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Abstract

The frequent reuse of test sets in popular benchmark problems raises doubts about
the credibility of reported test-error rates. Verifying whether a learned model is
overfitted to a test set is challenging as independent test sets drawn from the same
data distribution are usually unavailable, while other test sets may introduce a
distribution shift. We propose a new hypothesis test that uses only the original test
data to detect overfitting. It utilizes a new unbiased error estimate that is based
on adversarial examples generated from the test data and importance weighting.
Overfitting is detected if this error estimate is sufficiently different from the original
test error rate. We develop a specialized variant of our test for multiclass image
classification, and apply it to testing overfitting of recent models to the popular
ImageNet benchmark. Our method correctly indicates overfitting of the trained
model to the training set, but is not able to detect any overfitting to the test set, in
line with other recent work on this topic.

1 Introduction

Deep neural networks achieve impressive performance on many important machine learning bench-
marks, such as image classification [18, 19, 28, 27, 16], automated translation [2, 31] or speech
recognition [9, 15]. However, the benchmark datasets are used a multitude of times by researchers
worldwide. Since state-of-the-art methods are selected and published based on their performance
on the corresponding test set, it is typical to see results that continuously improve over time; see,
e.g., the discussion of Recht et al. [25] and Figure 1 for the performance improvement of classifiers
published for the popular CIFAR-10 image classification benchmark [18].
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Figure 1: Accuracy of image classifiers on the CIFAR-10
test set, by year of publication (data from [25]).

This process may naturally lead to models over-
fitted to the test set, rendering test error rate
(the average error measured on the test set) an
unreliable indicator of the actual performance.
Detecting whether a model is overfitted to the
test set is challenging, since independent test
sets drawn from the same data distribution are
generally not available, while alternative test
sets often introduce a distribution shift.

To estimate the performance of a model on un-
seen data, one may use generalization bounds
to get upper bounds on the expected error rate.
The generalization bounds are also applicable
when the model and the data are dependent (e.g.,
for cross validation or for error estimates based
on the training data or the reused test data), but they usually lead to loose error bounds. Therefore,
although much tighter bounds are available if the test data and the model are independent, comparing
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confidence intervals constructed around the training and test error rates leads to an underpowered test
for detecting the dependence of a model on the test set. Recently, several methods have been proposed
that allow the reuse of the test set while keeping the validity of test error rates [10]. However, these
are intrusive: they require the user to follow a strict protocol of interacting with the test set and are
thus not applicable in the more common situation when enforcing such a protocol is impossible.

In this paper we take a new approach to the challenge of detecting overfitting of a model to the test
set, and devise a non-intrusive statistical test that does not restrict the training procedure and is based
on the original test data. To this end, we introduce a new error estimator that is less sensitive to
overfitting to the data; our test rejects the independence of the model and the test data if the new
error estimate and the original test error rate are too different. The core novel idea is that the new
estimator is based on adversarial examples [14], that is, on data points1 that are not sampled from the
data distribution, but instead are cleverly crafted based on existing data points so that the model errs
on them. Several authors showed that the best models learned for the above-mentioned benchmark
problems are highly sensitive to adversarial attacks [14, 23, 30, 6, 7, 24]: for instance, one can often
create adversarial versions of images properly classified by a state-of-the-art model such that the
model will misclassify them, yet the adversarial perturbations are (almost) undetectable for a human
observer; see, e.g., Figure 2, where the adversarial image is obtained from the original one by a
carefully selected translation.

scale, weighing machine toaster

Figure 2: Adversarial example for the ImageNet dataset
generated by a (5,−5) translation: the original example
(left) is correctly classified by the VGG16 model [27] as
“scale, weighing machine,” the adversarially generated
example (right) is classified as “toaster,” while the image
class is the same for any human observer.

The adversarial (error) estimator proposed in
this work uses adversarial examples (generated
from the test set) together with importance
weighting to take into account the change in
the data distribution (covariate shift) due to the
adversarial transformation. The estimator is un-
biased and has a smaller variance than the stan-
dard test error rate if the test set and the model
are independent.2 More importantly, since it is
based on adversarially generated data points, the
adversarial estimator is expected to differ sig-
nificantly from the test error rate if the model
is overfitted to the test set, providing a way to
detect test set overfitting. Thus, the test error
rate and the adversarial error estimate (calcu-
lated based on the same test set) must be close if the test set and the model are independent, and are
expected to be different in the opposite case. In particular, if the gap between the two error estimates
is large, the independence hypothesis (i.e., that the model and the test set are independent) is dubious
and will be rejected. Combining results from multiple training runs, we develop another method to
test overfitting of a model architecture and training procedure (for simplicity, throughout the paper
we refer to both together as the model architecture). The most challenging aspect of our method is to
construct adversarial perturbations for which we can calculate importance weights, while keeping
enough degrees of freedom in the way the adversarial perturbations are generated to maximize power,
the ability of the test to detect dependence when it is present.

To understand the behavior of our tests better, we first use them on a synthetic binary classification
problem, where the tests are able to successfully identify the cases where overfitting is present. Then
we apply our independence tests to state-of-the-art classification methods for the popular image
classification benchmark, ImageNet [8]. As a sanity check, in all cases examined, our test rejects
(at confidence levels close to 1) the independence of the individual models from their respective
training sets. Applying our method to VGG16 [27] and Resnet50 [16] models/architectures, their
independence to the ImageNet test set cannot be rejected at any reasonable confidence. This is in
agreement with recent findings of [26], and provides additional evidence that despite of the existing
danger, it is likely that no overfitting has happened during the development of ImageNet classifiers.

The rest of the paper is organized as follows: In Section 2, we introduce a formal model for error
estimation using adversarial examples, including the definition of adversarial example generators.

1Throughout the paper, we use the words “example” and “point” interchangeably.
2Note that the adversarial error estimator’s goal is to estimate the error rate, not the adversarial error rate (i.e.,

the error rate on the adversarial examples).
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The new overfitting-detection tests are derived in Section 3, and applied to a synthetic problem in
Section 4, and to the ImageNet image classification benchmark in Section 5. Due to space limitations,
some auxiliary results, including the in-depth analysis of our method on the synthetic problem, are
relegated to the appendix.

