
A Proofs

A.1 Proof of Theorem 1

Lemma 1. For any initial state x, a state y that can occur on a trajectory τ ∼ T (x, π), that is:
Pτ∼T (x,π)(Xk = y) 6= 0 for some k an action a for which π(a|x) 6= 0, we have:

hk(a|x, y)
π(a|x)

=
Pτ∼T (x,π)(Xk = y|A0 = a)

Pτ∼T (x,π)(Xk = y)
. (9)

Proof. From Bayes’ rule, we have:

Pτ∼T (x,π)(Xk = y|A0 = a) =
Pτ∼T (x,π)(A0 = a|Xk = y)Pτ∼T (x,π)(Xk = y)

Pτ∼T (x,π)(A0 = a)
,

=
Pτ∼T (x,π)(Xk = y)hk(a|x, y)

π(a|x)
.

Proof of Theorem 1. From the definition of the Q-function for a state-action pair (x, a), we have

Qπ(x, a) = r(x, a) +
∑
k≥1

∑
y∈X

γkPτ∼T (x,π)(Xk = y|A0 = a)rπ(y), (10)

where rπ(y) =
∑
a∈A π(a|y)r(y, a).

Combining Eq. (9) with Eq. (10) we deduce

Qπ(x, a) = r(x, a) +
∑
y∈X

∑
k≥1

γkPτ∼T (x,π)(Xk = y)
hk(a|x, y)
π(a|x)

rπ(y),

= r(x, a) + Eτ∼T (x,π)

∑
k≥1

γk
hk(a|Xk, x)

π(a|x)
Rk

 .

A.2 Proof of Theorem 2

Proof. For any action a, the value function writes as

V π(x) = Eτ∼T (x,π)

[
Z(τ)

]
,

=

∫
z

zPτ∼T (x,π)(Z(τ) = z)dz,

=

∫
z

z
Pτ∼T (x,π)(Z(τ) = z)

Pτ∼T (x,a,π)(Z(τ) = z)
Pτ∼T (x,a,π)(Z(τ) = z)dz,

=

∫
z

z
Pτ∼T (x,π)(Z(τ) = z)

Pτ∼T (x,π)(Z(τ) = z|A0 = a)
Pτ∼T (x,a,π)(Z(τ) = z)dz,

(i)
=

∫
z

z
Pτ∼T (x,π)(A0 = a)

Pτ∼T (x,π)(A0 = a|Z(τ) = z)
Pτ∼T (x,a,π)(Z(τ) = z)dz,

=

∫
z

z
π(a|x)

hz(a|x, z)
Pτ∼T (x,a,π)(Z(τ) = z)dz,

= Eτ∼T (x,a,π)

[
Z(τ)

π(a|x)
hz(a|x, Z(τ))

]
,

where (i) follows from Bayes’ rule.
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A.3 Proof of Theorem 3

Proof. Using (3), we have:

∇θV πθ (x0) = Eτ∼T (x0,πθ)

[∑
a

∑
k≥0

γk∇πθ(a|Xk)A
π(Xk, a)

]
= Eτ∼T (x0,πθ)

[∑
a

∑
k≥0

γk∇πθ(a|Xk)
(
r(Xk, a)− rπθ (Xk) +

∑
t≥k+1

γt−k
(hβ(a|Xk, Xt)

πθ(a|Xk)
− 1
)
Rt

)]
= Eτ∼T (x0,πθ)

[∑
a

∑
k≥0

γk∇πθ(a|Xk)
(
r(Xk, a) +

∑
t≥k+1

γt−k
hβ(a|Xk, Xt)

πθ(a|Xk)
Rt

)]
.

where the third equality is due to
∑
a∇πθ(a|Xk)f(Xk) = f(Xk)

∑
a∇πθ(a|Xk) = 0, for

f(Xk) = rπθ (Xk) +
∑
t≥k+1 γ

t−kRt.

