
Appendix1

Organization of the Appendix2

In Appendix A we review classical results on the Taylor expansions for functions on Riemannian3

manifold. In Appendix B we provide the proof of Lemma 2 which requires to expand the iterates on4

the tangent space in the the saddle point. Finally, in Appendix C, we provide the proofs of Lemma 75

and Lemma 8 which enable to prove the main theorem of the paper.6

Throughout the paper we assume that the objective function and the manifold are smooth. Here we7

list the assumptions that are used in the following lemmas.8

Assumption 1 (Lipschitz gradient). There is a finite constant β such that9

‖gradf(y)− Γyxgradf(x)‖ ≤ βd(x, y) for all x, y ∈M.

Assumption 2 (Lipschitz Hessian). There is a finite constant ρ such that10

‖H(y)− ΓyxH(x)Γxy‖2 ≤ ρd(x, y) for all x, y ∈M.

Assumption 3 (Bounded sectional curvature). There is a finite constant K such that11

|K(x)[u, v]| ≤ K for all x ∈M and u, v ∈ TxM

A Taylor expansions on Riemannian manifold12

We provide here the Taylor expansion for functions and gradients of functions defined on a Riemannian13

manifold.14

A.1 Taylor expansion for the gradient15

For any point x ∈M and z ∈M be a point in the neighborhood of x where the geodesic γx→z is16

defined.17

Γxz (gradf(z)) = gradf(x) +∇γ′
x→z(0)

gradf +
∫ 1

0
(Γxγx→z(τ)

∇γ′
x→z(τ)

gradf −∇γ′
x→z(0)

gradf)dxτ

= gradf(x) +∇γ′
x→z(0)

gradf + ∆(z), (1)

where ∆(z) :=
∫ 1

0
(Γxγx→z(τ)

∇γ′
x→z(τ)

gradf −∇γ′
x→z(0)

gradf)dτ . The Taylor approximation in18

Eq. (1) is proven by Absil et al. (2009, Lemma 7.4.7).19

A.2 Taylor expansion for the function20

Taylor expansion of the gradient enables us to approximate the iterations of the main algorithm, but21

obtaining the convergence rate of the algorithm requires proving that the function value decreases22

following the iterations. We need to give the Taylor expansion of f with the parallel translated23

gradient on LHS of Eq. (1). To simplify the notation, let γ denote the γx→z .24

f(z)−f(x)=

∫ 1

0

d

dτ
f(γ(τ))dτ (2a)

=

∫ 1

0

〈γ′(τ), gradf(γ(τ))〉dτ (2b)

=

∫ 1

0

〈Γxγ(τ)γ
′(τ),Γxγ(τ)gradf(γ(τ))〉dτ (2c)

=

∫ 1

0

〈γ′(0),Γ0
γ(τ)gradf(γ(τ))〉dτ (2d)

=

∫ 1

0

〈γ′(0), gradf(x) +∇τγ′(0)gradf + ∆(γ(τ))〉dτ (2e)

= 〈γ′(0), gradf(x) + 1
2∇γ′(0)gradf + ∆̄(z)〉. (2f)
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Figure 1: Lemma 1. First map w and w+ to TuM and Tu+
M, and transport the two vectors to TxM,

and get their relation.

∆(z) is defined in Eq. (1). ∆̄(z) =
∫ 1

0
∆(γ(τ))dτ . The second line is just rewriting by definition.25

Eq. (2c) means the parallel translation preserves the inner product (Tu, 2017, Prop. 14.16). Eq. (2d)26

uses Γxγ(t)γ
′(t) = γ′(0), meaning that the velocity stays constant along a geodesic (Absil et al., 2009,27

(5.23)). Eq. (2e) uses Eq. (1). In Euclidean space, the Taylor expansion is28

f(z)− f(x) = 〈z,∇f(x) +∇2f(x)z +

∫ 1

0

(∇2f(τz)−∇2f(x))zdτ〉. (3)

Compare Eq. (2) and Eq. (3), z is replaced by γ′(0) := γ′x→z(0) and τz is replaced by τγ′x→z(0) or29

γx→z(τ).30

Now we have31

f(ut) = f(x) + 〈γ′(0), gradf(x)〉+
1

2
H(x)[γ′(0), γ′(0)] + 〈γ′(0), ∆̄(ut)〉.

B Linearization of the iterates in a fixed tangent space32

In this section we linearize the progress of the iterates of our algorithm in a fixed tangent space TxM.33

