
Table 2: Raw scores for Successor Uncertainties alongside DQN, UBE and
Bootstrap DQN . Test conditions: 30 minute emulator time limit and no-ops
starting condition. Baselines as reported in (Hessel et al., 2018).

Game DQN UBE Bootstrap DQN SU

Alien 1,620.0 3,345.3 2,436.6 6,924.4
Amidar 978.0 1,400.1 1,272.5 1,574.4
Assault 4,280.4 11,521.5 8,047.1 3,813.8
Asterix 4,359.0 7,038.5 19,713.2 42,762.2
Asteroids 1,364.5 1,159.4 1,032.0 2,270.4
Atlantis 279,987.0 4,648,770.8 994,500.0 2,026,261.1
Bank Heist 455.0 718.0 1,208.0 1,017.4
Battle Zone 29,900.0 19,948.9 38,666.7 39,944.4
Beam Rider 8,627.5 6,142.4 23,429.8 11,652.3
Bowling 50.4 18.3 60.2 38.3
Boxing 88.0 34.2 93.2 99.7
Breakout 385.5 617.3 855.0 352.7
Centipede 4,657.7 4,324.1 4,553.5 7,049.3
Chopper Command 6,126.0 7,130.8 4,100.0 15,787.8
Crazy Climber 110,763.0 132,997.5 137,925.9 171,991.1
Demon Attack 12,149.4 25,021.1 82,610.0 183,243.2
Double Dunk -6.6 4.7 3.0 -0.2
Enduro 729.0 30.8 1,591.0 2,216.3
Fishing Derby -4.9 3.1 26.0 53.3
Freeway 30.8 0.0 33.9 33.8
Frostbite 797.4 546.0 2,181.4 2,733.3
Gopher 8,777.4 13,808.0 17,438.4 19,126.2
Gravitar 473.0 224.5 286.1 684.4
H.E.R.O. 20,437.8 12,808.8 21,021.3 22,050.8
Ice Hockey -1.9 -6.6 -1.3 -2.9
James Bond 768.5 778.4 1,663.5 2,171.1
Kangaroo 7,259.0 6,101.2 14,862.5 15,751.1
Krull 8,422.3 9,835.9 8,627.9 10,103.9
Kung-Fu Master 26,059.0 29,097.1 36,733.3 50,878.9
Montezumas Revenge 0.0 499.1 100.0 0.0
Ms. Pac-Man 3,085.6 3,141.3 2,983.3 4,894.8
Name This Game 8,207.8 4,604.4 11,501.1 12,686.7
Pong 19.5 14.2 20.9 21.0
Private Eye 146.7 -281.1 1,812.5 133.3
Q*Bert 13,117.3 16,772.5 15,092.7 22,895.8
River Raid 7,377.6 8,732.3 12,845.0 17,940.6
Road Runner 39,544.0 56,581.1 51,500.0 61,594.4
Robotank 63.9 42.4 66.6 58.5
Seaquest 5,860.6 1,880.6 9,083.1 68,739.9
Space Invaders 1,692.3 2,032.4 2,893.0 13,754.3
Star Gunner 54,282.0 44,458.6 55,725.0 78,837.8
Tennis 12.2 10.2 0.0 -1.0
Time Pilot 4,870.0 5,650.6 9,079.4 9,574.4
Tutankham 68.1 218.6 214.8 247.7
Up and Down 9,989.9 12,445.9 26,231.0 29,993.4
Venture 163.0 -14.7 212.5 1,422.2
Video Pinball 196,760.4 51,178.2 811,610.0 515,601.9
Wizard Of Wor 2,704.0 8,425.5 6,804.7 15,023.3
Zaxxon 5,363.0 5,717.9 11,491.7 14,757.8

11

A Appendix to section 3: proofs of propositions 1 and 2

Proposition 1. Let |A| > 1, and PQ̂ be a factorised distribution, i.e. for Q̂ ∼ PQ̂, Q̂(s, a) and
Q̂(s′, a′) are independent, ∀(s, a) 6= (s′, a′), with symmetric marginals. Assume that for each s ∈ S ,
the marginal distributions of {Q̂(s, a) : a ∈ A} are all symmetric around the same value cs ∈ R.
Then the probability of executing any given sequence of L actions under π̂ ∼ G#PQ̂ is at most 2−L.