2 Adversarial Risk Estimation

We consider a classification problem with deterministic (noise-free) labels, which is a reasonable
assumption for many practical problems, such as image recognition (we leave the extension of our
method to noisy labels for future work). LetX ⊂ RD denote the input space and Y = {0, . . . ,K−1}
the set of labels. Data is sampled from the distribution P over X , and the class label is determined
by the ground truth function f∗ : X → Y . We denote a random vector drawn from P by X , and its
corresponding class label by Y = f∗(X). We consider deterministic classifiers f : X → Y . The
performance of f is measured by the zero-one loss: L(f, x) = I(f(x) 6= f∗(x)),3 and the expected
error (also known as the risk or expected risk in the learning theory literature) of the classifier f is
defined as R(f) = E[I(f(X) 6= Y )] =

∫
X L(f, x)dP(x).

Consider a test dataset S = {(X1, Y1) . . . , (Xm, Ym)}where theXi are drawn fromP independently
of each other and Yi = f∗(Xi). In the learning setting, the classifier f usually also depends on some
randomly drawn training data, hence is random itself. If f is (statistically) independent from S, then
L(f,X1), . . . , L(f,Xm) are i.i.d., thus the empirical error rate

R̂S(f) =
1

m

m∑
i=1

L(f,Xi) =
1

m

m∑
i=1

I(f(Xi) 6= Yi)

is an unbiased estimate of R(f) for all f ; that is, R(f) = E[R̂S(f)|f ]. If f and S are not indepen-
dent, the performance guarantees on the empirical estimates available in the independent case are
significantly weakened; for example, in case of overfitting to S, the empirical error rate is likely to be
much smaller than the expected error.

Another well-known way to estimate R(f) is to use importance sampling (IS) [17]: instead of
sampling from the distribution P , we sample from another distribution P ′ and correct the estimate
by appropriate reweighting. Assuming P is absolutely continuous with respect to P ′ on the set
E = {x ∈ X : L(f, x) 6= 0}, R(f) =

∫
X L(f, x)dP(x) =

∫
E
L(f, x)h(x)dP ′(x), where h = dP

dP′

is the density (Radon-Nikodym derivative) of P with respect to P ′ on E (h can be defined to have
arbitrary finite values on X \E). It is well known that the the corresponding empirical error estimator

R̂′S′(f) =
1

m

m∑
i=1

L(f,X ′i)h(X ′i) =
1

m

m∑
i=1

I(f(X ′i) 6= Y ′i )h(X ′i) (1)

obtained from a sample S′ = {(X ′1, Y ′1), . . . , (X ′m, Y
′
m)} drawn independently from P ′ is unbiased

(i.e., E[R̂S′(f)|f ] = R(f)) if f and S′ are independent.

The variance of R̂′S′ is minimized if P ′ is the so-called zero-variance IS distribution, which is
supported on E with h(x) = R(f)

L(f,x) for all x ∈ E (see, e.g., [4, Section 4.2]). This suggest that an
effective sampling distribution P ′ should concentrate on points where f makes mistakes, which also
facilitates that R̂′S′(f) become large if f is overfitted to S and hence R̂S(f) is small. We achieve this
through the application of adversarial examples.

2.1 Generating adversarial examples

In this section we introduce a formal framework for generating adversarial examples. Given a
classification problem with data distribution P and ground truth f∗, an adversarial example generator
(AEG) for a classifier f is a (measurable) mapping g : X → X such that

(G1) g preserves the class labels of the samples, that is, f∗(x) = f∗(g(x)) for P-almost all x;
(G2) g does not change points that are incorrectly classified by f , that is, g(x) = x if f(x) 6=

f∗(x) for P-almost all x.

3For an event B, I(B) denotes its indicator function: I(B) = 1 if B happens and I(B) = 0 otherwise.
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Figure 3: Generating adversarial examples. The top row depicts the original dataset S, with blue and orange
points representing the two classes. The classifier’s prediction is represented by the color of the striped areas
(checkmarks and crosses denote if a point is correctly or incorrectly classified). The arrows show the adversarial
transformations via the AEG g, resulting in the new dataset S′; misclassified points are unchanged, while some
correctly classified points are moved, but their original class label is unchanged. If the original data distribution is
uniform over S, the transformation g is density preserving, but not measure preserving: after the transformation
the two rightmost correctly classified points in each class have probability 0, while the leftmost misclassified
point in each class has probability 3/16; hence, the density hg for the latter points is 1/3.

Figure 3 illustrates how an AEG works. In the literature, an adversarial example g(x) is usually
generated by staying in a small vicinity of the original data point x (with respect to, e.g., the 2- or the
max-norm) and assuming that the resulting label of g(x) is the same as that of x (see, e.g., [14, 6]).
This foundational assumption—which is in fact a margin condition on the distribution—is captured
in condition (G1). (G2) formalizes the fact that there is no need to change samples which are already
misclassified. Indeed, existing AEGs comply with this condition.

The performance of an AEG is usually measured by how successfully it generates misclassified
examples. Accordingly, we call a point g(x) a successful adversarial example if x is correctly
classified by f and f(g(x)) 6= f(x) (i.e., L(f, x) = 0 and L(f, g(x)) = 1).

In the development of our AEGs for image recognition tasks, we will make use of another condition.
For simplicity, we formulate this condition for distributions P that have a density ρ with respect
to the uniform measure on X , which is assumed to exist (notable cases are when X is finite, or
X = [0, 1]D or when X = RD; in the latter two cases the uniform measure is the Lebesgue measure).
The assumption states that the AEG needs to be density-preserving:

(G3) ρ(x) = ρ(g(x)) for P-almost all x.

Note that a density-preserving map may not be measure-preserving (the latter means that for all
measurable A ⊂ X , P(A) = P(g(A))).

We expect (G3) to hold when g perturbs its input by a small amount and if ρ is sufficiently smooth.
The assumption is reasonable for, e.g., image recognition problems (at least in a relaxed form,
ρ(x) ≈ ρ(g(x))) where we expect that very close images will have a similar likelihood as measured
by ρ. An AEG employing image translations, which satisfies (G3), will be introduced in Section 5.
Both (G1) and (G3) can be relaxed (to a soft margin condition or allowing a slight change in ρ, resp.)
at the price of an extra error term in the analysis that follows.

For a fixed AEG g : X → X , let Pg be the distribution of g(X) where X ∼ P (Pg is known as the
pushforward measure of P under g). Further, let hg = dP

dPg
on E = {x : L(f, x) 6= 0} and arbitrary

otherwise. It is easy to see that, on E, hg(x) is well-defined and hg ≤ 1. For any measurable A ⊂ E
Pg(A) = P(g(X) ∈ A) ≥ P(g(X) ∈ A,X ∈ E) = P(X ∈ A) = P(A)

where the second to last equality holds because g(X) = X for any X ∈ E under condition (G2).
Thus, P(A) ≤ Pg(A) for any measurable A ⊂ E, which implies that hg is well-defined on E and
hg(x) ≤ 1 for all x ∈ E.