We always assume here that all points are within a region of diameter R := 12S ≤ I. In the course34

of the proof we need several auxilliary lemmas which are stated in the last two subsections of this35

section.36

B.1 Evolution of Exp−1u (w)37

We first consider the evolution of Exp−1u (w) in a fixed tangent space TxM. We show in the following38

lemma that it approximately follows a linear reccursion.39

Lemma 1. Define γ =
√
ρ̂ε, κ = β

γ , and S =
√
ηβ γρ̂ log−1(dκδ ). Let us consider x be a (ε,−

√
ρ̂ε)40

saddle point, and define u+ = Expu(−ηgradf(u)) and w+ = Expw(−ηgradf(w)). Under41

Assumptions 1, 2, 3, if all pairwise distances between u,w, u+, w+, x are less than 12S , then for42

some explicit constant C1(K, ρ, β) depending only on K, ρ, β, there is43

‖Γxu+Exp−1u+(w+)− (I − ηH(x))ΓxuExp−1u (w)‖
≤ C1(K, ρ, β)d(u,w) (d(u,w) + d(u, x) + d(w, x)) .

for some explicit function C1.44

This lemma is illustrated in Fig. 1.45

Proof. Denote −ηgradf(u) = vu, −ηgradf(w) = vw. v is a smooth map. We first prove the46

following claim.47
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Claim 1.
d(u+, w+) ≤ c6(K)d(u,w),

where c6(K) = c4(K) + 1 + c2(K)R2.48

To show this, note that49

d(u+, w+) ≤ d(u+, w̃+) + d(w̃+, w+),

and using Lemma 5 with w̃+ = Expw(Γwu vu),50

d(w̃+, w+) = d(Expw(vw),Expw(Γwu vu))

≤ (1 + c2(K)R2)‖vw − Γwu vu‖
≤ β(1 + c2(K)R2)d(u,w).

Using Lemma 5,51

d(w̃+, u+) ≤ c4(K)d(u,w). (4)

Adding the two inequalities proves the claim.52

We use now Lemma 3 between (u,w, u+, w+) in two different ways. First let us use it for a =53

Exp−1u (w) and y = Γuwvw. We obtain:54

d(w+,Expu(Exp−1u (w) + Γuwvw)) ≤ c1(K)d(u,w)(d(u,w)2 + ‖vw‖2). (5)

Then we use it for a = Exp−1u (vu) and y = Γuu+
Exp−1u+

(w+) which yields55

d(w+,Expu(vu + Γuu+
Exp−1u+

(w+)))

≤ c1(K)d(u+, w+)(d(u+, w+)2 + ‖vu‖2)

≤ c1(K)c5(K, ‖vu‖, ‖vw‖)d(u,w) ·
[
c5(K, ‖vu‖, ‖vw‖)2d(u,w)2 + ‖vu‖2

]
.

Using the triangular inequality we have56

d(Expu(Exp−1u (w) + Γuwvw),Expu(vu + Γuu+
Exp−1u+

(w+)))

≤ d(w+,Expu(Exp−1u (w) + Γuwvw)) + d(w+,Expu(vu + Γuu+
Exp−1u+

(w+)))

≤ c7d(u,w)

with c7 defined as57

c7 = c1(K)c6(K) · [c5(K, ‖vu‖, ‖vw‖)2d(u,w)2 + ‖vu‖2 + ‖vw‖2
]
.

We use again Lemma 4,58

‖Γuu+
Exp−1u+

(w+))− Exp−1u (w)− [vu − Γuwvw]‖ ≤ (1 + c3(K)R2) · c7d(u,w).

Therefore we have linearized the iterate in TuM. We should see how to transport it back to TxM.59

With Lemma 6 we have60

‖[ΓxuΓuu+
− Γxu+

]Exp−1u+
(w+))‖ = c5(K)d(u, x)d(u+, w+)‖vu‖.