Similarly, for the return version and any action a, we have:

∇θV πθ (x0) = Eτ∼T (x0,πθ)

[∑
a

∑
k≥0

γk∇πθ(a|Xk)A
π(Xk, a)

]
= Eτ∼T (x0,πθ)

[∑
a

∑
k≥0

γkπ(a|Xk)∇ log πθ(a|Xk)A
π(Xk, a)

]
= Eτ∼T (x0,πθ)

[∑
k≥0

γk∇ log πθ(Ak|Xk)A
π(Xk, Ak)

]
= Eτ∼T (x0,πθ)

[∑
k≥0

γk∇ log πθ(Ak|Xk)
(
1− π(Ak|Xk)

hz(Ak|Xk, Z(τk:∞))

)
Z(τk:∞)

]
.

A.4 Proof of Proposition 1

Proof. We have:

Eτ∼T (x0,π)

[∑
s

γs∇ log π(As|Xs)
(
Zs(τ)− bs

)]
=Eτ∼T (x0,π)

[∑
s

γs∇ log π(As|Xs)Q
π(Xs, As)

]
− Eτ∼T (x0,π)

[
∇ log π(As|Xs)bs

]
,

=∇V (x0)− Eτ∼T (x0,π)

[
∇ log π(As|Xs)

π(As|Xs)

hz(As|Xs, Zs(τ))
Zs(τ)

]
,

(i)
=∇V (x0)− Eτ∼T (x0,π)

[
EAs∼π(·|Xs)

[
∇ log π(As|Xs)Eτ∼T (Xs,As,π)

[ π(As|Xs)

hz(As|Xs, Zs(τ))
Zs(τ)

]
︸ ︷︷ ︸

V π(Xs)

]]
,

=∇V (x0)− Eτ∼T (x0,π)

[
V π(Xs)

∑
a∈A
∇π(a|Xs)

]
,

=∇V (x0).

where (i) follows from Theorem 2.

B Other variants

Analogously to Theorems 1 and 2, we can obtain the V- and Q-functions for state and return
conditioning, respectively. We have:
Theorem 4. Consider an action a for which π(a|x) > 0 and Pτ∼T (x,π)(Xk = y|A0 = a) > 0 for
any state Xk sampled on τ ∼ T (x, a, π):

V π(x) = Eτ∼T (x,a,π)

[∑
k≥0

γk
π(a|x)

hk(a|x,Xk)
Rk

]
.
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Proof. We can flip the result of Lemma 1 for actions a for which π(a|x) > 0 and Pτ∼T (x,π)(Xk =
y|A0 = a) > 0.

π(a|x)
hk(a|x, y)

=
Pτ∼T (x,π)(Xk = y)

Pτ∼T (x,π)(Xk = y|A0 = a)
. (11)

Let rπ(y) =
∑
a∈A π(a|y)r(y, a). We have

V π(x) = Eτ∼T (x,π)

[∑
k≥0

γkRk

]
=
∑
k≥0

∑
y∈X

γkPτ∼T (x,π)(Xk = y)rπ(y)

=
∑
k≥0

∑
y∈X

γkPτ∼T (x,π)(Xk = y|A0 = a)
Pτ∼T (x,π)(Xk = y)

Pτ∼T (x,π)(Xk = y|A0 = a)
rπ(y)

=
∑
k≥0

∑
y∈X

γkPτ∼T (x,π)(Xk = y|A0 = a)
π(a|x)

hk(a|x, y)
rπ(y)

= Eτ∼T (x,a,π)

[∑
k≥0

γk
π(a|x)

hk(a|x,Xk)
Rk

]
.

Theorem 5. Consider an action a for which π(a|x) > 0. We have:

Qπ(x, a) = Eτ∼T (x,π)

[
Z(τ)

hz(a|x, Z(τ))
π(a|x)

]
. (12)

Proof. The Q-function writes:
Qπ(x, a) = Eτ∼T (x,a,π)

[
Z(τ)

]
,

=

∫
z

zPτ∼T (x,a,π)(Z(τ) = z)dz,

=

∫
z

z
Pτ∼T (x,a,π)(Z(τ) = z)

Pτ∼T (x,π)(Z(τ) = z)
Pτ∼T (x,π)(Z(τ) = z)dz,

=

∫
z

z
Pτ∼T (x,π)(Z(τ) = z|A0 = a)

Pτ∼T (x,π)(Z(τ) = z)
Pτ∼T (x,π)(Z(τ) = z)dz,

(i)
=

∫
z

z
Pτ∼T (x,π)(A0 = a|Z(τ) = z)

Pτ∼T (x,π)(A0 = a)
Pτ∼T (x,π)(Z(τ) = z)dz,

=

∫
z

z
hz(a|x, z)
π(a|x)

Pτ∼T (x,π)(Z(τ) = z)dz,

= Eτ∼T (x,π)

[
Z(τ)

hz(a|x, Z(τ))
π(a|x)

]
,

where (i) follows from Bayes’ rule.