Proof. We can w.l.o.g. assume that the distribution is symmetric around zero as centring will not
affect validity of the following argument. To attain probability of taking a particular action a in state
s greater than 1

2 , it must be that P(a = argmaxa′ Q̂(s, a′)) > 1
2 . This event can be described as

A :=
⋂

a′∈A\{a}

{Q̂ : Q̂(s, a) > Q̂(s, a′)} ;

by symmetry, the event
Ã :=

⋂
a′∈A\{a}

{Q̂ : Q̂(s, a) < Q̂(s, a′)} ,

must have the same probability as A. Because P(A) + P(Ã) ≤ 1, it must be that P(A) ≤ 1
2 . Since

Q̂(s, a) is by assumption independent of any Q̂(s′, a′), (s, a) 6= (s′, a′), the probability of executing
a sequence of L actions is at best (i.e. under deterministic transitions) the product of probabilities of
executing a single action, which is upper bounded by 2−L.

Proposition 2. For any distribution PT̂ and policy π such that the variance VFπ#PT̂ [Q̂π(s, a)] is
greater than zero for some (s, a), there exists a distribution PQ̂π which matches the posterior sampling
policy (definition 2), but does not propagate uncertainty (definition 1), according to PT̂ .

Proof. First, let us formally define G : R̄S×A → AS to be the function which maps each Q function
to the corresponding greedy policy (we can w.l.o.g. assume there is some tie-breaking rule for when
Q̂(s, a) = Q̂(s, a′), a 6= a′, e.g. taking the action with smaller index). Here, R̄ is the extended
space of real numbers, and we assume the Borel σ-algebra generated by the usual interval topology;
the discrete σ-algebra is assumed onA. For product spaces, the product σ-algebra is taken. Given that
the pre-image of a particular point π̂ ∈ AS is

⋂
s∈S{Q̂ : Q̂(s, π̂(s)) ≥ Q̂(s, a),∀a}, G is measurable

and thus the distribution Pπ̂ = G#PQ̂ is well-defined for any PQ̂ ∈ P(RS×A), and in particular for
PQ̂ = (G ◦ Fπ)#PT̂ for any policy π.

Our proof relies on the following observation: if we sample π̂ ∼ Pπ̂ and then use it to explore
the environment, the distribution of actions taken in a particular state s ∈ S will be categorical with
parameter ps ∈ {p ∈ R|A|+ :

∑|A|
j=1 pj = 1} (except for when the state s is reached with probability

zero under PT̂ and Pπ̂ in which case we can set ps, for example, to [1/|A|, . . . , 1/|A|]> as this will
not affect the following argument). Hence to achieve G#PQ̂π = Pπ̂, it is sufficient to construct
a model Q̂ ∼ PQ̂π for which the distribution of argmaxa∈A Q̂(s, a) is categorical with the parameter
ps for all s ∈ S . We achieve this using the Gumbel trick: sample gsa ∼ Gumbel(0, 1) independently
for each (s, a) ∈ S ×A, and set Q̂(s, a) = gsa + log psa (interpreting log 0 = −∞).

To finish the proof, observe that if the inputs to the argmax operator are all shifted by the same amount,
or multiplied by a positive scalar, the output remains unchanged. Hence taking Q̂′(s, a) = a+bQ̂(s, a)
for any a ∈ R, b > 0 will also result in the desired distribution over exploration policies. We can
thus take the (s, a) for which VFπ#PT̂ [Q̂(s, a)] > 0 and pick b > 0 so that VPQ̂π [Q̂(s, a)] 6=
VFπ#PT̂ [Q̂(s, a)] which will be always possible as V(bQ̂(s, a)) is b2V(gsa) = b2 π2

6 if psa > 0 and
is undefined otherwise.

12

B Appendix to section 5

B.1 Proofs for section 5.1

In what follows, the binary tree MDP of size L introduced in figure 1 is assumed. We further assume
φ is given and maps each state-action to its one-hot embedding. As all of the following arguments
are independent of the mapping from the actions {a1, a2} to the movements {UP, DOWN}, we use
A = {UP, DOWN} directly for improved clarity.

To prove lemma 4, we will need lemmas 6 to 9 which we state and prove now.

Lemma 6. After any number of posterior updates, the SU reward distribution is multivariate normal
with all rewards mutually independent. Furthemore, under the SU Q function model Q̂ ∼ PQ̂π for
any policy π, and even state indices 0 ≤ j < k

Cov(Q̂(sk, UP), Q̂(sj , DOWN)) = Cov(Q̂(sk, DOWN), Q̂(sj , DOWN)) = 0 .

