoregressive flows, this does not impede universal approximation but
typically requires either complex conditioners or a composition of multiple flows.

Nevertheless, autoregressive flows defined as stacks of reversible transformations have proven
to be quite efficient for density estimation of empirical distributions [Papamakarios et al., 2019,
2017, Huang et al., 2018], as well as to improve posterior modeling in Variational Auto-Encoders
(VAE) [Germain et al., 2015, Kingma et al., 2016, Huang et al., 2018]. Practical successes of these
models include speech synthesis [van den Oord et al., 2016, Oord et al., 2018], likelihood-free infer-
ence [Papamakarios et al., 2019], probabilistic programming [Tran et al., 2017] and image genera-
tion [Kingma and Dhariwal, 2018]. While stacking multiple reversible transformations improves the
capacity of the full transformation to represent complex probability distributions, it remains unclear
which class of reversible transformations should be used.

In this work, we propose a class of reversible transformations based on a new Unconstrained Mono-
tonic Neural Network (UMNN) architecture. We base our contribution on the insight that a function
is monotonic as long as its derivative is strictly positive. This latter condition can be enforced with
a free-form neural network whose only constraint is for its output to remain strictly positive.

We summarize our contributions as follows:
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• We introduce the Unconstrained Monotonic Neural Network (UMNN) architecture, a new
reversible scalar transformation defined via a free-form neural network.

• We combine UMNN transformations into an autoregressive flow (UMNN-MAF) and we
demonstrate competitive or state-of-the-art results on benchmarks for normalizing flows.

• We empirically illustrate the scalability of our approach by applying UMNN on high di-
mensional density estimation problems.

2 Unconstrained monotonic neural networks

Our primary contribution consists in a neural network architecture that enables learning arbitrary
monotonic functions. More specifically, we want to learn a strictly monotonic scalar function
F (x;ψ) : R → R without imposing strong constraints on the expressiveness of the hypothesis

class. In UMNNs, we achieve this by only imposing the derivative f(x;ψ) = ∂F (x;ψ)
∂x

to remain of
constant sign or, without loss of generality, to be strictly positive. As a result, we can parameterize
the bijective mapping F (x;ψ) via its strictly positive derivative f(x;ψ) as

F (x;ψ) =

∫ x

0

f(t;ψ) dt +F (0;ψ)
︸ ︷︷ ︸

β

, (1)

where f(t;ψ) : R → R+ is a strictly positive parametric function and β ∈ R is a scalar. We make
f arbitrarily complex using an unconstrained neural network whose output is forced to be strictly
positive through an ELU activation unit increased by 1. ψ denotes the parameters of this neural
network.

Forward integration The forward evaluation of F (x;ψ) requires solving the integral in Equa-
tion (1). While this might appear daunting, such integrals can often be efficiently approximated nu-
merically using Clenshaw-Curtis quadrature. The better known trapezoidal rule, which corresponds
to the two-point Newton-Cotes quadrature rule, has an exponential convergence when the integrand
is periodic and the range of integration corresponds to its period. Clenshaw-Curtis quadrature takes
advantage of this property by using a change of variables followed by a cosine transform. This
extends the exponential convergence of the trapezoidal rule for periodic functions to any Lipschitz
continuous function. As a result, the number of evaluation points required to reach convergence
grows with the Lipschitz constant of the function.

Backward integration Training the integrand neural network f requires evaluating the gradient of
F with respect to its parameters. While this gradient could be obtained by backpropagating directly
through the integral solver, this would also result in a memory footprint that grows linearly with the
number of integration steps. Instead, the derivative of an integral with respect to a parameter ω can
be expressed with the Leibniz integral rule:

d

dω

(
∫ b(ω)

a(ω)

f(t;ω) dt

)

= f(b(ω);ω)
d

dω
b(ω)− f(a(ω);ω)

d

dω
a(ω) +

∫ b(ω)

a(ω)

∂

∂ω
f(t;ω) dt .

