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Abstract

The plateau phenomenon, wherein the loss value stops decreasing during the
process of learning, has been reported by various researchers. The phenomenon is
actively inspected in the 1990s and found to be due to the fundamental hierarchical
structure of neural network models. Then the phenomenon has been thought as
inevitable. However, the phenomenon seldom occurs in the context of recent
deep learning. There is a gap between theory and reality. In this paper, using
statistical mechanical formulation, we clarified the relationship between the plateau
phenomenon and the statistical property of the data learned. It is shown that the
data whose covariance has small and dispersed eigenvalues tend to make the plateau
phenomenon inconspicuous.

1 Introduction

1.1 Plateau Phenomenon

Deep learning, and neural network as its essential component, has come to be applied to various
fields. However, these still remain unclear in various points theoretically. The plateau phenomenon
is one of them. In the learning process of neural networks, their weight parameters are updated
iteratively so that the loss decreases. However, in some settings the loss does not decrease simply, but
its decreasing speed slows down significantly partway through learning, and then it speeds up again
after a long period of time. This is called as “plateau phenomenon”. Since 1990s, this phenomena
have been reported to occur in various practical learning situations (see Figure 1 (a) and Park et al.
[2000], Fukumizu and Amari [2000]) . As a fundamental cause of this phenomenon, it has been
pointed out by a number of researchers that the intrinsic symmetry of neural network models brings
singularity to the metric in the parameter space which then gives rise to special attractors whose
regions of attraction have nonzero measure, called as Milnor attractor (defined by Milnor [1985]; see
also Figure 5 in Fukumizu and Amari [2000] for a schematic diagram of the attractor).

1.2 Who moved the plateau phenomenon?

However, the plateau phenomenon seldom occurs in recent practical use of neural networks (see
Figure 1 (b) for example).

In this research, we rethink the plateau phenomenon, and discuss which situations are likely to cause
the phenomenon. First we introduce the student-teacher model of two-layered networks as an ideal
system. Next, we reduce the learning dynamics of the student-teacher model to a small-dimensional
order parameter system by using statistical mechanical formulation, under the assumption that the
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input dimension is sufficiently large. Through analyzing the order parameter system, we can discuss
how the macroscopic learning dynamics depends on the statistics of input data. Our main contribution
is the following:

• Under the statistical mechanical formulation of learning in the two-layered perceptron, we
showed that macroscopic equations can be derived even when the statistical properties of
the input are generalized. In other words, we extended the result of Saad and Solla [1995]
and Riegler and Biehl [1995].

• By analyzing the macroscopic system we derived, we showed that the dynamics of learning
depends only on the eigenvalue distribution of the covariance matrix of the input data.

• We clarified the relationship between the input data statistics and plateau phenomenon.
In particular, it is shown that the data whose covariance matrix has small and disparsed
eigenvalues tend to make the phenomenon inconspicuous, by numerically analyzing the
macroscopic system.

1.3 Related works

The statistical mechanical approach used in this research is firstly developed by Saad and Solla
[1995]. The method reduces high-dimensional learning dynamics of nonlinear neural networks to
low-dimensional system of order parameters. They derived the macroscopic behavior of learning
dynamics in two-layered soft-committee machine and by analyzing it they point out the existence
of plateau phenomenon. Nowadays the statistical mechanical method is applied to analyze recent
techniques (Hara et al. [2016], Yoshida et al. [2017], Takagi et al. [2019] and Straat and Biehl [2019]),
and generalization performance in over-parameterized setting (Goldt et al. [2019]) and environment
with conceptual drift (Straat et al. [2018]). However, it is unknown that how the property of input
dataset itself can affect the learning dynamics, including plateaus.

