A Detailed Analysis of Convergence Theorems

In this section, we detail the analysis of our Theorems|[T]and[2] Before moving on, we first provide a
key lemma that serves as their common analysis, whose proof is provided in §A.3] We assume that
the expected estimation error squared is bounded as the following for any ¢ and some parameters w1,
w9 and w3 to be specified here:
Lemma 1. Assume that for any initial point xo € R¢
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Then we have

_ 2
E|V®(Z)|?* < T—n[@(mo) — @] + 3 (M7 Ljw + Mjws + ws) . (22)

With Lemma[l} our goal is to make the left hand of (Z2) no greater than O(£2). We present the proofs
for finite-sum and online cases, separately.

A.1 Proof of Theorem[T]

Proof of Theorem[I] In this finite-sum case for Algorithm [T} w; = wy = w3 = 0. Bringing into (22),
in order to achieve < £? for E[||V®(Z)||?] we need Tn (®(z0) — ®*) < 2. Recalling the choice of
stepsize in (T3), the total iteration complexity Qjr is

2[®(xo) = "] 1 2[P(x0) — O]

Qiter = 572 . 77_ == 672 . \/6(27’71 + TL) (M(?L? + M?Lg), (23)

proving (T4). Note that S¥ = m = S¥ SL = n, the total IFO complexity achieving s-accurate
solution is hence bounded by

IFO complexity = (S + S& + SI) {Qiter-‘ +6 (Qiter _ [Qitef‘)
q q
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This completes our proof of and the whole theorem.

A.2 Proof of Theorem

2
Proof of Theorem[2] 1In the online case for Algorithm , from (22)) we need both T (P(xg) —D*) <
n

e* and 3(MJ Ljwi + Mjwy + w3) < € to achieve E[|[V®(7)[?] < 2> (factor 2 here is for
consistency of parameter choice). Recalling (28), the total iteration complexity Qjer is
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3H,M?L? 3Hy M7 3HsM?
proving (T9). Note that Sf = %, L= 522 LSk = 52 , we derive from (7))
D Dy
that ST + S% + 5§ = 6—20 and ¢ = 3.2 and the total IFO complexity achieving e-accurate solution
is hence bounded by
IFO . _ L L L Qiter Qiter
complexity = (S7” + S5 +53) . + 6 Qier — .
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This completes our proof of @]) and the whole theorem.

A.3  Proof of Lemmalll

Before starting our proof, we first prove the following three lemmas that characterize the error bounds
induced by our iterations. For approximation errors for g-iteration and G-iteration, we prove the
following

Lemma 2 (Error bound induced by g-iteration). We have for any fixed t > 0
5 t
< MjLjwy + ML} -n* ) E|F.4|?,  (25)
s=[t/q)q+1

E chp (1) — (9 (2:)) " Vf (g)

where the expectation in the last term is taken over a uniformly chosen j in [1, m).

In addition, we have
Lemma 3 (Error bound induced by G-iteration). We have for any fixed t > 0
5 t
E[[@g(e))" Vi(g) — (@) Vi) < Mo+ 0322 Y EIFIP, @6
s=[t/qlq+1

where the expectation in the last term is taken over a uniformly chosen j in [1, m).

Finally, we prove the following lemma that characterizes the gap between F'-iteration and
(G)' V(g0
Lemma 4 (Error bound induced by F'-iteration). We have for any fixed t > 0
2 t
Sws 2 (ML +MELR) -7 Y E|RL)P, @)
s=|t/qlq+1

E||(@)TVf(g) - F

where the expectation in the last term is taken over a uniformly chosen i in [1,n].
Proof of Lemmall] We prove the lemma in the following steps:

(i) Assume the settings in Theorem [I|hold. We come to show, from (I2)) and (I3), that
M¢L, + M;Lf

Lan < (28)

1\3\»—\

\/ 6(2m +n) (MJL3 + ML2)
This is equivalent to showing

2 (MyLy + M2Ls)* < 3(2m +n) (ML + M3L?) .

11



This is concluded naturally from 4 < 9 < 3(2m + n) and hence
2 (MyLy+ M2Ly)* < 4 (M3L2 + ML3) < 3(2m +n) (MAL3 + M3L2).