(2)

Applying Equation (2) to evaluate the derivative of Equation (1) with respect to the parameters ψ,
we find

∇ψF (x;ψ) = f(x;ψ)∇ψ (x)− f(0;ψ)∇ψ (0) +

∫ x

0

∇ψf(t;ψ) dt +∇ψβ

=

∫ x

0

∇ψf(t;ψ) dt +∇ψβ. (3)

When using a UMNN block in a neural architecture, it is also important to be able to compute its
derivative with respect to its input x. In this case, applying Equation (2) leads to

d

dx
F (x;ψ) = f(x;ψ). (4)
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Equations (3) and (4) make the memory footprint for the backward pass independent from the num-
ber of integration steps, and therefore also from the desired accuracy. Indeed, instead of computing
the gradient of the integral (which requires keeping track of all the integration steps), we integrate the
gradient (which is memory efficient, as this corresponds to summing gradients at different evaluation
points). We provide the pseudo-code of the forward and backward passes using Clenshaw-Curtis
quadrature in Appendix B.

Numerical inversion In UMMNs, the modeled monotonic function F is arbitrary. As a result,
computing its inverse cannot be done analytically. However, since F is strictly monotonic, it admits
a unique inverse x for any point y = F (x;ψ) in its image, therefore inversion can be computed
efficiently with common root-finding algorithms. In our experiments, search algorithms such as the
bisection method proved to be fast enough.

3 UMNN autoregressive models

3.1 Normalizing flows

A Normalizing Flow [NF, Rezende and Mohamed, 2015] is defined as a sequence of invertible
transformations ui : R

d → R
d (i = 1, ..., k) composed together to create an expressive invertible

mapping u = u1 ◦ · · · ◦ uk : Rd → R
d. It is common for normalizing flows to stack the same

parametric functionui (with different parameters values) and to reverse variables ordering after each
transformation. For this reason, we will focus on how to build one of these repeated transformations,
which we further refer to as g : Rd → R

d.

Density estimation NFs are most commonly used for density estimation, that map empirical sam-
ples to unstructured noise. Using normalizing flows, we define a bijective mapping u(·;θ) : Rd →
R

d from a sample x ∈ R
d to a latent vector z ∈ R

d equipped with a density pZ(z). The transfor-
mation u implicitly defines a density p(x;θ) as given by the change of variables formula,

p(x;θ) = pZ(u(x;θ))
∣
∣det Ju(x;θ)

∣
∣ , (5)

where Ju(x;θ) is the Jacobian of u(x;θ) with respect to x. The resulting model is trained by

maximizing the likelihood of the data {x1, ...,xN}.

Variational auto-encoders NFs are also used in VAE to improve posterior modeling. In this case,
a normalizing flow transforms a distribution pZ into a complex distribution q which can better model
the variational posterior. The change of variables formula yields

q(u(z;θ)) = pZ(z)
∣
∣det Ju(z;θ)

∣
∣
−1

. (6)

3.2 Autoregressive transformations

To be of practical use, NFs must be composed of transformations for which the determinant of
the Jacobian can be computed efficiently, otherwise its evaluation would be running in O(d3). A
common solution consists in making the transformation g autoregressive, i.e., such that g(x;θ) can
be rewritten as a vector of d scalar functions,

g(x;θ) =
[
g1(x1;θ) . . . gi(x1:i;θ) . . . gd(x1:d;θ)

]
,

where x1:i = [x1 . . . xi]
T

is the vector including the i first elements of the full vector x. The
Jacobian of this function is lower triangular, which makes the computation of its determinant O(d).
Enforcing the bijectivity of each component gi is then sufficient to make g bijective as well.

For the multivariate density p(x;θ) induced by g(x;θ) and pZ(z), we can use the chain rule to
express the joint probability of x as a product of d univariate conditional densities,

p(x;θ) = p(x1;θ)
d−1∏

i=1

p(xi+1|x1:i;θ). (7)
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Figure 1: (a) A normalizing flow made of repeated UMNN-MAF transformations g with identical
architectures. (b) A UMNN-MAF which transforms a vector x ∈ R

3. (c) The UMNN network used
to map x3 to z3 conditioned on the embedding h3(x1:2).