One may think that (G3) implies that hg(x) = 1 for all x ∈ E. However, this does not hold. For
example, if P is a uniform distribution, any g : X → suppP satisfies (G3), where suppP ⊂ X
denotes the support of the distribution P . This is also illustrated in Figure 3.

2.2 Risk estimation via adversarial examples

Combining the ideas of this section so far, we now introduce unbiased risk estimates based on
adversarial examples. Our goal is to estimate the error-rate of f through an adversarially generated
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sample S′ = {(X ′1, Y1), . . . , (X ′m, Ym)} obtained through an AEG g, where X ′i = g(Xi) with
X1, . . . , Xm drawn independently from P and Yi = f∗(Xi). Since g satisfies (G1) by definition, the
original example Xi and the corresponding adversarial example X ′i have the same label Yi. Recalling
that hg = dP/dPg ≤ 1 on E = {x ∈ X : L(f, x) = 1}, one can easily show that the importance
weighted adversarial estimate

R̂g(f) =
1

m

m∑
i=1

I(f(X ′i) 6= Yi)hg(X
′
i) (2)

obtained from (1) for the adversarial sample S′ has smaller variance than that of the empirical average
R̂S(f), while both are unbiased estimates of R(f). Recall that both R̂g(f) and R̂S(f) are unbiased
estimates of R(f) with expectation E[R̂g(f)] = E[R̂S(f)] = R(f), and so

V[R̂g(f)] =
1

m

(
E[L(f, g(X))2hg(g(X))2]−R(f)2

)
≤ 1

m

(
E[L(f, g(X))hg(g(X))]−R2(f)

)
=

1

m

(
R(f)−R2(f)

)
= V[R̂S(f)] .

Intuitively, the more successful the AEG is (i.e., the more classification error it induces), the smaller
the variance of the estimate R̂g(f) becomes.

3 Detecting overfitting

In this section we show how the risk estimates introduced in the previous section can be used to test
the independence hypothesis that

(H) the sample S and the model f are independent.

If (H) holds, E[R̂g(f)] = E[R̂S(f)] = R(f), and so the difference TS,g(f) = R̂g(f) − R̂S(f)
is expected to be small. On the other hand, if f is overfitted to the dataset S (in which case
R̂S(f) < R(f)), we expect R̂S(f) and R̂g(f) to behave differently (the latter being less sensitive to
overfitting) since (i) R̂g(f) depends also on examples previously unseen by the training procedure;
(ii) the adversarial transformation g aims to increase the loss, countering the effect of overfitting;
(iii) especially in high dimensional settings, in case of overfitting one may expect that there are
misclassified points very close to the decision boundary of f which can be found by a carefully
designed AEG. Therefore, intuitively, (H) can be rejected if |TS,g(f)| exceeds some appropriate
threshold.

3.1 Test based on confidence intervals

The simplest way to determine the threshold is based on constructing confidence intervals for
these estimator based on concentration inequalities. Under (H), standard concentration inequal-
ities, such as the Chernoff or empirical Bernstein bounds [3], can be used to quantify how
fast R̂S and R̂g(f) concentrate around the expected error R(f). In particular, we use the
following empirical Bernstein bound [22]: Let σ̄2

S = (1/m)
∑m
i=1(L(f,Xi) − R̂S(f))2 and

σ̄2
g = (1/m)

∑m
i=1(L(f, g(Xi))hg(g(Xi)) − R̂g(f))2 denote the empirical variance of L(f,Xi)

and L(f, g(Xi))hg(g(Xi)), respectively. Then, for any 0 < δ ≤ 1, with probability at least 1− δ,

|R̂S(f)−R(f)| ≤ B(m, σ̄2
S , δ, 1), (3)

where B(m,σ2, δ, 1) =
√

2σ2 ln(3/δ)
m + 3 ln(3/δ)

m and we used the fact that the range of L(f, x) is 1

(the last parameter of B is the range of the random variables considered). Similarly, with probability
at least 1− δ,

|R̂g(f)−R(f)| ≤ B(m, σ̄2
g , δ, 1). (4)

It follows trivially from the union bound that if the independence hypothesis (H) holds, the
above two confidence intervals [R̂S(f) − B(m, σ̄2

S , δ, 1), R̂S(f) + B(m, σ̄2
S , δ, 1)] and [R̂g(f) −
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B(m, σ̄2
g , δ, 1), R̂S(f) + B(m, σ̄2

g , δ, 1)], which both contain R(f) with probability at least 1 − δ,
intersect with probability at least 1− 2δ.

On the other hand, if f and S are not independent, the performance guarantees (3) and (4) may be
violated and the confidence intervals may become disjoint. If this is detected, we can reject the
independence hypothesis (H) at a confidence level 1− 2δ or, equivalently, with p-value 2δ. In other
words, we reject (H) if the absolute value of the difference of the estimates TS,g(f) = R̂g(f)−R̂S(f)
exceeds the threshold B(m, σ̄2

S , δ, 1) + B(m, σ̄2
g , δ, 1) (note that E[TS,g(f) = 0] if S and f are

independent).

3.2 Pairwise test

A smaller threshold for |TS,g(f)|, and hence a more effective independence test, can be devised
if instead of independently estimating the behavior of R̂S and R̂g(f), one utilizes their apparent
correlation. Indeed, TS,g(f) = (1/m)

∑m
i=1 Ti,g(f) where

Ti,g(f) = L(f, g(Xi))hg(g(Xi))− L(f,Xi) (5)

and the two terms in Ti,g(f) have the same mean and are typically highly correlated by the con-
struction of g. Thus, we can apply the empirical Bernstein bound [22] to the pairwise differences
Ti,g(f) to set a tighter threshold in the test: if the independence hypothesis (H) holds (i.e., S and f
are independent), then for any 0 < δ < 1, with probability at least 1− δ,

|TS,g(f)| ≤ B(m, σ̄2
T , δ, U) (6)

with B(m,σ2, δ, U) =
√

2σ2 ln(3/δ)
m + 3U ln(3/δ)

m , where σ̄2
T = (1/m)

∑m
i=1(Ti(f) − TS,g(f))2 is

the empirical variance of the Ti,g(f) terms and U = supTi,g(f)− inf Ti,g(f); we also used the fact
that the expectation of each Ti,g(f), and hence that of TS,g(f), is zero. Since hg ≤ 1 if L(f, x) = 1
(as discussed in Section 2.2), it follows that U ≤ 2, but further assumptions (such as g being density
preserving) can result in tighter bounds.