Proof. Inspecting equations (2) and (3), it is easy to see that neither Q̂(sk, UP) and Q̂(sj , DOWN) nor
Q̂(sk, DOWN) and Q̂(sj , DOWN) share any reward terms, since j < k by assumption and the empiri-
cal transition frequencies used to construct PQ̂π will always be zero if the true transition probability
is zero (recall that DOWN always terminates the episode). Hence assuming that the successor features
were successfully learnt, i.e. ψ̂π = ψπ , it is sufficient to show that the individual rewards are indepen-
dent for SU. To see that this is the case, observe that the assumed one-hot encoding of state-actions
implies that SU reward distribution will be a multivariate Gaussian with diagonal covariance after
any number of updates which implies the desired independence.

Lemma 7. Under the SU model Q̂ ∼ PQ̂π for any policy π, the random vector ∆, ∆k/2 :=
Q̂(sk, UP) − Q̂(sk, DOWN), follows a zero mean Gaussian distribution with Cov(∆k/2,∆j/2) =
Cov(Q̂(sk, UP), Q̂(sj , UP))− Cov(Q̂(sk, DOWN), Q̂(sj , UP))) for any even indices 0 ≤ j < k.

Proof. The Gaussianity of the joint distribution of ∆j/2 and ∆k/2 follows from the linearity property
of multivariate normal distributions. For the covariance, observe

Cov(∆k/2,∆j/2) = Cov(Q̂(sk, UP)− Q̂(sk, DOWN), Q̂(sj , UP)− Q̂(sj , DOWN))
= Cov(Q̂(sk, UP), Q̂(sj , UP))− Cov(Q̂(sk, DOWN), Q̂(sj , UP))−

Cov(Q̂(sk, UP), Q̂(sj , DOWN)) + Cov(Q̂(sk, DOWN), Q̂(sj , DOWN))
= Cov(Q̂(sk, UP), Q̂(sj , UP))− Cov(Q̂(sk, DOWN), Q̂(sj , UP))) ,

where we used bilinearity of the covariance operator and then applied lemma 6.

Lemma 8. Under the SU model Q̂ ∼ PQ̂π for the uniform policy π, and even indices 0 ≤ j < k

Cov(Q̂(sk, UP), Q̂(sj , UP)) > Cov(Q̂(sk, DOWN), Q̂(sj , UP)))
⇐⇒ V(Q̂(sk, UP)) > V(Q̂(sk, DOWN)) .

Proof. Analogously to the proof of lemma 7, we see that under the uniform policy

Cov(Q̂(sk, UP), Q̂(sj , UP))

= Cov(Q̂(sk, UP), r̂(sj , UP) + 2−1r̂(sj+2, UP) + . . .+ 2−(k−j2)Q̂(sk, UP))

= 2−(k−j2) Cov(Q̂(sk, UP), Q̂(sk, UP)) = 2−(k−j2) V(Q̂(sk, UP)) ,

where the 2−l terms correspond to the probability of getting to sl from (sj , UP), l = 1, 2, . . . , k−j2 ,
and we used bilinearity of the covariance operator and then applied lemma 6. An analogous argument
yields Cov(Q̂(sk, DOWN), Q̂(sj , UP)) = 2−(k−j2)V(Q̂(sk, DOWN)), concluding the proof.

Lemma 9. For a d-dimensional centred Gaussian random vector ∆ ∼ N (0,Σ) with Cov(∆d,∆i) >
0 for all i = 1, . . . , d− 1, the following bound holds: P(∆d > 0 | ∆1 > 0, . . . ,∆d−1 > 0) > 1/2.

13

Proof. Notice that ∆ and Σ1/2X , X ∼ N (0, 1), are equal in distribution which allows us to set
∆i = 〈vi, X〉, with vi ∈ Rd the ith row of Σ1/2. Let Rv : Rd → Rd be the reflection against
the orthogonal complement of v, i.e.

Rv(x) = x− 2 〈x, v〉
〈v, v〉

v .

It is easy to see that 〈v,Rv(x)〉 = −〈v, x〉 and consequently Rv(Rv(x)) = x. The main idea
of this proof is to partition Rd into the half-spaces {x : 〈vi, x〉 > 0} and {x : 〈vi, Rvd(x)〉 > 0},
i = 1, . . . , d− 1, and reason about the value 〈vd, x〉 takes in each.