When pZ(z) is a factored distribution pZ(z) =
∏d

i=1 p(zi), we identify that each component zi
coupled with the corresponding function gi encodes for the conditional p(xi|x1:i−1;θ). Autore-
gressive transformations strongly rely on the expressiveness of the scalar functions gi. In this work,
we propose to use UMNNs to create powerful bijective scalar transformations.

3.3 UMNN autoregressive transformations (UMNN-MAF)

We now combine UMNNs with an embedding of the conditioning variables to build invertible au-
toregressive functions gi. Specifically, we define

gi(x1:i;θ) = F i(xi,h
i(x1:i−1;φ

i);ψi)

=

∫ xi

0

f i(t,hi(x1:i−1;φ
i);ψi) dt +βi(hi(x1:i−1;φ

i)), (8)

where hi(·;φi) : Ri−1 → R
q is a q-dimensional neural embedding of the conditioning variables

x1:i−1 and β(·)i : Ri−1 → R. Both degenerate into constants for g1(x1). The parameters θ of the

whole transformation g(·;θ) is the union of all parameters φi and ψi. For simplicity we remove the

parameters of the networks by rewriting f i(·;ψi) as f i(·) and hi(·;φi) as hi(·).

In our implementation, we use a Masked Autoregressive Network [Germain et al., 2015, Kingma
et al., 2016, Papamakarios et al., 2017] to simultaneously parameterize the d embeddings. In what
follows we refer to the resulting UMNN autoregressive transformation as UMNN-MAF. Figure 1
summarizes the complete architecture.

Log-density The change of variables formula applied to the UMMN autoregressive transformation
results in the log-density

log p(x;θ) = log pZ(g(x;θ))
∣
∣det Jg(x;θ)

∣
∣

= log pZ(g(x;θ)) + log

∣
∣
∣
∣
∣

d∏

i=1

∂F i(xi,h
i(x1:i−1))

∂xi

∣
∣
∣
∣
∣

= log pZ(g(x;θ)) +

d∑

i=1

log f i(xi,h
i(x1:i−1)). (9)

Therefore, the transformation leads to a simple expression of (the determinant of) its Jacobian, which
can be computed efficiently with a single forward pass. This is different from FFJORD [Grathwohl
et al., 2018] which relies on numerical methods to compute both the Jacobian and the transformation
between the data and the latent space. Therefore our proposed method makes the computation of
the Jacobian exact and efficient at the same time.

Sampling Generating samples require evaluating the inverse transformation g−1(z;θ). The com-
ponents of the inverse vector xinv = g−1(z;θ) can be computed recursively by inverting each
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component of g(x;θ):

xinv
1 =

(
g1
)
−1 (

z1;h
1
)

if i = 1 (10)

xinv
i =

(
gi
)
−1 (

zi;h
i
(
xinv
1:i−1

))
if i > 1 (11)

where (gi)−1 is the inverse of gi. Another approach to invert an autoregressive model would be to
approximate its inverse with another autoregressive network [Oord et al., 2018]. In this case, the
evaluation of the approximated inverse model is as fast as the forward model.

Universality Since the proof is straightforward, we only sketch that UMNN-MAF is a univer-
sal density approximator of continuous random variables. We rely on the inverse sampling the-
orem to prove that UMNNs are universal approximators of continuously derivable (C1) mono-
tonic functions. Indeed, if UMNNs can represent any C

1 monotonic function, then they can
also represent the (inverse) cumulative distribution function of any continuous random variable.
Any continuously derivable function f : D → I can be expressed as the following integral:

f(x) =
∫ x

a
df
dx
dx + f(a), ∀x, a ∈ D. The derivative df

dx
is a continuous positive function and

the universal approximation theorem of NNs ensures it can be successfully approximated with a NN
of sufficient capacity (such as those used in UMNNs).