This leads to our pairwise dependence detection method:

if |TS,g(f)| > B(m, σ̄2
T , δ, 2), reject (H) at a confidence level 1− δ (p-value δ).

For a given statistic (|TS,g(f)|, σ̄2
T ), the largest confidence level (smallest p-value) at which (H) can

be rejected can be calculated by setting the value of the statistic |TS,g(f)| −B(m, σ̄2
T , δ, 2) to zero

and solving for δ. This leads to the following formula for the p-value (if the solution is larger than 1,
which happens when the bound (6) is loose, δ is capped at 1):

δ = min

{
1, 3e

− m
9U2

(
σ̄2
T +3U |TS,g(f)|−σ̄T

√
σ̄2
T +6U |TS,g(f)|

)}
. (7)

Note that in order for the test to work well, we not only need the test statistic TS,g(f) to have a
small variance in case of independence (this could be achieved if g were the identity), but we also
need the estimators R̂S(f) and R̂g(f) behave sufficiently differently if the independence assumption
is violated. The latter behavior is encouraged by stronger AEGs, as we will show empirically in
Section 5.2 (see Figure 5 in particular).

3.3 Dependence detector for randomized training

The dependence between the model and the test set can arise from (i) selecting the “best” random
seed in order to improve the test set performance and/or (ii) tweaking the model architecture (e.g.,
neural network structure) and hyperparameters (e.g., learning-rate schedule). If one has access to a
single instance of a trained model, these two sources cannot be disentangled. However, if the model
architecture and training procedure is fully specified and computational resources are adequate, it
is possible to isolate (i) and (ii) by retraining the model multiple times and calculating the p-value
for every training run separately. Assuming N models, let fj , j = 1, . . . , N denote the j-th trained
model and pj the p-value calculated using the pairwise independence test (6) (i.e., from Eq. 7 in
Section 3). We can investigate the degree to which (i) occurs by comparing the pj values with the
corresponding test set error rates RS(fj). To investigate whether (ii) occurs, we can average over the
randomness of the training runs.
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For every example Xi ∈ S, consider the average test statistic T̄i = 1
N

∑N
j=1 Ti,gj (fj), where

Ti,gj (fj) is the statistic (5) calculated for example Xi and model fj with AEG gj selected for model
fj (note that AEGs are model-dependent by construction). If, for each i and j, the random variables
Ti(fj) are independent, then so are the T̄i (for all i). Hence, we can apply the pairwise dependence
detector (6) with T̄i instead of Ti, using the average T̄S = (1/m)

∑m
i=1 T̄i with empirical variance

σ̄2
T,N = (1/m)

∑m
i=1(T̄i− T̄S)2, giving a single p-value pN . If the training runs vary enough in their

outcomes, different models fj err on different data points Xj , leading to σ̄2
T,N < σ̄2

T , and therefore
strengthening the power of the dependence detector. For brevity, we call this independence test an
N -model test.

4 Synthetic experiments
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Figure 4: Average p-values produced by the indepen-
dence test in a separable linear classification problem
for the cases of both when the model is independent of
(dashed lines) and, resp., dependent on (solid lines) the
test set.

First we verify the effectiveness of our method
on a simple linear classification problem. Due
to space limitations, we only convey high-level
results here, details are given in Appendix A.
We assume that the data is linearly separa-
ble with a margin and the density ρ is known.
We consider a linear classifiers of the form
f(x) = sgn(w>x + b) trained with the cross-
entropy loss c, and we employ a one-step gra-
dient method (which is an L2 version of the
fast gradient-sign method of [14, 23]) to define
our AEG g, which tries to modify a correctly
classified point x with label y in the direction
of the gradient of the cost function, yielding
x′ = x−εyw/‖w‖2, where ε ≥ 0 is the strength
of the attack. To comply with the requirements
for an AEG, we define g as follows: g(x) = x′ if L(f, x) = 0 and f∗(x) = f∗(x′) (corresponding
to (G2) and (G1), respectively), while g(x) = x otherwise. Therefore, if x′ is misclassified by f , x
and x′ are the only points mapped to x′ by g. This simple form of g and the knowledge of ρ allows to
compute the density hg , making it easy to compute the adversarial error estimate (2). Figure 4 shows
the average p-values produced by our N -model independence test for a dependent (solid lines) and
an independent (dashed lines) test set. It can be seen that in the dependent case the test can reject
independence with high confidence for a large range of attack strength ε, while the independence
hypothesis is not rejected in the case of true independence. More details (including why only a range
of ε is suitable for detecting overfitting) are given in Appendix A.

5 Testing overfitting on ImageNet

In the previous section we showed that the proposed adversarial-example-based dependence test
works for a synthetic problem where the densities can be computed exactly. In this section we apply
our estimates to a popular image classification benchmark, ImageNet [8]; here the main issue is to
find sufficiently strong AEGs that make computing the corresponding densities possible.

To facilitate the computation of the density hg , we only consider density-preserving AEGs as defined
by (G3) (recall that (G3) is different from requiring hg = 1). Since in (2) and (5), hg(x) is multiplied
by L(f, x), we only need to determine the density hg for data points that are misclassified by f .

5.1 AEGs based on translations

To satisfy (G3), we implement the AEG using translations of images, which have recently been
proposed as means of generating adversarial examples [1]. Although relatively weak, such attacks fit
our needs well: unless the images are procedurally centered, it is reasonable to assume that translating
them by a few pixels does not change their likelihood.4 We also make the natural assumption that
the small translations used do not change the true class of an image. Under these assumptions,

4Note that this assumption limits the applicability of our method, excluding such centered or essentially
centered image classification benchmarks as MNIST [20] or CIFAR-10 [18].
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translations by a few pixels satisfy conditions (G1) and (G3). An image-translating function g is a
valid AEG if it leaves all misclassified images in place (to comply with (G2)), and either leaves a
correctly classified image unchanged or applies a small translation.

The main benefit of using a translational AEG g (with bounded translations) is that its density hg(x)
for an image x can be calculated exactly by considering the set of images x′ that can be mapped to x
by g (this is due to our assumption (G3)). We considered multiple ways for constructing translational
AEGs. The best version (selected based on initial evaluations on the ImageNet training set), which
we called the strongest perturbation, seeks a non-identical neighbor of a correctly classified image
x (neighboring images are the ones that are accessible through small translations) that causes the
classifier to make an error with the largest confidence.