First, we define the conditioning set E := {x : 〈vi, x〉 > 0 ,∀i = 1, . . . , d − 1} and observe
that P(X ∈ E) > 0 so all we need to prove is E[1〈vd,X〉>01E] > E[1〈vd,X〉≤01E], where 1E
is the indicator function of the set E. To do so, we define U := {x : 〈vi, Rvd(x)〉 > 0 ,∀i =
1, . . . , d − 1}, A+ := E ∩ U , A− := E ∩ U c, split the integral

∫
E
1{〈vd,X〉>0}(x)φ(x) dx

into
∫
A+

1{〈vd,X〉>0}(x)φ(x) dx +
∫
A−

1{〈vd,X〉>0}(x)φ(x) dx (φ is the standard normal density
function; analogously for 1{〈vd,X〉≤0}), and consider X ∈ A+ and X ∈ A− separately:

(I) X ∈ A+: Take any x, v ∈ Rd and define the orthogonal projection map on v, Bv := vv>/‖v‖2
2,

and the corresponding projections of x, xv := Bvx , x
⊥
v = (I −Bv)x, so that x = xv + x⊥v . Since

‖x‖2
2 = ‖xv + x⊥v ‖2

2 = ‖xv‖2
2 + ‖x⊥v ‖2

2 = ‖ − xv + x⊥v ‖2
2 = ‖Rv(x)‖2

2 ,

it follows that φ(x) = φ(Rvd(x)). Noticing further that Rvd(x) = (I − 2Bvd)x and recalling
Rvd(Rvd(x)) = x, we have |det∇xRvd(x)| = | − 1| = 1. The crucial observation here is
〈x, vd〉 > 0 ⇐⇒ 〈xvd , vd〉 > 0, 〈x, vd〉 ≤ 0 ⇐⇒ 〈Rvd(x), vd〉 > 0 (up to null sets), and that
A+ = Rvd [A+] = {Rvd(x) : x ∈ A+} which follows from the definition of the set A+. In particular
this means that whenever x ∈ A+ then also −x ∈ A+, and thus by the above established symmetry
and the change of variable formula,

∫
A+

1{〈vd,X〉>0}(x)φ(x) dx =
∫
A+

1{〈vd,X〉≤0}(x)φ(x) dx,
i.e. the conditional probabilities of both A+ ∩ {〈vd, X〉 > 0} and A+ ∩ {〈vd, X〉 ≤ 0} are equal.

(II) X ∈ A−: Notice that for any i = 1, . . . , d− 1

〈vi, Rvd(x)〉 = 〈vi, x〉 − 2 〈vd, x〉
‖vd‖2

2
〈vd, vi〉 .

Hence if 〈vd, x〉 ≤ 0 then 〈vi, Rvd(x)〉 ≥ 〈vi, x〉 > 0 from the definition 〈vd, vi〉 = Cov(∆d,∆i)
and the assumption Cov(∆d,∆i) > 0. Now by the definition of U in A− = E ∩ U c, for any
x ∈ A−, there must exist i ∈ {1, . . . , d− 1} such that 〈vi, Rvd(x)〉 ≤ 0 which implies 〈vd, x〉 > 0
by the above argument. It is thus sufficient to establish P(X ∈ A−) > 0 to complete the proof as
the intersection A− ∩ {〈vd, X〉 ≤ 0} is empty.

Since 〈vd, vi〉 = Cov(∆d,∆i) > 0, vd ∈ E and 〈vi, Rvd(vd)〉 = −〈vi, vd〉 < 0 ,∀i = 1, . . . , d− 1,
we have vd ∈ A−. We can thus construct a convex polytope V ⊆ A− such that P(X ∈ V) > 0.
Specifically, pick some i ∈ {1, . . . , d − 1}, for example i = argmaxi∈{1,...,d−1}〈vd, vi〉, and set
κ := maxk,l∈{1,...,d} |〈vk, vl〉| = maxk∈{1,...,d} ‖vk‖2

2 > 0. Now define

V := {x : x = u+ vd +
d−1∑
j=1

αjvj , αj ∈ [0, 〈vd,vi〉κ(d−1)) , u ∈ span(v1, . . . , vd)⊥} ,

where span(v1, . . . , vd)⊥ is the orthogonal complement of the linear span of the vectors (v1, . . . , vd).
Clearly V ⊆ E as for any x ∈ V , 〈vi, x〉 > 0 from the bound on the coefficients α. To see that
x ∈ V =⇒ x ∈ U c, note

〈vi, Rvd(x)〉 = −〈vi, vd〉+
d−1∑
j=1

αj︸︷︷︸
≥0

[
〈vi, vj〉 − 2 〈vd, vi〉

‖vd‖2
2
〈vj , vd〉︸ ︷︷ ︸

>0

]
.

Since the first and last terms are strictly negative, we just need to control the second term. We again
apply the definition of V to bound

∑
j αj〈vi, vj〉 < 〈vi, vd〉 which implies 〈vi, Rvd(x)〉 < 0 for

every x ∈ V . Thus V ⊆ A− and because V has non-zero volume, its probability under N (0, I) will
be positive. Hence

∫
A−

1{〈vd,X〉>0}(x)φ(x) dx >
∫
A−

1{〈vd,X〉≤0}φ(x) dx = 0.