Note vu and vw are −ηgradf(u) and −ηgradf(w), we define ∇v(x) the gradient of v, i.e., −ηH .61

Using Hessian Lipschitz,62

‖vu − Γuwvw + ηH(u)Exp−1u (w)‖
= ‖vu − Γuwvw −∇v(u)Exp−1u (w)‖
≤ ρd(u,w)2,

and63

‖∇v(u)Exp−1u (w)− Γux∇v(x)ΓxuExp−1u (w)‖ ≤ ρd(u,w)d(u, x).

So we have64

‖Γxu+
Exp−1u+

(w+)− (I +∇v(x))ΓxuExp−1u (w)‖
≤ c7d(u,w) + ρd(u,w)(d(u,w) + d(u, x)) + c5(K)d(u, x)d(u+, w+)‖vu‖ := D1 (6)

65
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B.2 Evolution of Exp−1x (w)− Exp−1x (u)66

We consider now the evolution of Exp−1x (w)−Exp−1x (u) in the fixed tangent space TxM. We show67

in the following lemma that it also approximately follows a linear iteration.68

Lemma 2. Define γ =
√
ρ̂ε, κ = β

γ , and S =
√
ηβ γρ̂ log−1(dκδ ). Let us consider x be a (ε,−

√
ρ̂ε)69

saddle point, and define u+ = Expu(−ηgradf(u)) and w+ = Expw(−ηgradf(w)). Under70

Assumptions 1, 2, 3, if all pairwise distances between u,w, u+, w+, x are less than 12S , then for71

some explicit constant C(K, ρ, β) depending only on K, ρ, β, there is72

‖Exp−1x (w+)− Exp−1x (u+)− (I − ηH(x))(Exp−1x (w)− Exp−1x (u))‖ (7)
≤ C(K, ρ, β)d(u,w) (d(u,w) + d(u, x) + d(w, x)) .

This lemma controls the error of the linear approximation of the iterates hen mapped in TxM and73

largely follows from Lemma 1.74

Proof. We have that75

w = Expx(Exp−1x (w)) (8)

= Expu(Exp−1u (w)). (9)

Use Eq. (9), let a = Exp−1x (u) and v = ΓxuExp−1u (w), Lemma 3 suggests that76

d(Expu(Exp−1u (w)),Expx(Exp−1x (u) + ΓxuExp−1u (w)))

≤ c1(K)‖Exp−1u (w)‖(‖Exp−1u (w)‖+ ‖Exp−1x (u)‖)2.

Compare with Eq. (8), we have77

d(Expx(Exp−1x (w)),Expx(Exp−1x (u) + ΓxuExp−1u (w)))

≤ c1(K)‖Exp−1u (w)‖(‖Exp−1u (w)‖+ ‖Exp−1x (u)‖)2

:= D. (10)

Denote the quantity above by D. Now use Lemma 478

‖Exp−1x (w)− (Exp−1x (u) + ΓxuExp−1u (w))‖ ≤ (1 + c3(K)R2)D.

Analogously79

‖Exp−1x (w+)− (Exp−1x (u+) + Γxu+
Exp−1u+

(w+))‖ ≤ (1 + c3(K)R2)D+

where80

D+ = c1(K)‖Exp−1u+
(w+)‖(‖Exp−1u+

(w+)‖+ ‖Exp−1x (u+)‖)2 (11)

And we can compare ΓxuExp−1u (w) and Γxu+
Exp−1u+

(w+) using Eq. (6). In the end we have81

‖Exp−1x (w+)− Exp−1x (u+)− (I − ηH(x))(Exp−1x (w)− Exp−1x (u))‖
≤ ‖Exp−1x (w+)− (Exp−1x (u+) + Γxu+

Exp−1u+
(w+))‖

+ ‖Exp−1x (w)− (Exp−1x (u) + ΓxuExp−1u (w))‖
+ ‖Γxu+

Exp−1u+
(w+)− ΓxuExp−1u (w)−∇v(x)ΓxuExp−1u (w)‖

+ ‖∇v(x)(ΓxuExp−1u (w)− (Exp−1x (w)− Exp−1x (u)))‖
≤ (1 + c3(K)R2)(D+ +D) +D1 + η‖H(x)‖D.

D, D+ and D1 are defined in Eq. (10), Eq. (11) and Eq. (6), they are all order d(u,w)
(
d(u,w) +82

d(u, x) + d(w, x)
)

so we get the correct order in Eq. (7).83
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Figure 2: Lemma 3 bounds the difference of two steps starting from x: (1) take y + a step in TxM
and map it to manifold, and (2) take a step in TxM, map to manifold, call it z, and take Γzxy step in
TxM, and map to manifold. Expz(Γ

z
xy) is close to Expx(y + a).