Formally, we model images as 3D tensors in [0, 1]W×H×C space, where C = 3 for RGB data, and
W and H are the width and height of the images, respectively. Let τv(x) denote the translation of
an image x by v ∈ Z2 pixels in the (X, Y) plane (here Z denotes the set of integers). To control
the amount of change, we limit the magnitude of translations and allow v ∈ Vε = {u ∈ Z2 :
u 6= (0, 0), ‖u‖∞ ≤ ε} only, for some fixed positive ε. Thus, we considers AEGs in the form
g(x) ∈ {τv(x) : v ∈ V} ∪ {x} if f(x) = f∗(x) and g(x) = x otherwise (if x is correctly classified,
we attempt to translate it to find an adversarial example in {τv(x) : v ∈ V} which is misclassified by
f , but x is left unchanged if no such point exists). Denoting the density of the pushforward measure
Pg by ρg , for any misclassified point x,

ρg(x) = ρ(x) +
∑
v∈V

ρ(τ−v(x))I(g(τ−v(x)) = x) = ρ(x)

(
1 +

∑
v∈V

I(g(τ−v(x)) = x)

)
where the second equality follows from (G3). Therefore, the corresponding density is

hg(x) = 1/(1 + n(x)) (8)

where n(x) =
∑
v∈V I(g(τ−v(x)) = x) is the number of neighboring images which are mapped to

x by g. Note that given f and g, n(x) can be easily calculated by checking all possible translations
of x by −v for v ∈ V . It is easy to extend the above to non-deterministic perturbations, defined as
distributions over AEGs, by replacing the indicator with its expectation P(g(τ−v(x)) = x|x, v) with
respect to the randomness of g, yielding

hg(x) =
1

1 +
∑
v∈V P(g(τ−v(x)) = x|x, v)

. (9)

If g is deterministic, we have hg(x) ≤ 1/2 for any successful adversarial example x. Hence, for such
g, the range U of the random variables Ti defined in (5) has a tighter upper bound of 3/2 instead 2 (as
Ti ∈ [−1, 1/2]), leading to a tighter bound in (6) and a stronger pairwise independence test. In the
experiments, we use this stronger test. We provide additional details about the translational AEGs
used in Appendix B.

5.2 Tests of ImageNet models

We applied our test to check if state-of-the-art classifiers for the ImageNet dataset [8] have been
overfitted to the test set. In particular, we use the VGG16 classifier of [27] and the Resnet50 classifier
of [16]. Due to computational considerations, we only analyzed a single trained VGG16 model,
while the Resnet50 model was retrained 120 times. The models were trained using the parameters
recommended by their respective authors.

The preprocessing procedure of both architectures involves rescaling every image so that the smaller
of width and height is 256 and next cropping centrally to size 224× 224. This means that translating
the image by v can be trivially implemented by shifting the cropping window by −v without any loss
of information for ‖v‖∞ ≤ 16, because we have enough extra pixels outside the original, centrally
located cropping window. This implies that we can compute the densities of the translational AEGs
for any ‖v‖∞ ≤ ε = b16/3c = 5 (see Appendix B.1 for detailed explanation). Because the ImageNet
data collection procedure did not impose any strict requirements on centering the images [8], it is
reasonable to assume (as we do) that small (lossless) translations respect the density-preserving
condition (G3).

In our first experiment, we applied our pairwise independence test (6) with the AEGs described in
Appendix B (strongest, nearest, and the two random baselines) to all 1,271,167 training examples, as
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Figure 5: p-values for the independence test on the ImageNet training set for different sample sizes and AEG
variants (left); original and adversarial risk estimates, R̂S(f) and R̂g(f), on the ImageNet training set with
97.5% two-sided confidence intervals for the ‘strongest attack’ AEG (right).

well as to a number of its randomly selected (uniformly without replacement) subsets of different
sizes. Besides this being a sanity check, we also used this experiment to select from different AEGs
and compare the performance of the pairwise independence test (6) to the basic version of the test
described in Section 3.1.

The left graph in Figure 5 shows that with the “strongest perturbation”, we were able to reject
independence of the trained model and the training samples at a confidence level very close to 1 when
enough training samples are considered (to be precise, for the whole training set the confidence level
is 99.9994%). Note, however, that the much weaker “smallest perturbation” AEG, as well as the
random transformations, are not able to detect the presence of overfitting. At the same time, the graph
on the right hand side shows the relative strength of the pairwise independence test compared to the
basic version based on independent confidence interval estimates as described in detail in Section 3.1:
the 97.5%-confidence intervals of the error estimates R̂S(f) and R̂g(f) overlap, not allowing to
reject independence at a confidence level of 95% (note that here S denotes the training set).

On the other hand, when applied to the test set, we obtained a p-value of 0.96, not allowing at all
to reject the independence of the trained model and the test set. This result could be explained by
the test being too weak, as no overfitting is detected to the training set at similar sample sizes (see
Figure 5), or simply the lack of overfitting. Similar results were obtained for Resnet50, where even
the N -model test with N = 120 independently trained models resulted a p value of 1, not allowing
to reject independence at any confidence level. The view of no overfitting can be backed up in at
least two ways: first, “manual” overfitting to the relatively large ImageNet test set is hard. Second,
since training an ImageNet model was just too computationally expensive until quite recently, only a
relatively small number of different architectures were developed for this problem, and the evolution
of their design was often driven by computational efficiency on the available hardware. On the other
hand, it is also possible that increasing N sufficiently might show evidence of overfitting (this is left
for future work).

6 Conclusions

We presented a method for detecting overfitting of models to datasets. It relies on an importance-
weighted risk estimate from a new dataset obtained by generating adversarial examples from the
original data points. We applied our method to the popular ImageNet image classification task. For
this purpose, we developed a specialized variant of our method for image classification that uses
adversarial translations, providing arguments for its correctness. Luckily, and in agreement with other
recent work on this topic [25, 26, 13, 21, 32], we found no evidence of overfitting of state-of-the-art
classifiers to the ImageNet test set.

The most challenging aspect of our methods is to construct adversarial perturbations for which we can
calculate the importance weights; finding stronger perturbations than the ones based on translations
for image classification is an important question for the future. Another interesting research direction
is to consider extensions beyond image classification, for example, by building on recent adversarial
attacks for speech-to-text methods [5], machine translation [11] or text classification [12].
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A Synthetic experiments

In this section, we present full details of the experiments on a simple synthetic classification problem,
which we presented briefly in Section 4. These experiments illustrate the power of the method of
Section 3. The advantage of the simple setup considered here is that we are able to compute the
density hg in an analytic form (see Figure 6 for an illustration).