14

We are now ready to prove lemma 4.

Lemma 4 (Formal statement). Let π̂ ∼ Pπ̂ = G#PQ̂π where Q̂ ∼ PQ̂π is the SU model for the uni-
form policy π. For 2 ≤ k < 2L even, define Uk = {π̂ : π̂(s0) = . . . = π̂(sk−2) = δUP} where δUP is
the policy of selecting UP with probability one. Then Pπ̂(π̂(sk) = δUP | π̂ ∈ Uk) > 1/2 if there exists
an even 0 ≤ j < k such that Cov(Q̂(sk, UP), Q̂(sj , UP)) > Cov(Q̂(sk, DOWN), Q̂(sj , UP)) .

Proof. Under Pπ̂, G(Q̂) = δUP iff ∆k/2 = Q̂(sk, UP)− Q̂(sk, DOWN) > 0. By lemma 7, the distri-
bution of the random vector ∆ = [∆0,∆1, . . . ,∆k/2]> is a zero mean Gaussian, and in particular

Pπ̂(π̂ = δUP | π̂ ∈ Uk) = P(∆k/2 > 0 | ∆0 > 0, . . . ,∆k/2−1 > 0) .

To prove the desired claim, we therefore need to show that existence of even 0 ≤ j < k such
that Cov(Q̂(sk, UP), Q̂(sj , UP)) > Cov(Q̂(sk, DOWN), Q̂(sj , UP)) , implies P(∆k/2 > 0 | ∆0 >
0, . . . ,∆k/2−1 > 0) > 1/2. The statement follows from:

Cov(Q̂(sk, UP), Q̂(sj , UP)) > Cov(Q̂(sk, DOWN), Q̂(sj , UP)) , for some even 0 ≤ j < k

lemma 8⇐⇒ Cov(Q̂(sk, UP), Q̂(sj , UP)) > Cov(Q̂(sk, DOWN), Q̂(sj , UP)) , for all even 0 ≤ j < k

lemma 7⇐⇒ Cov(∆k/2,∆j/2) > 0 , for all even 0 ≤ j < k

lemma 9⇐⇒ P(∆k/2 > 0 | ∆0 > 0, . . . ,∆k/2−1 > 0) > 1/2 .

Proposition 3 (Formal statement). Assume the SU model with: (i) one-hot state-action embeddings φ,
(ii) uniform exploration thus far, (iii) successor representations learnt to convergence for a uniform
policy. For 2 ≤ k < 2L even, let sk be a state visited N times thus far, and π, Q̂ ∼ PQ̂π , π̂ ∼ Pπ̂,
and Uk be defined as in lemma 4. Then

Pπ̂(π̂(sk) = δUP | π̂ ∈ Uk) > Pπ̂(π̂(sk) = δDOWN | π̂ ∈ Uk) ,

with probability greater than 1− εN , where εN < 0.75Ne− N
50 + (1− 0.75N)e−0.175N .

Proof. By lemma 4, we know that Pπ̂(π̂(sk) = δUP | π̂ ∈ Uk) > Pπ̂(π̂(sk) = δDOWN | π̂ ∈ Uk) holds
if Cov(Q̂(sk, UP), Q̂(sj , UP)) > Cov(Q̂(sk, DOWN), Q̂(sj , UP)) for some j = 0, 2, . . . , k − 2. By
lemma 8, this condition is equivalent to requiring V(Q̂(sk, UP)) > V(Q̂(sk, DOWN)). Our approach
is thus based on lower bounding the probability of the event

{Q̂ : V(Q̂(sk, UP)) > V(Q̂(sk, DOWN))} . (5)

The rest of the proof is divided into two stages:

(I) We derive a crude bound Υ1(Q̂(sk, UP)) ≤ V(Q̂(sk, UP)) and compute a lower bound on
the probability of the event Υ1(Q̂(sk, UP)) > V(Q̂(sk, DOWN)).

(II) We then derive a tighter lower bound Υ2(Q̂(sk, UP)), and again compute a lower bound on
the probability of the event Υ2(Q̂(sk, DOWN)) > V(Q̂(sk, DOWN)).

(I) The bound Υ1(Q̂(sk, UP)) ≤ V(Q̂(sk, UP)) will correspond to a worst case assumption about
the distribution of data available from exploration, and Υ2(Q̂(sk, UP)) to a less pessimistic sce-
nario. The change of setup involved in moving from the first bound to the second will be illus-
trative of the manner in which, under the SU model, the more states the agent has previously
observed beyond sk, the more likely it is to satisfy the condition from equation (5) and consequently
Cov(Q̂(sk, UP), Q̂(sj , UP)) > Cov(Q̂(sk, DOWN), Q̂(sj , UP)) for all j = 0, 2, . . . , k − 2.