Plateau phenomenon and singularity in loss landscape as its main cause have been studied by
Fukumizu and Amari [2000], Wei et al. [2008], Cousseau et al. [2008] and Guo et al. [2018]. On the
other hand, recent several works suggest that plateau and singularity can be mitigated in some settings.
Orhan and Pitkow [2017] shows that skip connections eliminate the singularity. Another work by
Yoshida et al. [2019] points out that output dimensionality affects the plateau phenomenon, in that
multiple output units alleviate the plateau phenomenon. However, the number of output elements
does not fully determine the presence or absence of plateaus, nor does the use of skip connections.
The statistical property of data just can affect the learning dynamics dramatically; for example, see
Figure 2 for learning curves with using different datasets and same network architecture. We focus
on what kind of statistical property of the data brings plateau phenomenon.
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Figure 1: (a) Training loss curves when two-layer perceptron with 4-4-3 units and ReLU activation
learns IRIS dataset. (b) Training loss curve when two-layer perceptron with 784-20-10 units and
ReLU activation learns MNIST dataset. For both (a) and (b), results of 100 trials with random
initialization are overlaid. Minibatch size of 10 and vanilla SGD (learning rate: 0.01) are used.
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Figure 2: Loss curves yielded by student-teacher learning with two-layer perceptron which has 2
hidden units, 1 output unit and sigmoid activation, and with (a) IRIS dataset, (b) MNIST dataset, (c)
a dataset in R60000×784 drawn from standard normal distribution, as input distribution p(ξ). In every
subfigure, results for 20 trials with random initialization are overlaid. Vanilla SGD (learning rate:
(a)(b) 0.005, (c) 0.001) and minibatch size of 1 are used for all three settings.

2 Formulation

2.1 Student-Teacher Model

We consider a two-layer perceptron which has N input units, K hidden units and 1 output unit. We
denote the input to the network by ξ ∈ RN . Then the output can be written as s =

∑K
i=1 wig(J i ·ξ) ∈

R, where g is an activation function.

We consider the situation that the network learns data generated by another network, called “teacher
network”, which has fixed weights. Specifically, we consider two-layer perceptron that outputs
t =

∑M
n=1 vng(Bn · ξ) ∈ R for input ξ as the teacher network. The generated data (ξ, t) is then fed

to the student network stated above and learned by it in the on-line manner (see Figure 3). We assume
that the input ξ is drawn from some distribution p(ξ) every time independently. We adopt vanilla
stochastic gradient descent (SGD) algorithm for learning. We assume the squared loss function
ε = 1

2 (s− t)2, which is most commonly used for regression.

2.2 Statistical Mechanical Formulation

In order to capture the learning dynamics of nonlinear neural networks described in the previous
subsection macroscopically, we introduce the statistical mechanical formulation in this subsection.

Let xi := J i · ξ (1 ≤ i ≤ K) and yn := Bn · ξ (1 ≤ n ≤M ). Then

(x1, . . . , xK , y1, . . . , yM ) ∼ N
(
0, [J1, . . . ,JK ,B1, . . . ,BM ]T Σ[J1, . . . ,JK ,B1, . . . ,BM ]

)
holds with N →∞ by generalized central limit theorem, provided that the input distribution p(ξ)
has zero mean and finite covariance matrix Σ.

Next, let us introduce order parameters as following: Qij := JT
i ΣJ j = 〈xixj〉, Rin := JT

i ΣBn =

〈xiyn〉, Tnm := BT
nΣBm = 〈ynym〉 and Dij := wiwj , Ein := wivn, Fnm := vnvm. Then

(x1, . . . , xK , y1, . . . , yM ) ∼ N (0,

(
Q R
RT T

)
).

The parameters Qij , Rin, Tnm, Dij , Ein, and Fnm introduced above capture the state of the system
macroscopically; therefore they are called as “order parameters.” The first three represent the state
of the first layers of the two networks (student and teacher), and the latter three represent their
second layers’ state. Q describes the statistics of the student’s first layer and T represents that of the
teacher’s first layer. R is related to similarity between the student and teacher’s first layer. D,E, F
is the second layers’ counterpart of Q,R, T . The values of Qij , Rin, Dij , and Ein change during
learning; their dynamics are what to be determined, from the dynamics of microscopic variables, i.e.
connection weights. In contrast, Tnm and Fnm are constant during learning.
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Figure 3: Overview of student-teacher model formulation.

2.2.1 Higher-order order parameters

The important difference between our situation and that of Saad and Solla [1995] is the covariance
matrix Σ of the input ξ is not necessarily equal to identity. This makes the matter complicated, since
higher-order terms Σe (e = 1, 2, . . .) appear inevitably in the learning dynamics of order parameters.
In order to deal with these, here we define some higher-order version of order parameters.

Let us define higher-order order parameters Q(e)
ij , R(e)

in and T (e)
nm for e = 0, 1, 2, . . ., as Q(e)

ij :=

JT
i ΣeJ j , R

(e)
in := JT

i ΣeBn, and T
(e)
nm := BT

nΣeBm. Note that they are identical to Qij ,
Rin and Tnm in the case of e = 1. Also we define higher-order version of xi and yn, namely x(e)i

and y(e)n , as x(e)i := ξT ΣeJ i, y
(e)
n := ξT ΣeBn. Note that x(0)i = xi and y(0)n = yn.