4 Related work

The most similar work to UMNN-MAF are certainly Neural Autoregressive Flow [NAF, Huang
et al., 2018] and Block Neural Autoregressive Flow [B-NAF, De Cao et al., 2019], which both rely
on strictly monotonic transformations for building bijective mappings. In NAF, transformations are
defined as neural networks which activation functions are all constrained to be strictly monotonic
and which weights are the output of a strictly positive and autoregressive HyperNetwork [Ha et al.,
2017]. Huang et al. [2018] shows that NAFs are universal density approximators. In B-NAF, the
authors improve on the scalability of the NAF architecture by making use of masking operations
instead of HyperNetworks. They also present a proof of the universality of B-NAF, which extends to
UMNN-MAF. Our work differs from both NAF and B-NAF in the sense that the UMNN monotonic
transformation is based on free-form neural networks for which no constraint, beyond positiveness
of the output, is enforced on the hypothesis class. This leads to multiple advantages: it enables the
use of any state-of-the-art neural architecture, simplifies weight initialization, and leads to a more
lightweight evaluation of the Jacobian.

More generally, UMNN-MAF relates to works on normalizing flows built upon autoregressive net-
works and affine transformations. Germain et al. [2015] first introduced masking as an efficient
way to build autoregressive networks, and proposed autoregressive networks for density estimation
of high dimensional binary data. Masked Autoregressive Flows [Papamakarios et al., 2017] and
Inverse Autoregressive Flows [Kingma et al., 2016] have generalized this approach to real data, re-
spectively for density estimation and for latent posterior representation in variational auto-encoders.
More recently, Oliva et al. [2018] proposed to stack various autoregressive architectures to create
powerful reversible transformations. Meanwhile, Jaini et al. [2019] proposed a new Sum-of-Squares
flow that is defined as the integral of a second order polynomial parametrized by an autoregressive
NN.

With NICE, Dinh et al. [2015] introduced coupling layers, which correspond to bijective transfor-
mations splitting the input vector into two parts. They are defined as

z1:k = x1:k and zk+1:d = eσ(x1:k) ⊙ xk+1:d + µ(x1:k), (12)

where σ and µ are two unconstrained functions R
d−k → R

d−k. The same authors introduced
RealNVP [Dinh et al., 2017], which combines coupling layers with normalizing flows and multi-
scale architectures for image generation. Glow [Kingma and Dhariwal, 2018] extends RealNVP by
introducing invertible 1x1 convolutions between each step of the flow. In this work we have used
UMNNs in the context of autoregressive architectures, however UMNNs could also be applied to
replace the linear transformation in coupling layers.

Finally, our architecture also shares a connection with Neural Ordinary Differential Equa-
tions [NODE, Chen et al., 2018]. The core idea of this architecture is to learn an ordinary dif-
ferential equation which dynamic is parameterized by a neural network. Training can be carried
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Figure 2: Density estimation and sampling with a UMNN-MAF network on 2D toy problems. Top:
Samples from the empirical distribution p(x). Middle: Learned density p(x;θ). Bottom: Sam-
ples drawn by numerical inversion. UMNN-MAF manages to precisely capture multi-modal and/or
discontinuous distributions. Sampling is possible even if the model is not invertible analytically.

out by backpropagating efficiently through the ODE solver, with constant memory requirements.
Among other applications, NODE can be used to model a continuous normalizing flow with a free-
form Jacobian as in FFJORD [Grathwohl et al., 2018]. Similarly, a UMNN transformation can be
seen as a structured neural ordinary differential equation in which the dynamic of the vector field is
separable and can be solved efficiently by direct integration.

5 Experiments

In this section, we evaluate the expressiveness of UMNN-MAF on a variety of density estimation
benchmarks, as well as for approximate inference in variational auto-encoders. The source code to
reproduce our experiments will be made available on Github at the end of the reviewing process.

Experiments were carried out using the same integrand neural network in the UMNN component

– i.e., in Equation 8, f i = f with shared weights ψi = ψ for i ∈ {1, . . . , d}. The functions
βi are taken to be equal to one of the outputs of the embedding network. We observed in our
experiments that sharing the same integrand function does not impact performance. Therefore, the

neural embedding function hi must produce a fixed size output for i ∈ {1, . . . , d}.