C Time-Independent State-Conditional Case

We begin by introducing a time independent variant of state-conditional distribution. Let β ∈ [0, 1)
and ρ(k) = βk−1(1 − β) be the geometric distribution on k ∈ N+. Then the state-conditional
distribution hβ(a|y, x) writes as follows for a future state y:

hβ(a|x, y)
def
= Pτ∼T (x,π)(A0 = a|Xk = y, k ∼ ρ). (13)

We draw the attention of readers to the difference between the new definition of hβ and the original
one in Eq. 2: in this case the timestep k is a random event drawn from the distribution ρ, whereas in
Eq. 2 the timestep k is a fixed scalar.

We now show that the result of Theorem 1 extends to the case of hβ with the choice of β = γ.
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Theorem 6. Consider an action a and a state x for which π(a|x)>0. Set the scalar β = γ. Then
Qπ writes as

Qπ(x, a) = r(x, a) + Eτ∼T (x,π)

[∑
k≥1

γk
hβ(a|x,Xk)

π(a|x)
Rk

]
.

Proof. Let us introduce the coefficient cγ = γ
1−γ such that cγρ(k) = γk. By definition of the

Q-function for a state-action couple (x, a), we have

Qπ(x, a) = r(x, a) +
∑
k≥1

∑
y∈X

γkPτ∼T (x,π)(Xk = y|A0 = a)rπ(y),

which can be rewritten:

Qπ(x, a) = r(x, a) + cγ
∑
y∈X

∑
k≥1

ρ(k)Pτ∼T (x,π)(Xk = y|A0 = a)rπ(y). (14)

From the law of total probability and the independence between the events k ∼ ρ and A0 = a:

Pτ∼T (x,π)(Xk = y|A0 = a, k ∼ ρ) =
∑
k≥1

ρ(k)Pτ∼T (x,π)(Xk = y|A0 = a).

Combining this with Eq. (14) we deduce

Qπ(x, a) = r(x, a) + cγ
∑
y∈X

Pτ∼T (x,π)(Xk = y|A0 = a, k ∼ ρ)rπ(y). (15)

From applying the Bayes’ rule and independence between the events k ∼ ρ and A0 = a, we have

Pτ∼T (x,π)(Xk = y|A0 = a, k ∼ ρ) =
hβ(a|x, y)Pτ∼T (x,π)(Xk = y|k ∼ ρ)

π(a|x)
.

Combining this with Eq. (15) we deduce

Qπ(x, a) = r(x, a) + cγ
∑
y∈X

Pτ∼T (x,π)(Xk = y|k ∼ ρ)hβ(a|x, y)
π(a|x)

rπ(y),

= r(x, a) +
∑
y∈X

∑
k≥1

γkPτ∼T (x,π)(Xk = y)
hβ(a|x, y)
π(a|x)

rπ(y),

= r(x, a) + Eτ∼T (x,π)

∑
k≥1

γk
hβ(a|Xk, x)

π(a|x)
rπ(Xk)

 ,
= r(x, a) + Eτ∼T (x,π)

∑
k≥1

γk
hβ(a|Xk, x)

π(a|x)
Rk

 .

We now extend the result of Theorem 6 to the case of T -step bootstrapped return. Let ρT be the
distribution on the set {1, 2, . . . , T} defined as

ρT (k)
def
=

{
βk−1(1− β) 1 ≤ k < T

βT−1 k = T
(16)

We also define the T -step state-conditional distribution hβ,T (a|y, x) for a future state y:

hβ,T (a|x, y)
def
= Pτ∼T (x,π)(A0 = a|Xk = y, k ∼ ρT ). (17)
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Theorem 7. Consider an action a and a state x for which π(a|x)>0. Set the scalar β = γ. Then
Qπ writes as

Qπ(x, a) = r(x, a) + Eτ∼T (x,π)

[ T−1∑
k≥1

γk
hβ,T (a|x,Xk)

π(a|x)
Rk + γT

hβ,T (a|x,XT )

π(a|x)
V π(XT )

]
.