From lemma 6, we know that the SU model of rewards will be a zero mean Gaussian with a diagonal
covariance. In particular, the covariance takes the form (θ−1I + β−1∑

t φtφ
>
t)−1, where recall

θ is the prior and β is the likelihood variance, implying that the diagonal entries will be ν(n) :=
(θ−1 + β−1n)−1 where n is the number of times the corresponding state-action was observed.

15

Recall that the agent has previously visited the state sk N times. We will write N1 for the number of
times we have observed (sk, UP) so far, N2 for the number of times (sk, UP) and (sk+2, UP) have
both been observed within a single episode, and so forth. Observe

V(Q̂(sk, UP)) = ν(N1) + 2−1(ν(N2) + ν(N1 −N2))+
1N3>02−2(ν(N3) + ν(N2 −N3) + 1N4>0 . . .)

≥ ν(N1) + 2−1(ν(N2) + ν(N1 −N2))
We now minimise ν(N2) + ν(N1−N2) with respect to N2, finding the minima to occur at N2 = N1
and N2 = 0, in both cases giving the bound

Υ1(Q̂(sk, UP)) := 3
2ν(N1) + 1

2ν(0) ≤ V(Q̂(sk, UP))

This bound can be interpreted as assuming that after taking action UP, the agent has always proceeded
to move DOWN, thus terminating the episode. We now compute a lower bound on the probability that
Υ1(Q̂(sk, UP)) > V(Q̂(sk, DOWN)), in terms of N1. We have

Υ1(Q̂(sk, UP))− V(Q̂(sk, DOWN)) = 3
2ν(N1)− ν(N −N1) + 1

2ν(0) > 3
2ν(N1)− ν(N −N1)

which is greater than zero when θ−1 + β−1(3N − 5N1) > β−1(3N − 5N1) > 0, i.e. when-
ever N1 <

3N
5 . By Hoeffding’s inequality, P(N1 ≥ (1+δ)N

2) ≤ e−
δ2N

2 . Thus, letting δ = 5−1,
V(Q̂(sk, UP)) > V(Q̂(sk, DOWN)) holds with probability greater than 1− e− N

50 .

(II) Notice that we have obtained the Υ1 bound by considering the worst case scenario for N2, namely
N2 = 0. Here we derive a tighter bound by treating the two cases, N2 = 0 and N2 > 0, separately.
For N2 > 0, we follow an approach analogous to (I): we assume the “next” worst-case scenario,
which is easily seen to be N3 = 0, and compute a lower bound on V(Q̂(sk, UP))

Υ2(Q̂(sk, UP)) := ν(N1) + ν(N2) + 1
2ν(N1 −N2) .

After some algebra, we obtain Υ2(Q̂(sk, UP)) > V(Q̂(sk, DOWN)) for all N2 > 0 and N1 ≤
1

41 (27 + 4
√

2)N =: c . We thus only need to bound the probability of N1 > c. Using Hoeffding’s

inequality as in (I) for a suitably chosen δ, we see P(N1 > c) ≤ exp{− (13+8
√

2)2

3362 N} < e−0.175N .
For N2 = 0, we use the bound from part (I), and thus the only thing remaining is to compute
the probability of N2 = 0:

P(N2 = 0) =
∑N
K=0P(N2 = 0 | N1 = K)P(N1 = K) =

∑N
K=0 2−K2−N

(
N
K

)
=
∑N
K=0

(
N
K

)
4−K2K−N = (4−1 + 2−1)N = 0.75N .

Combining the above results, we see that V(Q̂(sk, UP)) > V(Q̂(sk, DOWN)) will hold with probabil-
ity greater than 1− εN where εN < 0.75Ne− N

50 + (1− 0.75N)e−0.175N .

B.2 Proofs for section 5.3

The following is an extension of proposition 5 to activations such as ReLU, Leaky ReLU, or Tanh.
Proposition 10. Consider the same setting as in proposition 5 with the exception that ϕ for which
ϕ[(0,∞)] = {ϕ(x) : x > 0} ⊆ (0,∞). Then sampling independently form the prior wa ∼
N (0, σ2

wI), Uhs ∼ N (0, σ2
u) solves a tied action binary tree of size L in T ≤ −[log2(1− 2−d(1−

2−d)L)]−1 median number of episodes, or approximately −[log2(1− 2−d)]−1 for d ≥ 10.