5.1 2D toy problems

We first train a UMNN-MAF on 2-dimensional toy distributions, as defined by Grathwohl et al.
[2018]. To train the model, we minimize the negative log-likelihood of observed data

L(θ) = −

N∑

n=1

[

log pZ(g(x
n;θ)) +

d∑

i=1

log f(xn
i ,h

i(xn
1:i−1))

]

. (13)

The flow used to solve these tasks is the same for all distributions and is composed of a single
transformation. More details can be found in Appendix A.1.

Figure 2 demonstrates that our model is able to learn a change of variables that warps a simple
isotropic Gaussian into multimodal and/or discontinuous distributions. We observe from the figure
that our model precisely captures the density of the data. We also observe that numerical inversion
for generating samples yields good results.

5.2 Density estimation

We further validate UMNN-MAF by comparing it to state-of-the-art normalizing flows. We carry
out experiments on tabular datasets (POWER, GAS, HEPMASS, MINIBOONE, BSDS300) as well
as on MNIST. We follow the experimental protocol of Papamakarios et al. [2017]. All training
hyper-parameters and architectural details are given in Appendix A.1. For each dataset, we report
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Table 1: Average negative log-likelihood on test data over 3 runs, error bars are equal to the standard
deviation. Results are reported in nats for tabular data and bits/dim for MNIST; lower is better. The
best performing architecture for each dataset is written in bold and the best performing architecture
per category is underlined. (a) Non-autoregressive models, (b) Autoregressive models, (c) Mono-
tonic and autoregressive models. UMNN outperforms other monotonic transformations on 4 tasks
over 6 and is the overall best performing model on 2 tasks over 6.

Dataset POWER GAS HEPMASS MINIBOONE BSDS300 MNIST

(a)

RealNVP - Dinh et al. [2017] −0.17±.01 −8.33±.14 18.71±.02 13.55±.49 −153.28±1.78 -

Glow - Kingma and Dhariwal [2018] −0.17±.01 −8.15±.40 19.92±.08 11.35±.07 −155.07±.03 -

FFJORD - Grathwohl et al. [2018] −0.46
±.01

−8.59
±.12

14.92
±.08

10.43
±.04

−157.40
±.19

-

(b)

MADE - Germain et al. [2015] 3.08±.03 −3.56±.04 20.98±.02 15.59±.50 −148.85±.28 2.04±.01

MAF - Papamakarios et al. [2017] −0.24±.01 −10.08±.02 17.70±.02 11.75±.44 −155.69±.28 1.89±.01

TAN - Oliva et al. [2018] −0.60
±.01

−12.06
±.02

13.78
±.02

11.01
±.48

−159.80
±.07

1.19

(c)

NAF - Huang et al. [2018] −0.62±.01 −11.96±.33 15.09±.40 8.86
±.15

−157.73±.30 -

B-NAF - De Cao et al. [2019] −0.61±.01 −12.06
±.09

14.71±.38 8.95±.07 −157.36±.03 -

SOS - Jaini et al. [2019] −0.60±.01 −11.99±.41 15.15±.1 8.90±.11 −157.48±.41 1.81

UMNN-MAF (ours) −0.63
±.01

−10.89±.7 13.99
±.21

9.67±.13 −157.98
±.01

1.13
±.02

results on test data for our best performing model (selected on the validation data). At testing time
we use a large number of integration steps (100) to compute the integral, this ensures its correctness
and avoids misestimating the performance of UMNN-MAF.

Table 1 summarizes our results, where we can see that on tabular datasets, our method is competitive
with other normalizing flows. For POWER, our architecture slightly outperforms all others. It is
also better than other monotonic networks (category (c)) on 3 tabular datasets over 5. From these
results, we could conclude that Transformation Autoregressive Networks [TAN, Oliva et al., 2018]
is overall the best method for density estimation. It is however important to note that TAN is a flow
composed of many heterogeneous transformations (both autoregressive and non-autoregressive).
For this reason, it should not be directly compared to the other models which respective results
are specific to a single architecture. However, TAN provides the interesting insight that combining
heterogeneous components into a flow leads to better results than an homogeneous flow.