Proof. By definition of the Q-function for a state-action couple (x, a), we have

Qπ(x, a) = r(x, a)+

T−1∑
k=1

∑
y∈X

γkPτ∼T (x,π)(Xk = y|A0 = a)rπ(y)+
∑
y∈X

γTPτ∼T (x,π)(XT = y|A0 = a)V π(y),

From the definition of the (normalized) discounted visit distribution d̃π(z|y) def
= (1 −

γ)
∑
k γ

kPτ∼T (y,π)(Xk = z), we have:

V π(y) =
1

1− γ
∑
z∈X

d̃π(z|y)rπ(z).

Therefore Qπ(x, a) can be rewritten:

Qπ(x, a) = r(x, a) +

T−1∑
k=1

∑
y∈X

γkPτ∼T (x,π)(Xk = y|A0 = a)rπ(y)

+
γT

1− γ
∑
y∈X

∑
z∈X

Pτ∼T (x,π)(XT = y|A0 = a)d̃π(z|y)rπ(z).

Now let us define the following distribution µk(.|y) for each (k, y):

µk(z|y)
def
=

{
1z=y 1 ≤ k < T

d̃π(z|y) k = T.
(18)

Thus we can rewrite Qπ(x, a) as:

Qπ(x, a) = r(x, a) + cγ

T∑
k=1

∑
y∈X

∑
z∈X

ρT (k)Pτ∼T (x,π)(Xk = y|A0 = a)µk(z|y)rπ(z).

From the law of total probability, independence between the events k ∼ ρT and A0 = a and the
Markovian relation between Xk and Zk (Zk is a random variable with distribution µk(.|Xk)):

Pτ∼T (x,π)(Xk = y, Zk = z|A0 = a, k ∼ ρT ) =
T∑
k=1

ρT (k)Pτ∼T (x,π)(Xk = y, Zk = z|A0 = a),

=
∑
k≥1

ρT (k)Pτ∼T (x,π)(Xk = y|A0 = a)µk(Zk = z|Xk = y).

Therefore we have:

Qπ(x, a) = r(x, a) + cγ
∑
y∈X

∑
z∈X

Pτ∼T (x,π)(Xk = y, Zk = z|A0 = a, k ∼ ρT )rπ(z).

Then, by applying the Bayes’ rule:

Pτ∼T (x,π)(Xk = y, Zk = z|A0 = a, k ∼ ρT )
Pτ∼T (x,π)(A0 = a|Xk = y, Zk = z, k ∼ ρT )

=
Pτ∼T (x,π)(Xk = y, Zk = z|k ∼ ρT )

π(a|x)
.

In addition, by the Markov property:

Pτ∼T (x,π)(A0 = a|Xk = y, Zk = z, k ∼ ρT ) = Pτ∼T (x,π)(A0 = a|Xk = y, k ∼ ρT ),
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= hβ,T (a|x, y).

Therefore:

Pτ∼T (x,π)(Xk = y, Zk = z|A0 = a, k ∼ ρT ) =
hβ,T (a|x, y)Pτ∼T (x,π)(Xk = y, Zk = z|k ∼ ρT )

π(a|x)
.

Thus, we can rewrite Qπ(x, a) as:

Qπ(x, a) = r(x, a) + cγ
∑
y∈X

∑
z∈X

hβ,T (a|x, y)Pτ∼T (x,π)(Xk = y, Zk = z|k ∼ ρT )
π(a|x)

rπ(z),

= r(x, a) + cγ

T∑
k=1

∑
y∈X

∑
z∈X

hβ,T (a|x, y)ρT (k)Pτ∼T (x,π)(Xk = y)µk(Z = z|Xk = y)

π(a|x)
rπ(z),

= r(x, a) +

T−1∑
k=1

γk
∑
y∈X

hβ,T (a|x, y)Pτ∼T (x,π)(Xk = y)

π(a|x)
rπ(y)

+ γT
∑
y∈X

∑
z∈X

hβ,T (a|x, y)Pτ∼T (x,π)(Xk = y)