B.3 Control of two-steps iteration84

In the following lemma we control the distance between the point obtained after moving along the85

sum of two vectors in the tangent space, and the point obtained after moving a first time along the first86

vector and then a second time along the transport of the second vector. This is illustrated in Fig. 2.87

Lemma 3. Let x ∈M and y, a ∈ TxM. Let us denote by z = Expx(a) then under Assumption 388

d(Expx(y + a),Expz(Γ
z
xy)) ≤ c1(K) min{‖a‖, ‖y‖}(‖a‖+ ‖y‖)2. (12)

This lemma which is crucial in the proofs of Lemma 2 and Lemma 1 tightens the result of Karcher89

(1977, C2.3), which only shows an upper-bound O(‖a‖(‖a‖+ ‖y‖)2).90

Proof. We adapt the proof of Karcher (1977, Eq. (C2.3) in App C2.2), the only difference being91

that we bound more carefully the initial normal component. We restate here the whole proof for92

completeness.93

Let x ∈ M and y, a ∈ TxM. We denote by γ(t) = Expx(ta). We want to compare the point94

Expx(r(y + a)) and Expγ(1)(Γ
γ(1)y
x ). These two points , for a fixed r are joined by the curve95

t 7→ c(r, t) = Expγ(t)(rΓ
γ(t)
x (y + (1− t)a)).

We note that d
dtc(r, t) is a Jacobi field along the geodesic r 7→ c(r, t), which we denote by Jt(r).96

We importantly remark that the length of the geodesic r 7→ c(r, t) is bounded as ‖ ddr c(r, t)‖ ≤97

‖y + (1− t)a‖. We denote this quantity by ρt = ‖y + (1− t)a‖. The initial condition of the Jacobi98

field Jt are given by:99

Jt(0) =
d

dt
γ(t) = Γγ(t)x a

D

dr
Jt(0) =

D

dr
Γγ(t)x (y + (1− t)a) = −Γγ(t)x a.

These two vectors are linearly dependent and it is therefore possible to apply Karcher (1977, Proposi-100

tion A6) to bound Jnorm
t . Moreover, following Karcher (1977, App A0.3 ), the tangential component101

of the Jacobi field is known explicitly, independent of the metric, by102

J tan
t (r) =

(
J tan
t (0) + r

D

dr
J tan
t (0)

)
d

dr
c(r, t)

where the initial conditions of the tangential component of the Jacobi fields are given by J tan
t (0) =103

〈Jt(0),
d
dr c(r,t)

‖ d
dr c(r,t)‖

〉 and D
drJ

tan
t (0) = 〈DdrJt(0),

d
dr c(r,t)

‖ d
dr c(r,t)‖

〉 = −J tan
t (0). Therefore104

J tan
t (r) = (1− r)J tan

t (0)
d

dr
c(r, t),
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and J tan
t (1) = 0.105

We estimate now the distance d(Expx(y + a),Expz(Γ
z
xy)) by the length of the curve t 7→ c(r, t) as106

follows:107

d(Expx(y + a),Expz(Γ
z
xy)) ≤

∫ 1

0

‖ d
dt
c(1, t)‖dt =

∫ 1

0

‖Jnorm
t (1)‖dt,

where we use crucially that J tant (1) = 0.108

We utilize (Karcher, 1977, Proposition A.6) to bound ‖Jnorm
t (1)‖ as109

‖Jnorm
t (1)‖ ≤ ‖Jnorm

t (0)‖(cosh(
√
Kρt)−

sinh(
√
Kρt)√

Kρt
)

using (Karcher, 1977, Equation (A6.3)) with κ = 0, fκ(1) = 0 and recalling that the geodesics110

r 7→ c(r, t) have length ρt.

Figure 3: Figure for Lemma 3.

111

In particular for small value ‖a‖+ ‖y‖ we have for some constant c1(K),112

‖Jnorm
t (1)‖ ≤ ‖Jnorm

t (0)‖c1(K)ρ2t .