Notably, we do not make use of a multi-scale architecture to train our model on MNIST. On this task,
UMNN-MAF slightly outperforms all other models by a reasonable margin. Samples generated
by a conditional model are shown on Figure 3, for which it is worth noting that UMNN-MAF is
the first monotonic architecture that has been inverted to generate samples. Indeed, MNIST can be
considered as a high dimensional dataset (d = 784) for standard feed forward neural networks which
autoregressive networks are part of. NAF and B-NAF do not report any result for this benchmark,
presumably because of memory explosion. In comparison, BSDS300, which data dimension is
one order of magnitude smaller than MNIST (63 ≪ 784), are the largest data they have tested
on. Table 2 shows the number of parameters used by UMNN-MAF in comparison to B-NAF and
NAF. For bigger datasets, UMNN-MAF requires less parameters than NAF to reach similar or better
performance. This could explain why NAF has never been used for density estimation on MNIST.

Figure 3: Samples generated by numerical in-
version of a conditional UMNN-MAF trained
on MNIST. Samples z are drawn from an
isotropic Gaussian with σ = .75. See Appendix
C for more details.

Table 2: Comparison of the number of param-
eters between NAF, B-NAF and UMNN-MAF.
In high dimensional datasets, UMNN-MAF re-
quires fewer parameters than NAF and a similar
number to B-NAF.

Dataset NAF B-NAF UMNN-MAF

POWER (d = 6) 4.14e5 3.07e5 5.09e5

GAS (d = 8) 4.02e5 5.44e5 8.15e5

HEPMASS (d = 21) 9.27e6 3.72e6 3.62e6

MINIBOONE (d = 43) 7.49e6 4.09e6 3.46e6

BSDS300 (d = 63) 3.68e7 8.76e6 1.56e7
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Table 3: Average negative evidence lower bound of VAEs over 3 runs, error bars are equal to the
standard deviation. Results are reported in bits per dim for Freyfaces and in nats for the other
datasets; lower is better. UMNN-NAF is performing slightly better than IAF but is outperformed by
B-NAF. We believe that the gap in performance between B-NAF and UMNN is due to the way the
NF is conditioned by the encoder’s output.

Dataset MNIST Freyfaces Omniglot Caltech 101

(a)

VAE - Kingma and Welling [2013] 86.65±.06 4.53±.02 104.28±.39 110.80±.46

Planar - Rezende and Mohamed [2015] 86.06±.32 4.40±.06 102.65±.42 109.66±.42

IAF - Kingma et al. [2016] 84.20±.17 4.47±.05 102.41±.04 111.58±.38

Sylvester - Berg et al. [2018] 83.32±.06 4.45±.04 99.00±.04 104.62±.29

FFJORD - Grathwohl et al. [2018] 82.82±.01 4.39±.01 98.33±.09 104.03±.43

(b)
B-NAF - De Cao et al. [2019] 83.59±.15 4.42±.05 100.08±.07 105.42±.49

UMNN-MAF (ours) 84.11±.05 4.51±.01 100.98±.13 110.45±.69

5.3 Variational auto-encoders

To assess the performance of our model, we follow the experimental setting of Berg et al. [2018] for
VAE. The encoder and the decoder architectures can be found in the appendix of their paper. In VAE
it is usual to let the encoder output the parameters of the flow. For UMNN-MAF, this would cause
the encoder output’s dimension to be too large. Instead, the encoder output is passed as additional
entries of the UMNN-MAF. Like other architectures, the UMNN-MAF also takes as input a vector
of noise drawn from an isotropic Gaussian of dimension 64.

Table 3 presents our results. It shows that on MNIST and Omniglot, UMNN-MAF slightly outper-
forms the classical VAE as well as planar flows. Moreover, on these datasets and Freyfaces, IAF,
B-NAF and UMNN-MAF achieve similar results. FFJORD is the best among all, however it is
worth noting that the roles of encoder outputs in FFJORD, B-NAF, IAF and Sylvester are all differ-
ent. We believe that the heterogeneity of the results could be, at least in part, due to the different
amortizations.