π(a|x)
d̃π(z|y)rπ(z),

= r(x, a) +

T−1∑
k=1

γk
∑
y∈X

hβ,T (a|x, y)Pτ∼T (x,π)(Xk = y)

π(a|x)
rπ(y)

+ γT
∑
y∈X

hβ,T (a|x, y)Pτ∼T (x,π)(Xk = y)

π(a|x)
V π(y),

= r(x, a) + Eτ∼T (x,π)

[
T−1∑
k=1

γk
hβ,T (a|x,Xk)

π(a|x)
rπ(Xk) + γT

hβ,T (a|x,XT )

π(a|x)
V π(XT )

]
,

which concludes the proof.
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D Algorithms

Algorithm 1 State-conditional HCA

Given: Initial π, hβ , V , r̂; horizon T
1: for k = 1, . . . do
2: Sample τ = X0, A0, R0, . . . , RT from π
3: for i = 0, . . . , T − 1 do . Train hindsight distribution
4: for j = i, . . . , T do
5: Train hβ(Ai|Xi, Xj) via cross-entropy
6: end for
7: end for
8: for i = 0, . . . , T − 1 do . Train baseline and reward predictor
9: Z = 0

10: for j = i, . . . , T − 1 do
11: Z ← Z + γj−iRj
12: end for
13: Z ← Z + γT−iV (XT )
14: Update V (Xi) towards Z
15: Update r̂ towards Ri
16: end for
17: for i = 0, . . . , T − 1 do . Train policy of all actions with the hindsight-conditioned return
18: for all actions a do
19: Zh = π(a|Xi, a)r̂(Xi, a)
20: for j = i+ 1, . . . , T − 1 do
21: Zh ← Zh + γj−i

hβ(a|Xi,Xj)
π(a|Xi) Rj

22: end for
23: Zh,a ← Zh + γT−i

hβ(a|Xi,XT )
π(a|Xi) V (XT )

24: end for
25: Follow the gradient

∑
a∇π(a|Xi)Zh,a

26: end for
27: end for

Algorithm 2 Return-conditional HCA

Given: Initial π, hz , V
1: for k = 1, . . . do
2: Sample τ = X0, A0, R0, . . . from π
3: for i = 0, 1, . . . do
4: Compose the return Z(τi:∞) starting from Xi

5: Train hz(Ai|Xi, Zi) via cross-entropy
6: Zh ←

(
1− π(Ai|Xi)

hz(Ai|Xi,Z(τi:∞))

)
Z(τi:∞)

7: Follow the gradient∇ log π(Ai|Xi)Zh
8: end for
9: end for

E Experiment Details

The learning rate α for the baseline was chosen to be the best value from [0.1, 0.2, 0.3, 0.4], while
our model hyperparameters (the learning rate αh for h, and the number of bins nb for the return
version of HCA were selected informally to be α = 0.3, αb = 0.4, nb = 3 for the results in Fig. 4,
and nb = 10 elsewhere. Return HCA is sensitive to nb, but all variants are robust to the choice of
learning rate.
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F Bootstrapping with state HCA

Consider the Delayed Effect task from Section 5, in which an action causes an outcome T steps in
the future, with everything in between being irrelevant. It is not immediately obvious why state HCA
should be beneficial when one bootstraps with n < T . Indeed, if h was perfect, the intermediate
coefficient would be uninformative. However, we observe the opposite, precisely because V , π and h
are being learned at the same time, but with different learning dynamics. In particular, in this case h
moves faster than π (independently of the learning rate) as it is updated towards 1 for any observed
sample, while π updates are modulated by the return. Now consider some interim V (y) < 0. The
negative value implies that the policy at the initial state x prefers the bad action a over the good
action b: π(a|x) > π(b|x). But this in turn implies that h(a|x, y) has been observed more frequently,
and since h is quicker to update: h(a|x, y) > π(a|x). Now, take the policy gradient theorem (7)
with π as a baseline. The HCA return becomes (h(a|x, y)− π(a|x))V (y) < 0 and discourages the
bad action. Similarly, (h(b|x, y)− π(b|x))V (y) > 0 and the good action is encouraged. We tested
different learning rates, and initializations, and the effect persisted.
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