Proof. As in the proof of proposition 5, let us define ∆ := wUP − wDOWN and observe UP is selected
if Q̂(s, UP)− Q̂(s, DOWN) = 〈φ(s), wUP − wDOWN〉 > 0. We can thus lower bound

P
[L−1⋂
j=0
{Q̂(s2j , UP)>Q̂(s2j , DOWN)}

]
≥P
[L−1⋂
j=0
{〈φ(s2j),∆〉>0} | ∆>0

]
P(∆>0) ,

where ∆ > 0 is meant elementwise. As ∆ ∼ N (0, 2σ2
wI), P(∆ > 0) = 2−d for all L. By

independence P
[⋂L−1

j=0 {〈φ(s2j),∆〉 > 0} | ∆ > 0
]

=
∏L−1
j=0 P({φ(s2j) > 0}) where > is to be

16

interpreted elementwise. From the assumption ϕ[(0,∞)] ⊆ (0,∞) and the assumed φ(s) = ϕ(U1s),
Uhs ∼ N (0, σ2

u), we have P({φ(s) > 0}) ≥ 1 − 2−d, which implies that probability of success
within a single episode is lower bounded by 2−d(1− 2−d)L. The result follows by substituting this
probability into the formula for the median of a geometric distribution.

C Appendix to section 5: implementation & experimental details

Pseudocode for SU. Quantities superscripted with † are treated as fixed during optimisation.

Algorithm 1 Successor Uncertainties with posterior sampling

Require: Neural networks ψ̂ and φ̂; weight vector ŵ; prior variance θ > 0; likelihood variance
β > 0; covariance decay factor ζ ∈ [0, 1]; BATCH_SIZE ∈ N; LEARNING_RATE > 0; environment
ENV; action set A; discount factor γ ∈ [0, 1).

initialise Λ← θ−1I , Σ̂w ← Λ−1

for each episode do
sample w ∼ N(ŵ, Σ̂w)
s← ENV.RESET()
repeat

a← argmaxz∈A〈ψ̂(s, z), w〉
s′, r, done← ENV.INTERACT(s)
D ← D ∪ {(s, a, r, s′, done)}
B ∼ UNIFORM(D, BATCH_SIZE)
`←

∑
b∈B SU_LOSS(b, Σ̂w)

φ̂, ψ̂, ŵ ← SGD.STEP(`, LEARNING_RATE)

Λ← ζΛ + β−1φ̂(s, a)φ̂(s, a)>
s← s′

until done

Σ̂w ← Λ−1

end for

function SU_LOSS(EXPERIENCE_TUPLE, Σ̂w)
s, a, r, s, done← EXPERIENCE_TUPLE

sample w ∼ N(ŵ, Σ̂w)
a′ ← argmaxz∈A〈ψ̂(s, z), w〉

yQ ←
{

0 if done
γ〈ŵ, ψ̂(s′, a′)〉 otherwise

ySF ←
{

0 if done
γψ̂(s′, a′) otherwise

return |〈ŵ, φ̂(s, a)〉 − r|2 + ‖ψ̂(s, a)− φ̂(s, a)− y†SF ‖2
2 + |〈ŵ, ψ̂(s, a)〉 − r − y†Q|2

end function

C.1 Appendix to sections 5.1 and 5.2: tabular experiments

Neural network architecture The architecture used for tabular experiments consists of:

1. A neural network mapping one-hot encoded state vectors and one-hot encoded action
vectors to a hidden layer φ̂(s, a), and then to reward prediction r̂(s, a) via weights ŵ.
Weights mapping state vectors to hidden layer are initialised using a folded Xavier normal
initialisation and followed by ReLU activation. Weights ŵ are initialised to zero, consistent
with a Bayesian linear regression model with a zero mean prior.

17

2. A set of weights that linearly maps state-action vectors to ψ̂(s, a).

Binary tree MDP Table 3 contains the hyperparameters considered during gridsearch and the final
values used to produce figure 2. Hyperparameter values are not included for UBE and BDQN, as
they do not affect performance (that is, BDQN and UBE perform uniformly random exploration for
all hyperparameter settings). All methods used one layer fully connected ReLU networks, Xavier
initialisation, and a replay buffer of size 10,000. Hyperparameters for all methods were selected by
gridsearch on a L = 100 sized binary tree. Hyperparameters were then kept fixed as binary tree size
L was varied.

Table 3: Binary tree experiment algorithm hyperparameters gridsearch sets and values used for
Successor Uncertainties, Bootstrap+Prior (1x compute) and Bootstrap+Prior (25x compute).