3 Derivation of dynamics of order parameters

At each iteration of on-line learning, weights of the student network J i and wi are updated with

∆J i = − η

N

dε

dJ i
=

η

N
[(t− s) ·wi]g

′(xi)ξ =
η

N

 M∑
n=1

vng(yn)−
K∑
j=1

wjg(xj)

 ·wi

 g′(xi)ξ,
∆wi = − η

N

dε

dwi
=

η

N
g(xi)(t− s) =

η

N
g(xi)

 M∑
n=1

vng(yn)−
K∑
j=1

wjg(xj)

 ,

(1)
in which we set the learning rate as η/N , so that our macroscopic system is N -independent.

Then, the order parameters Q(e)
ij and R(e)

in (e = 0, 1, 2, . . .) are updated with

∆Q
(e)
ij = (J i + ∆J i)

T Σe(J j + ∆J j)− JT
i ΣeJ j = JT

i Σe∆J j + JT
j Σe∆J i + ∆JT

i Σe∆J j

=
η

N

[
M∑
p=1

Eipg
′(xi)x

(e)
j g(yp)−

K∑
p=1

Dipg
′(xi)x

(e)
j g(xp)

+

M∑
p=1

Ejpg
′(xj)x

(e)
i g(yp)−

K∑
p=1

Djpg
′(xj)x

(e)
i g(xp)

]

+
η2

N2
ξT Σeξ

[
K,K∑
p,q

DipDjqg
′(xi)g

′(xj)g(xp)g(xq) +

M,M∑
p,q

EipEjqg
′(xi)g

′(xj)g(yp)g(yq)

−
K,M∑
p,q

DipEjqg
′(xi)g

′(xj)g(xp)g(yq) −
M,K∑
p,q

EipDjqg
′(xi)g

′(xj)g(yp)g(xq)

]
,

∆R
(e)
in = (J i + ∆J i)

T ΣeBn − JT
i ΣeBn = ∆JT

i ΣeBn

=
η

N

[
M∑
p=1

Eipg
′(xi)y

(e)
n g(yp)−

K∑
p=1

Dipg
′(xi)y

(e)
n g(xp)

]
.

(2)
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Since

ξT Σeξ ≈ Nµe+1 where µd :=
1

N

N∑
i=1

λdi , λ1, . . . , λN : eigenvalues of Σ

and the right hand sides of the difference equations are O(N−1), we can replace these difference
equations with differential ones with N →∞, by taking the expectation over all input vectors ξ:

dQ
(e)
ij

dα̃
= η

[
M∑
p=1

EipI3(xi, x
(e)
j , yp)−

K∑
p=1

DipI3(xi, x
(e)
j , xp)

+

M∑
p=1

EjpI3(xj , x
(e)
i , yp)−

K∑
p=1

DjpI3(xj , x
(e)
i , xp)

]

+ η2µe+1

[
K,K∑
p,q

DipDjqI4(xi, xj , xp, xq) +

M,M∑
p,q

EipEjqI4(xi, xj , yp, yq)

−
K,M∑
p,q

DipEjqI4(xi, xj , xp, yq) −
M,K∑
p,q

EipDjqI4(xi, xj , yp, xq)

]
,

dR
(e)
in

dα̃
= η

[
M∑
p=1

EipI3(xi, y
(e)
n , yp)−

K∑
p=1

DipI3(xi, y
(e)
n , xp)

]

(3)

where I3(z1, z2, z3) := 〈g′(z1)z2g(z3)〉 and I4(z1, z2, z3, z4) := 〈g′(z1)g′(z2)g(z3)g(z4)〉.
(4)

In these equations, α̃ := α/N represents time (normalized number of steps), and the brackets 〈·〉
represent the expectation when the input ξ follows the input distribution p(ξ).

The differential equations for D and E are obtained in a similar way:

dDij

dα̃
= η

[
M∑
p=1

EipI2(xj , yp)−
K∑

p=1

DipI2(xj , xp) +

M∑
p=1

EjpI2(xi, yp)−
K∑

p=1

DjpI2(xi, xp)

]
,

dEin

dα̃
= η

[
M∑
p=1

FpnI2(xi, yp)−
K∑

p=1

EpnI2(xi, xp)

]
(5)

where I2(z1, z2) := 〈g(z1)g(z2)〉. (6)
These differential equations (3) and (5) govern the macroscopic dynamics of learning. In addition,
the generalization loss εg , the expectation of loss value ε(ξ) = 1

2‖s− t‖
2 over all input vectors ξ, is

represented as

εg = 〈1
2
‖s− t‖2〉 =

1

2

[
M,M∑
p,q

FpqI2(yp, yq) +

K,K∑
p,q

DpqI2(xp, xq) −2

K,M∑
p,q

EpqI2(xp, yq)

]
.