We bound ‖Jnorm
t (0)‖ now. This is the main difference with the original proof of Karcher (1977)113

who directly bounded ‖Jnorm
t (0)‖ ≤ ‖Jt(0)‖ = ‖a‖ and ρt ≤ ‖a‖+ ‖y‖. Therefore his proof does114

not lead to the correct dependence in ‖y‖.115

We have J0
t = Γ

γ(t)
x a, and the tangential component (velocity of r → c(r, t)) is in the Γ

γ(t)
x (y+ (1−116

t)a) direction. Let z̃ = Γ
γ(t)
x (y + (1− t)a) and Pz̃⊥ and Pa⊥ denote the projection onto orthogonal117

complement of z̃ and a.118

‖Jnorm
t (0)‖2 = ‖Pz̃⊥(a)‖2

= ‖a‖2 − (aT z̃)2

‖z̃‖2

=
‖a‖2

‖z̃‖2

(
‖z̃‖2 − (aT z̃)2

‖z̃‖2

)
≤ ‖a‖

2

‖z̃‖2
‖Pa⊥(Γγ(t)x (y + (1− t)a))‖2

≤ ‖a‖
2

‖z̃‖2
‖Pa⊥(Γγ(t)x ((1− t)a)) + Pa⊥(Γγ(t)x y)‖2

=
‖a‖2

‖z̃‖2
‖Pa⊥(Γγ(t)x y)‖2

≤ ‖a‖
2‖y‖2

‖z̃‖2
.
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So119

‖Jnorm
t (1)‖ ≤ ‖Jnorm

t (0)‖c1(K)ρ2t

≤ ‖a‖ · ‖y‖
‖z̃‖

c1(K)‖z̃‖2

≤ c1(K)‖a‖ · ‖y‖(‖a‖+ ‖y‖),

and120

d(Expx(y + a),Expz(Γ
z
xy)) ≤ c1(K)‖a‖ · ‖y‖(‖a‖+ ‖y‖).

121

B.4 Auxilliary lemmas122

In the proofs of Lemma 1 and Lemma 2 we needed numerous auxiliary lemmas we are stating here.123

We needed the following lemma which shows that both the exponential map and its inverse are124

Lipschitz.125

Lemma 4. Let x, y, z ∈ M , and the distance of each two points is no bigger than R. Then under126

Assumption 3127

(1 + c2(K)R2)−1d(y, z) ≤ ‖Exp−1x (y)− Exp−1x (z)‖ ≤ (1 + c3(K)R2)d(y, z).

Intuitively this lemma relates the norm of the difference of two vectors of TxM to the distance128

between the corresponding points on the manifoldM and follows from bounds on the Hessian of the129

square-distance function (Sakai, 1996, Ex. 4 p. 154).130

Proof. The upper-bound is directly proven in Karcher (1977, Proof of Cor. 1.6), and we prove the131

lower-bound via Lemma 3 in the supplement. Let b = Expy(Γyx(Exp−1x (z)− Exp−1x (y))). Using132

d(y, b) = ‖Exp−1y (b)‖ and Lemma 3,133

d(y, z) ≤ d(y, b) + d(b,Expx(Exp−1x (z)))

≤ ‖Exp−1x (y)− Exp−1x (z)‖
+ c1(K)‖Exp−1x (y)− Exp−1x (z)‖(‖Exp−1x (y)− Exp−1x (z)‖+ ‖Exp−1x (y)‖)2

134

The following contraction result is fairly classical and is proven using the Rauch comparison theorem135

from differential geometry (Cheeger & Ebin, 2008).136

Lemma 5. (Mangoubi et al., 2018, Lemma 1) Under Assumption 3, for x, y ∈M and w ∈ TxM,137

d(Expx(w),Expy(Γyxw)) ≤ c4(K)d(x, y).

Eventually we need the following corollary of the famous Ambrose-Singer holonomy theorem (Am-138

brose & Singer, 1953).139

Lemma 6. (Karcher, 1977, Section 6) Under Assumption 3, for x, y, z ∈M and w ∈ TxM,140

‖ΓzyΓyxw − Γzxw‖ ≤ c5(K)d(x, y)d(y, z)‖w‖.