(ii) Standard arguments along with the smoothness Assumpt10n|2|, we have from the update rule is
Tyr1 = Ty — 77Ft and (ED that for any z,x € R4,

I90(z) - V()| = [00(a)] 9 So(e) ~ ]9 ()|
< ,%_Z_Z D95 @)V fi(9(@)) = 095 @] TV Filg(a)|
< Lulle =),

and hence a Taylor’s expansion argument gives
L
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< 0o - JIvaE)P + 2 (19060 - FI? - SIRIE).

where the second to last inequality above follows from (T3)) and the fact 2a"b = ||a||? — ||a —
b||? + ||b]|? for any real vectors a, b, and the last inequality is due to Len < 1/2 given by (28).
Summing the above over t = 0,...,7 — 1 and taking expectation on both sides allow us to
conclude

H

" < Ed(xr) < ®(20) —

N3

EIIV‘I>(a?t)II2

1= (29)
. T-1 =
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Since 7 is chosen uniformly at random from {z;}7_', rearranging (29) gives
E[[Ve (@) = ZEHV<1> we)||?
(30)
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(iii) To bound ||[V®(z;) — F}||? in expectation, note
E|V&(z,) - F|

=& [V (20) ~ (99 ()" V1 (90) ~ (99 ()T V(90 + () Vi(a) ~ (G) V(g + B

<3E qu» () — (8g ()" Vf (g¢)

IN

"+ 38| (99 () VH(a) ~ (@) Vi)

+3E (@) V1 (9) - F| :

)

€)Y
where in the last inequality we applied Minkowski’s inequality (along with elementary algebra).

The three terms in (31]) can be estimated using a combination of Lemmas[2] [3]and ] where we
have

t
E|V®(x) — F||* <3 (MLjw + Mjws +ws)+9 (MjL5 + MFLZ)n* > E[|F_|”.

s=|t/qlq+1
(32)
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Back to (30) which is repeated in below
;T2
EIVe@)|* = 7 > EIVe(z)|?
t=0
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< g l8(w0) = @)+ (Z B[V (@) ~ F* -5 Em?) -
t=0 t=0

For the second term of (30), note that aggregating (32)) for each g-step epoch implies, when
stepsize 7 picked as in ([3) satisfies 9 (M G L7+ M]%Lg) qn?® — 1/2 < 0, the following
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S 3(M92L?cw1 + MJ%UJQ + ng).
(33)
(30) and (33) together conclude (22)) and hence Lemmall]
O

B Detailed Proofs of Auxiliary Lemmas

B.1 Proof of Lemmal2l

Proof of Lemma|2] We prove the lemma for the case of ¢t < ¢, and for other ¢ it applies directly due
to Markov property when epochs (as vectors) are viewed as states of the Markov chain.

(i) We first bound the E| g; — g(«)||* term and show that for any fixed ¢ > 0

t

Ellge — 9(0)* < Elgie/ate = 9@psa) I+ D Ellgs, (@) = g5 (zs-1) [ 34
s=[t/qlq+1

First, we take expectation with respect to j; and get Eg;, (z+) = g(«+) and have

I? I?

= Ellgi-1 + g5, (x¢) — gj, (v-1) — g(x1)
= Ellgi—1 — g(x1-1) + 9(x1-1) + g5, (x1) — g5, (¥e-1) — g(x4)
=Ellgi—1 — g(@t-)|” + Ellgj, (1) — g5 (x1-1) — (9(x1) — g(wt-1))
<Ellgi—1 — g(xi-1)|1* + Ellgj, (x0) — g5, (w1,

where we used E|| X — E[X|F]||> < E||X]||? for any random vector X and any conditional
expectation E[ X |F]. Apply the above calculations recursively proves (34).

Ellg: — g(x¢)
12

I?
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(i) We have for the left hand of (23)

"= B @ )T VS (9() — 09 @0) V1 (a0
< MJL3E|lge — g(z0)||.

E qu> (x:) — (9g (1)) Vf (1)

(35)
Applying (34) we obtain
¢
Ellg: — 9()|I> < Ellgie/q1q — 9@ /a1 + D Ellgs, (xs) = gj, (ws-1) |
) ! (36)
Swi+ MY E[|Fo|
s=1

Combining (36) and (33) together concludes the proof.

O

B.2 Proof of Lemma[3l

Proof of Lemma[3] Analogous to Lemma[2]we only consider the case ¢ < g.