A.1 Data distribution and model

Let X = R500 and consider an input distribution with a density ρ that is an equally weighted
mixture of two 500-dimensional isotropic truncated Gaussian distributions N trunc

± (µ±, σ
2I) with

coordinate-wise standard deviation σ =
√

500 (I denotes the identity matrix of size 500 × 500),
means µ± = [±1, 0, 0, . . . , 0] and densities ρ± truncated in the first dimension such that ρ+(x) = 0
if x1 ≤ 0.025 and ρ−(x) = 0 if x1 ≥ −0.025. The label of an input point x is f∗(x) = sgn(x1),
which is the sign of its first coordinate.

We consider linear classifiers of the form f(x) = sgn(w>x+ b) trained with the cross-entropy loss
c((w, b), x, y) = ln(1 + e−y(w>x+b)) where y = f∗(x). We employ a one-step gradient method
(which is an L2 version of the fast gradient-sign method of [14, 23]) to define our AEG g, which
tries to modify a correctly classified point x with label y in the direction of the gradient of the cost
function c: x′ = x + ε∇xc((w, b), x, y)/‖∇xc((w, b), x, y)‖2 for some ε > 0. For our specific
choice of c, the above simplifies to x′ = x− εyw/‖w‖2. To comply with the requirements for an
AEG, we define g as follows: g(x) = x′ if L(f, x) = 0 and f∗(x) = f∗(x′) (corresponding to
(G2) and (G1), respectively), while g(x) = x otherwise. Therefore, if x′ is misclassified by f , x

0 x1

x2

y = −1 y = +1

xA

x′A

xB

x′B
xC

x′C

xD

x′D

xE

x′E

w

Figure 6: Illustration of the data distribution and the linear model f(x) = sgn(w>x+ b) in two dimensions.
The blue and green gradients show the probability density ρ of the data with true labels y = −1 and y = 1,
respectively, while the white space between them is the margin with ρ = 0. The red line is the model’s
classification boundary with its parameter vector w shown by the purple arrow. Depending on the label, w or
−w is the direction of translation used to perturbed the correctly classified data points, and the translations
used by the AEG g for specific points are depicted by grey arrows: solid arrows indicate the cases where
g(x) = x′ 6= x, while dashed arrows are for candidate translations which are not performed by the AEG
because they would change the true label, f∗(x′) 6= f∗(x), and hence g(x) = x 6= x′. Each original/perturbed
data point is represented by a color-coded circle: the inner color corresponds to the true label (dark blue for
y = −1 and dark green for y = 1) while the outer color to the model’s prediction (dark blue for f(x) = −1
and dark green for f(x) = 1). Points x′A and x′B can be obtained from xA and xB , respectively, by applying
the AEG, x′A = g(xA) and x′B = g(xB). Since only xA is mapped to x′A by g, and g(x′A) = x′A, the density
(Radon-Nikodym derivative) can be obtained as hg(x

′
A) = ρ(x′A)/(ρ(xA) + ρ(x′A)) ∈ (0, 1). In the case of

x′B , hg(x
′
B) = ρ(x′B)/(ρ(xB) + ρ(x′B)) = 0 due to the margin. Note that the formula for hg(x

′
A) does not

depend on whether xA or x′A is in the original test set S; in the first case we call x′A a “successful adversarial
example” while in the second case x′A is called “originally misclassified” (a similar argument holds for hg(x

′
B)).

x′C is not a successful adversarial example since L(f, x′C) = 0 (however, g(xC) = x′C according to our
definition). Points xD and xE are not perturbed by our AEG, since f∗(xD) 6= f∗(x′D) and f∗(xE) 6= f∗(x′E).

12



and x′ are the only points mapped to x′ by g. Thus, the density at x′ after the transformation g is
ρ′(x′) = ρ(x) + ρ(x′)(1− L(f, x))I(f∗(x) = f∗(x′)) and

hg(x
′) =

ρ(x′)

ρ′(x′)
=

ρ(x′)

ρ(x′) + ρ(x)(1− L(f, x))I(f∗(x) = f∗(x′))

(note that I(L(f, x) = 0) = 1− L(f, x)).

A.2 Experiment setup

We present two experiments showing the behavior of our independence test: one where the training
and test sets are independent, and another where they are not.

In the first experiment a linear classifier was trained on a training set STr of size 500 for 50,000 steps
using the RMSProp optimizer [29] with batch size 100 and learning rate 0.01, obtaining zero (up to
numerical precision) final training loss c and, consequently, 100% prediction accuracy on the training
data. Then the trained classifier was tested on a large test set STe of size 10,000.5 Both sets were
drawn independently from ρ defined above. We used a range of ε values matched to the scale of the
data distribution: from 10−2, which is the order of magnitude of the margin between two classes
(0.05), to 102, which is the order of magnitude of the width of the Gaussian distribution used for each
classes (σ =

√
500).

In the second experiment we consider the situation where the training and test sets are not independent.
To enhance the effects of this dependence, the setup was modified to make the training process more
amenable to overfitting by simulating a situation when the model has a wrong bias (this may happen in
practice if a wrong architecture or data preprocessing method is chosen, which, despite the modeler’s
best intentions, worsens the performance). Specifically, during training we added a penalty term
104w2

1 to the training loss c, decreased the size of the test set to 1000 and used 50% of the test data
for training (the final penalized training loss was 0.25 with 100% prediction accuracy on the training
set). Note that the small training set and the large penalty on w1 yield classifiers that are essentially
independent of the only interesting feature x1 (recall that the true label of a point x is sgn(x1)) and
overfit to the noise in the data, resulting in a true model risk R(f) ≈ 1/2.

A.3 Results

The results of the two experiments are shown in Figure 7, plotted against different perturbation
strengths: the left column corresponds to the first experiment while the right column to the second.
The first row presents the p-values for rejecting the independence hypothesis, calculated by repeating
the experiment (sampling data and training the classifier) 100 times and applying the single-model
(Section 3, labelled as N = 1 in the plots) and N -model (Section 3.3, labelled as N = 2, 10, 25, 100
in the plots) independence test, and taking the average over models (or model sets of size N ) for each
ε. We also plot empirical 95% two-sided confidence intervals (N ≤ 2) or, due to limited number of
p-values available after dividing 100 runs into disjoint bins of size N ≥ 10, ranges between minimum
and maximum value (N = 10, 25). For all methods of detecting dependence, it can be seen that
for the independent case the test is correctly not able to reject the independence hypothesis (the
average p-value is very close to 1, although in some runs it can drop to as low as 0.5). On the other
hand, for 10 ≤ ε ≤ 50, the non-independent model failed the independence test at confidence level
1− δ ≈ 100%, hence, in this range of ε our independence test reliably detects overfitting.