C Proof of Lemma 7 and 8141

In this section we prove two important lemmas from which the proof of our main result mainly comes142

out. Then we show, in the last subsection, how to combine them to prove this main result.143

Lemma 7. Assume Assumptions 1, 2, 3 hold, and144

ε ≤ min

{
ρ̂

56 max{c2(K), c3(K)}ηβ
log

(
dβ√
ρ̂εδ

)
,

(
Iρ̂

12ĉ
√
ηβ

log

(
dβ√
ρ̂εδ

))2
}

(14)
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from the main theorem. There exists a constant cmax, ∀ĉ > 3, δ ∈ (0, dκe ], for any u0 with d(x̃, u0) ≤145

2S /(κ log(dκδ )), κ = β/γ.146

T = min
{

inf
t

{
t|f̃u0

(ut)− f(u0) ≤ −3F
}
, ĉT

}
,

then ∀η ≤ cmax/β, we have ∀0 < t < T , d(u0, ut) ≤ 3(ĉS ).147

Lemma 8. Assume Assumptions 1, 2, 3 and Eq. (14) hold. Take two points u0 and w0 which148

are perturbed from approximate saddle point, where d(x̃, u0) ≤ 2S /(κ log(dκδ )), Exp−1x̃ (w0) −149

Exp−1x̃ (u0) = µre1, e1 is the smallest eigenvector1 of H(x̃), µ ∈ [δ/(2
√
d), 1], and the algorithm150

runs two sequences {ut} and {wt} starting from u0 and w0. Denote151

T = min
{

inf
t

{
t|f̃w0(wt)− f(w0) ≤ −3F

}
, ĉT

}
,

then ∀η ≤ cmax/l, if ∀0 < t < T , d(x̃, ut) ≤ 3(ĉS ), we have T < ĉT .152

C.1 Proof of Lemma 7153

Suppose f(ut+1)− f(ut) ≤ −η2‖gradf(ut)‖2.154

d(uĉT , u0)2 ≤ (

ĉT −1∑
0

d(ut+1, ut))
2

≤ ĉT
ĉT −1∑

0

d(ut+1, ut)
2

≤ η2ĉT
ĉT −1∑

0

‖gradf(ut)‖2

≤ 2ηĉT
ĉT −1∑

0

f(ut)− f(ut+1)

= 2ηĉT (f(u0)− f(uĉT ))

≤ 6ηĉT F = 6ĉS 2.

C.2 Proof of Lemma 8155

Note that, for any points inside a region with diameter R, under the assumption of Lemma 8, we have156

max{c2(K), c3(K)}R2 ≤ 1/2.157

Define vt = Exp−1x̃ (wt)−Exp−1x̃ (ut), let v0 = e1 be the smallest eigenvector of H(x̃), then let ŷ2,t158

be a unit vector, we have159

vt+1 = (I − ηH(x̃))vt + C(K, ρ, β)d(ut, wt)

· (d(ut, x̃) + d(wt, x̃) + d(x̃, u0))ŷ2,t.
(16)

Let C := C(K, ρ, β). Suppose lemma 8 is false, then 0 ≤ t ≤ T , d(ut, x̃) ≤ 3ĉS , d(wt, x̃) ≤ 3ĉS ,160

so d(ut, wt) ≤ 6ĉS , and the norm of the last term in Eq. (16) is smaller than 14ηCĉS ‖vt‖.161

Lemma 4 in the main paper indicates that162

‖vt‖ ∈ [1/2, 2] · d(ut, wt) = [3/2, 6] · ĉS . (17)

Let ψt be the norm of vt projected onto e1, the smallest eigenvector of H(0), and ϕt be the norm of163

vt projected onto the remaining subspace. Then Eq. (16) is164

ψt+1 ≥ (1 + ηγ)ψt − µ
√
ψ2
t + φ2t ,

φt+1 ≤ (1 + ηγ)φt + µ
√
ψ2
t + φ2t .

1“smallest eigenvector” means the eigenvector corresponding to the smallest eigenvalue.
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Prove that for all t ≤ T , φt ≤ 4µtψt. Assume it is true for t, we have165

4µ(t+ 1)ψt+1 ≥ 4µ(t+ 1) ·
(

(1 + ηγ)ψt − µ
√
ψ2
t + φ2t

)
,

φt+1 ≤ 4µt(1 + ηγ)φt + µ
√
ψ2
t + φ2t .

So we only need to show that166

(1 + 4µ(t+ 1))
√
ψ2
t + φ2t ≤ (1 + ηγ)ψt.