(7)

3.1 Expectation terms

Above we have determined the dynamics of order parameters as (3), (5) and (7). However they have
expectation terms I2(z1, z2), I3(z1, z

(e)
2 , z3) and I4(z1, z2, z3, z4), where zs are either xi or yn. By

studying what distribution z follows, we can show that these expectation terms are dependent only
on 1-st and (e + 1)-th order parameters, namely, Q(1), R(1), T (1) and Q(e+1), R(e+1), T (e+1); for
example,

I3(xi, x
(e)
j , yp) =

∫
dz1dz2dz3 g

′(z1)z2g(z3) N (z|0,

 Q
(1)
ii Q

(e+1)
ij R

(1)
ip

Q
(e+1)
ij ∗ R

(e+1)
jp

R
(1)
ip R

(e+1)
jp T

(1)
pp

)
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holds, where ∗ does not influence the value of this expression (see Supplementary Material A.1 for
more detailed discussion). Thus, we see the ‘speed’ of e-th order parameters (i.e. (3) and (5)) only
depends on 1-st and (e+ 1)-th order parameters, and the generalization error εg (equation (7)) only
depends on 1-st order parameters. Therefore, with denoting (Q(e), R(e), T (e)) by Ω(e) and (D,E, F )
by χ, we can write

d

dα̃
Ω(e) = f (e)(Ω(1),Ω(e+1), χ),

d

dα̃
χ = g(Ω(1), χ), and εg = h(Ω(1), χ)

with appropriate functions f (e), g and h. Additionally, a polynomial of Σ

P (Σ) :=

d∏
i=1

(Σ− λ′iIN ) =

d∑
e=0

ceΣ
e where λ′1, . . . , λ

′
d are distinct eigenvalues of Σ

equals to 0, thus we get

Ω(d) = −
d−1∑
e=0

ceΩ
(e). (8)

Using this relation, we can reduce Ω(d) to expressions which contain only Ω(0), . . . ,Ω(d−1), therefore
we can get a closed differential equation system with Ω(0), . . . ,Ω(d−1) and χ.

In summary, our macroscopic system is closed with the following order parameters:

Order variables : Q
(0)
ij , Q

(1)
ij , . . . , Q

(d−1)
ij , R

(0)
in , R

(1)
in , . . . , R

(d−1)
in , Dij , Ein

Order constants : T (0)
nm, T

(1)
nm, . . . , T

(d−1)
nm , Fnm. (d: number of distinct eigenvalues of Σ)

The order variables are governed by (3) and (5). For the lengthy full expressions of our macroscopic
system for specific cases, see Supplementary Material A.2.

3.2 Dependency on input data covariance Σ

The differential equation system we derived depends on Σ, through two ways; the coefficient µe+1

of O(η2)-term, and how (d)-th order parameters are expanded with lower order parameters (as (8)).
Specifically, the system only depends on the eigenvalue distribution of Σ.

3.3 Evaluation of expectation terms for specific activation functions

Expectation terms I2, I3 and I4 can be analytically determined for some activation functions g,
including sigmoid-like g(x) = erf(x/

√
2) (see Saad and Solla [1995]) and g(x) = ReLU(x) (see

Yoshida et al. [2017]).

4 Analysis of numerical solutions of macroscopic differential equations

In this section, we analyze numerically the order parameter system, derived in the previous section1.
We assume that the second layers’ weights of the student and the teacher, namely wi and vn, are fixed
to 1 (i.e. we consider the learning of soft-committee machine), and that K and M are equal to 2, for
simplicity. Here we think of sigmoid-like activation g(x) = erf(x/

√
2).

4.1 Consistency between macroscopic system and microscopic system

First of all, we confirmed the consistency between the macroscopic system we derived and the original
microscopic system. That is, we computed the dynamics of the generalization loss εg in two ways:
(i) by updating weights of the network with SGD (1) iteratively, and (ii) by solving numerically the
differential equations (5) which govern the order parameters, and we confirmed that they accord with
each other very well (Figure 4). Note that we set the initial values of order parameters in (ii) as values
corresponding to initial weights used in (i). For dependence of the learning trajectory on the initial
condition, see Supplementary Material A.3.