In fact, it is easy to argue that our test should only work for a limited range of ε, that is, it should
not reject independence for too small or too large values of ε. First we consider the case of small
ε values. Notice that except for points g(x) ε-close (in L2-norm) to the true decision boundary or
the decision boundary of f , g(x) is invertible: if g(x) is correctly classified and is ε-away from the
true decision boundary, there is exactly one point, x, which is translated to g(x), while if g(x) is
incorrectly classified and ε-away from the decision boundary of f , no translation leads to g(x) and
x = g(x); any other points are ε-close to the decision boundary of either f or f∗. Thus, since ρ is
bounded, g(x) is invertible on a set of at least 1−O(ε) probability (according to ρ). When ε→ 0,
g(x) → x, and so ρ(g(x)) → ρ(x) for all points x with |x1| 6= 0.025 (since ρ is continuous in all
such x), implying hg(g(x)) ≈ 1 on these points. It also follows that L(f, x) 6= L(f, g(x)) can only

5The large number of test examples ensures that the random error in the empirical error estimate is negligible.
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Figure 7: Risk and overfitting metrics for a synthetic problem with linear classifiers as a function of the
perturbation strengths ε (log scale). Left: unbiased model tested on a large, independent test set (in this case
R̂S(f) ≈ R̂g(f) ≈ R(f)); right: trained model overfitted to the test set (R̂S(f) ≤ R̂g(f) while both are
smaller than R(f)). First row: Average p-value δ for the pairwise independence test with over 100 runs
(N = 1) or the N -model independence test (N > 1). The bounds plotted are either empirical 95% two-sided
confidence intervals (N ≤ 2) or ranges between minimum and maximum value (N = 10, 25). Second row:
Empirical two-sided 97.5% confidence intervals for the empirical test error rate R̂S(f) and the adversarial risk
estimate R̂g(f). On the left, R(f) ≈ R̂S(f), while R(f) is shown separately on the right. Third row: Average
densities (Radon-Nikodym derivatives) for originally misclassified points and for the new data points obtained
by successful adversarial transformations (with empirical 97.5% two-sided confidence intervals). Fourth row:
The empirical test error rate R̂S(f) and the adversarial risk estimate R̂g(f) for a single realization with 97.5%

two-sided confidence intervals computed from Bernstein’s inequality, the adversarial error rate R̂S′(f), and the
expected error R(f) (on the right, on the left R(f) ≈ R̂S(f)). Fifth row: Histograms of p-values for selected ε
values over 100 runs.
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happen to a set of points with an O(ε) ρ-probability. This means that L(f, g(x))hg(g(x)) ≈ L(f, x)
on a set of 1−O(ε) ρ-probability, and for these points Tg(x) = L(f, g(x))hg(g(x))− L(f, x) ≈ 0.
Thus, Tg(X) ≈ 0 with ρ-probability 1 − O(ε). Unless the test set S is concentrated in large part
on the set of remaining points with O(ε) ρ-probability, the test statistic |TS,g(f)| = O(ε) with high
probability and our method will not reject the independence hypothesis for ε→ 0.

When ε is large (ε → ∞), notice that for any point x with non-vanishing probability (i.e., with
ρ(x) > c for some c > 0), if g(x) 6= x than ρ(g(x)) ≈ 0. Therefore, for such an x, ifL(f, x) = 0 and
L(f, g(x)) = 1, hg(g(x)) = ρ(g(x))/(ρ(x) + ρ(g(x))) ≈ 0, and so Tg(x) ≈ 0 (if L(f, g(x)) = 0,
we trivially have Tg(x) = 0). If L(f, x) = 1, we have g(x) = x. If g is invertible at x then
hg(x) = 1 and Tg(x) = 0. If g is not invertible, then there is another x′ such that g(x′) = x;
however, if ρ(x) > c then ρ(x′) ≈ 0 (since ε is large), and so hg(g(x)) = ρ(x)/(ρ(x) + ρ(x′)) ≈ 1,
giving Tg(x) ≈ 0. Therefore, for large ε, Tg(X) ≈ 0 with high probability (i.e., for points with
ρ(x) > c), so the independence hypothesis will not be rejected with high probability.

To better understand the behavior of the test, the second row of Figure 7 shows the empirical test error
rate R̂S(f), the (unadjusted) adversarial error rate R̂S′(f), and the adversarial risk estimate R̂g(f),
together with their confidence intervals. For the non-independent model, we also show the expected
error R(f) (estimated over a large independent test set), while it is omitted for the independent model
where it approximately coincides with both R̂S(f) and R̂g(f). While the reweighted adversarial error
estimate R̂g(f) remains the same for all perturbations in case of an independent test set (left column),
the adversarial error rate R̂S′(f) varies a lot for both the dependent and independent test sets. For
example, in the case when the test samples and the model f are not independent, it undershoots
the true error for ε < 10 and overshoots it for larger perturbations. For very large perturbations
(ε close to 100), the behavior of R̂S′(f) depends on the model f : in the independent case R̂S′(f)

decreases back to R̂S(f) because such large perturbations increasingly often change the true label
of the original example, so less and less adversarial points are generated. In the case when the data
and the model are not independent (right column), the adversarial perturbations are almost always
successful (i.e., lead to a valid adversarial example for most originally correctly classified points),
yielding an adversarial error rate close to one for large enough perturbations. This is because the
decision boundary of f is almost orthogonal to the true decision boundary, and so the adversarial
perturbations are parallel with the true boundary, almost never changing the true label of a point.

The plots of the densities (Radon-Nikodym derivatives), given in the third row of Figure 7, show
how the change in their values compensate the increase of the adversarial error rate R̂S′(f): in the
independent case, the effect is completely eliminated yielding an unbiased adversarial error estimate
R̂g(f), which is essentially constant over the whole range of ε (as shown in the first row), while in
the non-independent case the similar densities do not bring back the adversarial error rate R̂S′(f) to
the test error rate R̂S(f), allowing the test to detect overfitting. Note that the densities exhibit similar
trends (and values) in both cases, driven by the dependence of typical values of the ρ(x)/ρ(g(x))
ratio on the perturbation strength ε for originally misclassifed points (L(f, x) = 1) and for successful
adversarial examples (i.e., L(f, x) = 0 and L(f, g(x)) = 1).