By choosing
√
cmax ≤ 1

56ĉ2 and η ≤ cmax/β, we have167

4µ(t+ 1) ≤ 4µT ≤ 4ηCS · 14ĉ2T = 56ĉ2
C

ρ̂

√
ηβ ≤ 1.

This gives168

4(1 + ηγ)ψt ≥ 2
√

2ψ2
t ≥ (1 + 4µ(t+ 1))

√
ψ2
t + φ2t .

Now we know φt ≤ 4µtψt ≤ ψt, so ψt+1 ≥ (1 + ηγ)ψt −
√

2µψt, and169

µ = 14ĉηCS ≤ 14ĉ
√
cmaxηγC log−1(

dκ

δ
)/ρ̂ ≤ ηγ/2,

so ψt+1 ≥ (1 + ηγ/2)ψt.170

We also know that ‖vt‖ ≤ 6ĉS for all t ≤ T from Eq. (17), so171

6ĉS ≥ ‖vt‖ ≥ ψt ≥ (1 + ηγ/2)tψ0

= (1 + ηγ/2)t
S

κ
log−1(

dκ

δ
)

≥ (1 + ηγ/2)t
δS

2
√
dκ

log−1(
dκ

δ
).

This implies172

T <
log(12κ

√
d

δ ĉ log(dκδ ))

2 log(1 + ηγ/2)

≤
log(12κ

√
d

δ ĉ log(dκδ ))

ηγ

≤ (2 + log(12ĉ))T .

By choosing ĉ such that 2 + log(12ĉ) < ĉ, we have T ≤ ĉT , which finishes the proof.173

C.3 Proof of function value decrease at an approximate saddle point174

With Lemma 7 and 8 proved, we can lower bound the function value in O(T ) iterations175

decrease by Ω(F ), thus match the convergence rate in the main theorem. Let T ′ :=176

inft

{
t|f̃u0(ut)− f(u0) ≤ −3F

}
. Letqdenote the operator Exp−1u0

(·). If T ′ ≤ T ,177

f(uT ′)− f(u0)

≤ ∇f(u0)T (uT ′ − u0) +
1

2
H(u0)[quT ′ − u0, quT ′ − u0]

+
1

2
(Γu0

x̃ H(x̃)Γx̃u0
−H(u0))[quT ′ − u0, quT ′ − u0]

+
ρ

6
‖quT ′ − u0‖3

≤ f̃u0
(ut)− f(u0) + ρd(u0, x̃)‖quT ′ − u0‖2

≤ −3F +O(ρS 3) ≤ −2.5F .

If T ′ > T , then inft

{
t|f̃w0(wt)− f(w0) ≤ −3F

}
≤ T , and we know f(wT )− f(w0) ≤ −2.5F .178
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Remark 1. What is left is bounding the volume of the stuck region, to get the probability of getting179

out of the stuck region by the perturbation. The procedure is the same as in Jin et al. (2017). We180

sample from a unit ball in TxM, where x is the approximate saddle point. In Lemma 7 and 8, we181

study the inverse exponential map at the approximate saddle point x, and the coupling difference182

between Exp−1x (w) and Exp−1x (u). The iterates we study and the noise are all in the tangent space183

TxM which is a Euclidean space, so the probability bound is same as the one in Jin et al. (2017).184

D Experiment with retraction185

In the main algorithm and its proof, we use the exponential map in the algorithm. The exponential map186

is easy to compute for many manifolds, but one may also use retraction as a first order approximation187

of exponential map. We do not theoretically study retraction, but the experiment below shows that188

replacing exponential by a smooth retraction works well practically.189

(a) (b)

Figure 4: (a) Function f with saddle point on a sphere. f(x) = x21 − x22 + 4x23. We plot the contour
of this function on unit sphere. The main algorithm initializes at x0 = [1, 0, 0] (a saddle point),
perturbs it towards x1 and runs Riemannian gradient descent, and terminates at x∗ = [0,−1, 0] (a
local minimum). We amplify the first iteration to make saddle perturbation visible. (b) We replace
exponential map by retraction Rx(v) = (x + v)/‖x + v‖2 and do the same experiment, which
addresses the generality of the result. We do not provide in this paper proof for algorithm with
retraction, but practically the iterates converge to an approximate saddle point.
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