6 Discussion and summary

Static integral quadrature can be inaccurate. Computing the integral with static Clenshaw-
Curtis quadrature only requires the evaluation of the integrand at predefined points. As such, batches
of points can be processed all at once, which makes static Clenshaw-Curtis quadrature well suited
for neural networks. However, static quadratures do not account for the error made during the
integration. As a consequence, the quadrature is inaccurate when the integrand is not smooth enough
and the number of integration steps is too small. In this work, we have reduced the integration error
by applying the normalization described by Gouk et al. [2018] in order to control the Lipschitz
constant of the integrand and appropriately set the number of integration steps. We observed that as
long as the Lipschitz constant of the network does not increase dramatically (< 1000), a reasonable
number of integration steps (< 100) is sufficient to ensure the convergence of the quadrature. An
alternative solution would be to use dynamic quadrature such as dynamic Clenshaw-Curtis.

Efficiency of numerical inversion. Architectures relying on linear transformations [Papamakar-
ios et al., 2017, Kingma et al., 2016, Dinh et al., 2017, Kingma and Dhariwal, 2018] are trivially
exactly and efficiently invertible. In contrast, the UMNN transformation has no analytic inverse.
Nevertheless, it can be inverted numerically using root-finding algorithms. Since most such algo-
rithms rely on multiple nested evaluations of the function to be inverted, applying them naively to
a numerical integral would quickly become very inefficient. However, the Clenshaw-Curtis quadra-
ture is part of the nested quadrature family, meaning that the evaluation of the integral at multiple
nested points can take advantage of previous evaluations and thus be implemented efficiently. As an
alternative, Oord et al. [2018] have shown that an invertible model can always be distilled to learn its
inverse, and thus make the inversion efficient whatever the cost of inversion of the original model.

Scalability and complexity analysis. UMNN-MAF is particularly well suited for density estima-
tion because the computation of the Jacobian only requires a single forward evaluation of a NN.
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Together with the Leibniz integral rule, they make the evaluation of the log-likelihood derivative
as memory efficient as usual supervised learning, which is equivalent to a single backward pass on
the computation graph. By contrast, density estimation with previous monotonic transformations
typically requires a backward evaluation of the computation graph of the transformer NN to obtain
the Jacobian. Then, this pass must be evaluated backward again in order to obtain the log-likelihood
derivative. Both NAF and B-NAF provide a method to make this computation numerically stable,
however both fail at not increasing the size of the computation graph of the log-likelihood derivative,
hence leading to a memory overhead. The memory saved by the Leibniz rule may serve to speed
up the quadrature computation. In the case of static Clenshaw-Curtis, the function values at each
evaluation point can be computed in parallel using batch of points. In consequence, when the GPU
memory is large enough to store "meta-batches" of size d × N × B (with d the dimension of the
data, N the number of integration steps and B the batch size) the computation is approximately as
fast as a forward evaluation of the integrand network.

Summary We have introduced Unconstrained Monotonic Neural Networks, a new invertible
transformation built upon free-form neural networks allowing the use of any state-of-the-art ar-
chitecture. Monotonicity is guaranteed without imposing constraints on the expressiveness of the
hypothesis class, contrary to classical approaches. We have shown that the resulting integrated
neural network can be evaluated efficiently using standard quadrature rule while its inverse can be
computed using numerical algorithms. We have shown that our transformation can be composed
into an autoregressive flow, with competitive or state-of-the-art results on density estimation and
variational inference benchmarks. Moreover, UMNN is the first monotonic transformation that has
been successfully applied for density estimation on high dimensional data distributions (MNIST),
showing better results than the classical approaches.

We identify several avenues for improvement and further research. First, we believe that numerical
integration could be fasten up during training, by leveraging the fact that controlled numerical errors
can actually help generalization. Moreover, the UMNN transformation would certainly profit from
using a dynamic integration scheme, both in terms of accuracy and efficiency. Second, it would
be worth comparing the newly introduced monotonic transformation with common approaches for
modelling monotonic functions in machine learning. On a similar track, these common approaches
could be combined into an autoregressive flow as shown in Section 3.3. Finally, our monotonic
transformation could be used within other neural architectures than generative autoregressive net-
works, such as multi-scale architectures [Dinh et al., 2017] and learnable 1D convolutions [Kingma
and Dhariwal, 2018].
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