To compare the behavior of our improved, pairwise test and the basic version, the fourth row of
Figure 7 depicts a single realization of the experiments where the 97.5% confidence intervals (as
computed from Bernstein’s inequality) are shown for the estimates. For the independent case, the
confidence intervals of R̂S(f) and R̂g(f) overlap for all ε, and thus the basic test is not able to detect
overfitting. In the non-independent case, the confidence intervals overlap for ε = 10 and ε = 75, thus
the basic test is not able to detect overfitting with at a 95% confidence level, while the improved test
(second row) is able to reject the independence hypothesis for these ε values at the same confidence
level.

Finally, in the fifth row of Figure 7 we plotted the histograms of the empirical distribution of p-values
for both models, over 100 independent runs (between the runs, all the data was regenerated and the
models were retrained). For ε = 0.1, 5, 20, they concentrate heavily on either δ = 0 or δ = 1, and
have very thin tails extending far towards the opposite end of the [0, 1] interval. This explains the
surprisingly wide 95% confidence intervals for p-values plotted in the first row. In particular, the fact
that some p-values for the independent model are as low as 0.5 does not mean the independence test
is not reliable, because almost all calculated δ values are close or equal to 1, and the few outliers are

15



0.0 0.2 0.4 0.6 0.8 1.0
p-value

0

2

4

6

8

10

12

P
D

F

δ (N= 1)

δ (N= 2)

δ (N= 10)

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0

1

2

3

4

5

P
D

F

δ (N= 1)

δ (N= 2)

δ (N= 10)

independent model, ε = 10 non-independent model, ε = 6

Figure 8: Histograms of p-values from N -model (N = 1, 2, 10) independence tests for both synthetic models
and selected ε values, over 100 runs.

a combined consequence of the finite sample size and the effectiveness of the AEG. The additional
ε = 6 histogram for the non-independent model illustrates a regime which is in between the single-
model pairwise test (Section 3) completely failing to reject the independence hypothesis and clearly
rejecting it.

To verify experimentally whether the N -model independence test can be a more powerful detector of
overfitting than the single-model version, in Figure 8 (right panel) we plotted p-value histograms for
N = 1, 2, 10 for the intermediate AEG strength ε = 6 applied to the non-independent model over 100
training runs. Indeed, as N increases, the concentration of p-values around in the low (δ ≤ 0.2) range
increases. For N > 10 we did not have enough values to plot a histogram: for N = 25 we obtained
δ = 0.1851, 0.1599, 0.0661 and 0.1941, while for N = 100 the p-value is 0.1153. The increase of
the test power becomes apparent when we compare the last value with the mean of p-values obtained
by testing every training run separately, equal 0.5984, and the median 0.6385.

For comparison, we also plotted in Figure 8 (left panel) the corresponding histograms for the
independent model and a slightly higher attack strength, ε = 10, at which the independence tests fails
for the overfitted model even without averaging (see Figure 7, first row, right panel). The histograms
are all clustered in the δ region close to 1, indicating that the N -model test is not overly pessimistic.

B Translational AEGs for image classification models

For image classification we consider two translation variants that are used in constructing a transla-
tional AEG. For every correctly classified image x, we consider translations from Vε (for some ε),
choosing g(x) from the set G(x) = {τv(x) : v ∈ Vε} ∪ {x}. If all translations result in correctly
classified examples, we set g(x) = x. Otherwise, we use one of two possible ways to select g(x)
(and we call the resulting points successful adversarial examples):

• Strongest perturbation: Assuming the number of classes is K, let l(f, x) ∈ RK denote
the vector of the K class logits calculated by the model f for image x, and let lexc(f, x) =
max0≤i<K li(f, x)− ly(f, x). We define

gstrongest(x) = argmaxx′∈G(x) lexc(f, x
′),

with ties broken deterministically by choosing the first translation from the candidate set,
going top to bottom and left to right in row-major order. Thus, here we seek a non-identical
“neighbor” that causes the classifier to err the most, reachable from x by translations within
a maximum range ε.

• Nearest misclassified neighbor: Here we aim to find the nearest image in G(x) that is
misclassified. That is, letting d(x, x′) = ‖v‖2 if x′ = τv(x) and∞ otherwise, we define

gnearest(x) := argminx′∈G(x),L(f,x′)=1 d(x, x′)

with ties broken deterministically as above.

The two perturbation variants are successful on exactly the same set of images, hence they lead to
the same adversarial error rates R̂S′(f). However, they are characterized by different values of the
density hg and, consequently, yield different adversarial risk estimates R̂g(f) and associated p-values
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for the independence test. The main difference between them is that the “strongest” version is more
likely to map multiple images to the same adversarial example, thus decreasing the densities for
successful adversarial examples and, counterintuitively, increasing them for originally misclassified
points (as their neighbors are less likely to be mapped to these points).

To better see the effect of adversarial perturbations, we also consider two random baselines that do
not take into account the success of a translation in generating misclassified points: grandom(x) is
chosen uniformly at random from G(x) \ {x}, and grandom2(x) is chosen uniformly at random from
G(x).

B.1 Maximum translations

In practice, translating an image is not always simple, as the new image has to be padded with
new pixels. When (central) crops of a larger image are used (as is typical for ImageNet classifiers),
translations can easily be implemented as long as the resulting new cropping window stays within the
original image boundaries. Even if an image can be translated by a vector v, this limits our ability to
compute hg(x′) for the adversarial image x′ by (8) or (9) for gstrongest or gnearest. Indeed, if an image
x is shifted by v ∈ Vε to generate adversarial example x′, we need to examine translations of x′ with
vectors in Vε to find the neighbors x′′ of x′ potentially contributing to n(x′) when computing hg(x′).
Finally we need to consider translations of x′′ with vectors in Vε to determine the exact value they
contribute, that is, to compute the exact probabilities in (9) (see Figure 9 for an illustration). Thus,
to be able to compute the density hg for the adversarial points obtained by translations from Vε, we
might need to be able to perform translations within V3ε.

x x' x''

ε

Figure 9: Image translations which need to be considered for a translational AEG with ε = 3. The red, blue and
green balls represent the center of the original image x, adversarial example x′ = g(x) and another image x′′

contributing to ρg(x′), respectively, while the semi-translucent squares of corresponding colors represent the
possible translations which need to be considered for each of x, x′ and x′′. Solid light grey arrows represent the
relationships x′ = g(x) and x′ = g(x′′). Finally, the dashed arrow and the semi-translucent grey ball represent
an alternative mapping, which has to be ruled out while calculating the value of g(x′′) and, consequently, of
hg(x

′). It is easy to see that the colored squares (which contain the translations needing to be evaluated) extend
as far as 3ε from the original image x.
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