Algorithm

Hyperparameter Gridsearch set SU B+P 1x B+P 25x

Gradient steps per episode — 10 10 250
Hidden size {20, 40} 20 20 20

Prior variance θ {1, 102, 104} 104 — —
Likelihood variance β {10−3, 10−2, 10−1} 10−3 — —
Σ̂w decay factor ζ — 1 — —

Ensemble size K {10, 20, 40} — 10 10
Bootstrap probability {0.1, 0.25, 0.75, 0.9, 1.0} — 0.75 1.0
Prior weight {0.0, 0.1, 1.0, 10.0} — 0.1 0.0

Chain MDP Problem description copied verbatim from Osband et al. (2018):

The environments are indexed by problem scale L ∈ N and action mask
W ∼ Ber(0.5)L×L, with S = {0, 1}L×L and A = {0, 1}. The agent begins each
episode in the upper left-most state in the grid and deterministically falls one row
per time step. The state encodes the agent’s row and column as a one-hot vector
st ∈ S. The actions {0, 1} move the agent left or right depending on the action
mask W at state st, which remains fixed. The agent incurs a cost of 0.01/L for
moving right in all states except for the right-most, in which the reward is 1. The
reward for action left is always zero. An episode ends after L time steps so that
the optimal policy is to move right each step and receive a total return of 0.99; all
other policies receive zero or negative return.

Table 4 contains the hyperparameter settings used to produce the results in figure 3. We were unable
to run experiments with L > 160 for Successor Uncertainties due to memory limitations. |S| scales
as O(L2) for this problem. Consequently, with one hot encoding, the required neural network weight
vectors required grew too large. A smarter implementation using a library designed for operating on
sparse embeddings would alleviate this problem.

Table 4: Hyperparameters used for Successor Uncertainties in chain experiments. Hidden size fixed
at 20 to match architecture in Osband et al. (2018).

Hyperparameter Gridsearch set Value used

Gradient steps per episode {10, 20, 40} 40
Hidden size — 20

Prior variance θ {1, 102, 104} 1
Likelihood variance β {10−3, 10−2, 10−1} 10−2

Σ̂w decay factor ζ — 1

18

C.2 Appendix to section 6: Atari 2600 experiments

Training procedure We train for 200M frames (50M action selections with each action repeated
for 4 frames), using the ADAM optimiser (Kingma & Ba, 2014) with a learning rate of 5× 10−5 and
a batch size of 32. A target network is utilised, as in Mnih et al. (2015), and is updated every 10, 000
steps, as in Van Hasselt et al. (2016).

Network architecture We use a single neural network to obtain estimates φ̂ and ψ̂.

1. Features: the neural network converts 4× 84× 84 pixel states (obtained through standard
frame max-pooling and stacking) into a 3136-dimensional feature vector, using a convolution
network with the same architecture as in Mnih et al. (2015).

2. Hidden layer: the feature vector is then mapped to a hidden representation of size 1024 by a
fully connected layer followed by a ReLU activation.

3. φ̂ prediction: the hidden representation is mapped to a size 64 prediction of φ̂ for each action
in A by a fully connected layer with ReLU activation.

4. ψ̂ prediction: the hidden representation is mapped to 1 + |A| vectors of size 64. The
first vector gives the average successor features for that state ψ̄(s), whilst each of the |A|
vectors predicts an advantage ψ̃(s, a). The overall successor feature prediction is given by
ψ̂(s, a) = ψ̄(s) + ψ̃(s, a).

5. Linear Q̂π and r̂ prediction: a final linear layer with weights ŵ maps φ̂ to reward prediction
and ψ̂ to Q value prediction with both predictors sharing weights.

Hyperparameter selection We used six games for hyperparameter selection: ASTERIX, ENDURO,
FREEWAY, HERO, QBERT, SEAQUEST, a subset of the games commonly used for this purpose
(Munos et al., 2016). 12 combinations of parameters in the ‘search set’ column were tested (that is,
not an exhaustive gridsearch), for a total of 12× 6 = 72 full game runs, or approximately 33% of the
entire computational cost of the experiment.

Table 5: Hyperparameters used for Successor Uncertainties in Atari 2600 experiments.
Hyperparameter Search set Value used

Action repeat — 4
Train interval — 4

Learning rate {2.5× 10−4, 5× 10−5} 5× 10−5

Batch size — 32
Gradient clip norm cutoff — 10
Target update interval {103, 104} 104

Successor feature size {32, 64} 64
Hidden layer size — 1024

Prior variance θ — 1
Likelihood variance β {10−3, 10−2} 10−3

Σ̂w decay factor ζ {1− 10−5, 1− 10−4} 1− 10−5

19