1 We executed all computations on a standard PC.
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Figure 4: Example dynamics of generalization error εg computed with (a) microscopic and (b)
macroscopic system. Network size: N -2-1. Learning rate: η = 0.1. Eigenvalues of Σ: λ1 = 0.4 with
multiplicity 0.5N , λ2 = 1.2 with multiplicity 0.3N , and λ3 = 1.6 with multiplicity 0.2N . Black
lines: dynamics of εg . Blue lines: Q11, Q12, Q22. Green lines: R11, R12, R21, R22.

4.2 Case of scalar input covariance Σ = σIN

As the simplest case, here we consider the case that the convariance matrix Σ is proportional to
unit matrix. In this case, Σ has only one eigenvalue λ = µ1 of multiplicity N , then our order
parameter system contains only parameters whose order is 0 (e = 0). For various values of µ1, we
solved numerically the differential equations of order parameters (5) and plotted the time evolution
of generalization loss εg (Figure 5(a)). From these plots, we quantified the lengths and heights of
the plateaus as following: we regarded the system is plateauing if the decreasing speed of log-loss is
smaller than half of its terminal converging speed, and we defined the height of the plateau as the
median of loss values during plateauing. Quantified lengths and heights are plotted in Figure 5(b)(c).
It indicates that the plateau length and height heavily depend on µ1, the input scale. Specifically, as
µ1 decreases, the plateau rapidly becomes longer and lower. Though smaller input data lead to longer
plateaus, it also becomes lower and then inconspicuous. This tendency is consistent with Figure
2(a)(b), since IRIS dataset has large µ1 (≈ 15.9) and MNIST has small µ1 (≈ 0.112). Considering
this, the claim that the plateau phenomenon does not occur in learning of MNIST is controversy; this
suggests the possibility that we are observing quite long and low plateaus.

Note that Figure 5(b) shows that the speed of growing of plateau length is larger than O(1/µ1). This
is contrast to the case of linear networks which have no activation; in that case, as µ1 decreases the
speed of learning gets exactly 1/µ1-times larger. In other words, this phenomenon is peculiar to
nonlinear networks.

(a) (b)

(c)

Figure 5: (a) Dynamics of generalization error εg when input variance Σ has only one eigenvalue
λ = µ1 of multiplicity N . Plots with various values of µ1 are shown. (b) Plateau length and (b)
plateau height, quantified from (a).
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4.3 Case of different input covariance Σ with fixed µ1

In the previous subsection we inspected the dependence of the learning dynamics on the first moment
µ1 of the eigenvalues of the covariance matrix Σ. In this subsection, we explored the dependence of
the dynamics on the higher moments of eigenvalues, under fixed first moment µ1.

In this subsection, we consider the case in which the input covariance matrix Σ has two distinct
nonzero eigenvalues, λ1 = µ1 −∆λ/2 and λ2 = µ1 + ∆λ/2, of the same multiplicity N/2 (Figure
6). With changing the control parameter ∆λ, we can get eigenvalue distributions with various values
of second moment µ2 = 〈λ2i 〉.

Δλ

μ1 + Δλ
2μ1 − Δλ

2
λ

Figure 6: Eigenvalue distribution with fixed µ1 parameterized by ∆λ, which yields various µ2.

Figure 7(a) shows learning curves with various µ2 while fixing µ1 to 1. From these curves, we
quantified the lengths and heights of the plateaus, and plotted them in Figure 7(b)(c). These indicate
that the length of the plateau shortens as µ2 becomes large. That is, the more the distribution of
nonzero eigenvalues gets broaden, the more the plateau gets alleviated.

(a) (b)

(c)

Figure 7: (a) Dynamics of generalization error εg when input variance Σ has two eigenvalues
λ1,2 = µ1±∆λ/2 of multiplicity N/2. Plots with various values of µ2 are shown. (b) Plateau length
and (c) plateau height, quantified from (a).

5 Conclusion

Under the statistical mechanical formulation of learning in the two-layered perceptron, we showed
that macroscopic equations can be derived even when the statistical properties of the input are
generalized. We showed that the dynamics of learning depends only on the eigenvalue distribution
of the covariance matrix of the input data. By numerically analyzing the macroscopic system, it is
shown that the statistics of input data dramatically affect the plateau phenomenon.

Through this work, we explored the gap between theory and reality; though the plateau phenomenon
is theoretically predicted to occur by the general symmetrical structure of neural networks, it is
seldom observed in practice. However, more extensive researches are needed to fully understand the
theory underlying the plateau phenomenon in practical cases.
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