(i) To begin with, we bound the E |G — 9g(x+) ||% term (note the Frobenius norm) and conclude

t

E|G:—09(xe)|[7 < EIGlijqje =091/ F+ D Elldg;, (5) = g;, (ws-1) 13-
s=[t/q]q+1
(37)

In fact, following the techniques in the proof of (34) we have

E|G: — dg(w)|[ = El|Gi—1 + 8g;, (1) — 9gj, (we—1) — Dg(x) ||
=E[|Gi-1 = 0g(wi—1) + dg(xs-1) + gj, (v¢) — Dgj, (w-1) — Dg(z4) |7
=E[|Gi-1 — 0g(ze—1)||% +El9gj, (x¢) — dgj, (x1-1) — (Og(we) — dg(ze-1)) |17
S E|Gi-1 — dg(e—1)|7 + Elldg;, (x0) — dgj, (ze-1) ||

Recursively applying the above gives (37).

(ii) Further, note that for any fixed t > 0

T T 2 2 2
E[(@9(z0) " Vi(g) — (G0 Vi(g)|| < MFEIG, - o). G8)

Applying (37) we obtain, by smoothness condition (9)), that

t

E|G: — dg(e)llt < EIG 1/q) — 09(xiesqi)llE+ Y El0g;, (x5) — 8gj, (ws-1) I

s=[t/qlq+1
t
Swy+ LY -* Y E|Fuq|?.
s=1
Bringing this into (38)) and note the relation || - || < || ® || » for a real matrix we conclude (26).

O

B.3 Proof of Lemmad]
Proof of Lemma ] We prove this for ¢t < ¢, and for other ¢ it follows the same procedure to prove.

This prove is essentially the same reasoning as (34) and (37), but is significantly more lengthy due to
handling more terms.
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(1) First of all, we conclude that for any fixed ¢ > 0

2 2
E|F - (@) Vi) <E HFLt/qu ~(Gliasa) " VI (91e/a10)
- 5 (39
+ ZE H vfzt gs) - (Gsfl) vfit (gsfl)H .
We unfold F} using the update rule to get
- 2
E HFt —(Gy) Vf (gt)H
(40)

BBy~ (G) Vi (gi) + (GO VA (00— (G0 VS ()]

Subtracting and adding an auxiliary term (G;) "V f(g;), we result in an equivalent expression
with the RHS of (40) being

E||F-1 — (Gi-1) "V f(gi-1)
+(Gi1) "V H(gi1) = (Gi) " Vi (gi1) + (G Vi, (9) — (Go) TV (g0)

2

Wenote that E [(G1-1) TV f(gi-1) ~ (Gi1)T Vi, (9u-1) + (G Vi, (91) = (G) Vf (90)] =
0. Taking expectation with respect to ¢; before taking total expectation we result in a recursion:

— @)V ()|
=E||F_, — (Gi—1) " Vf(g1-1)
FE|| (Ge) TV (gi1) ~ (Get) Vi gim) + (G Vi 9 — (G0 V(g0 |
—E||F) — (G) Y ()|

+E (|| (Gr-) TV (gi1) — (Gem) T Vi, (gim1) + (G Vi, (g0) — (@) Vi(gr) |)

T 2 T T 2
<E|Fi-1 — (Gi—1) Vf(gi—1)| +E H(Gt) Vfi, (gt) — (Gi—1) Vi, (gt—1)H .
41)

E‘Ft

Applying (7)) iteratively from 1 to ¢ leads to (39).
(i) We have

B[R - (@) Vi@

(%) E HFLt/qu - (GLt/qJQ)T vf (gtt/qjq) H2 + i:]E ”(Gs)T Vi, (gs) — (Gsfl)T Vfi, (stl)H2
=1

(®)
< wy o+ Z (ZMf]E IGs — G112 + 2M2I3E ||g, — gs_1||2>

s=1

() :
< wy +2 (MAL3 + M3L2) ZE s — 251
=wy +2 (M}L3 + M?L2) - QZIEHF& %,

(42)
where (a) is due to (39), (c) comes from g-iteration and G-iteration in Algorithm|[T]as well as
Assumptlons []and[3]on smoothness and boundedness.
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(iii) The only left is (b), where we utilize (2T) and note that foreach s = 1,...,¢

E[(Go)Vfi(9) = (Gom1) 'V i (gs)||”
:EWKGQTVﬁJQJ‘*«%—HTVﬁJQJ4*“%—ﬂTVﬁKQQ‘*“%—DTVﬁAQ&JMf
<2E[|(Gs-1) Vi, (gs) — (Gsfl)TVfit(gsfl)Hz +2E |[(G) "V fi,(9s) — (Gs—1) "V fi,(g5)
<2 (MZL3E|lg, - g, 1|* + MFE |G, — Goal})

I

(43)
which result in (b).

O
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