
SUPPLEMENTS to the manuscript
“RUDDER: Return Decomposition for Delayed Rewards”

Abstract

We present supplementary material for the paper “RUDDER: Return Decomposi-
tion for Delayed Rewards”. We provide proofs for the theorems and statements
in the paper. We give more details on the new concepts of return decomposition,
reward redistribution, and optimal reward redistribution. The experiments are de-
scribed in more detail and completed with additional experiments. A bias-variance
analysis of temporal difference and Monte Carlo learning is given. The exponen-
tially slow correction of the bias of TD in the number of delay steps is proved.
That for MC a delayed reward can affect exponentially many variances of other
estimation is proved. The reproducibility checklist is included at the end.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Contents
S1 Definition of Finite Markov Decision Processes . 3
S2 Reward Redistribution, Return-Equivalent SDPs, Novel Learning Algorithms, and Return

Decomposition . 6
S2.1 State Enriched MDPs . 6
S2.2 Return-Equivalent Sequence-Markov Decision Processes (SDPs) 7

S2.2.1 Sequence-Markov Decision Processes (SDPs) 7
S2.2.2 Return-Equivalent SDPs . 9

S2.3 Reward Redistribution for Strictly Return-Equivalent SDPs 10
S2.3.1 Reward Redistribution . 10

S2.4 Reward Redistribution Constructs Strictly Return-Equivalent SDPs 10
S2.4.1 Special Cases of Strictly Return-Equivalent Decision Processes: Reward

Shaping, Look-Ahead Advice, and Look-Back Advice 11
S2.5 Transforming an Immediate Reward MDP to a Delayed Reward MDP 12
S2.6 Transforming an Delayed Reward MDP to an Immediate Reward SDP 14

S2.6.1 Optimal Reward Redistribution . 15
S2.7 Novel Learning Algorithms based on Reward Redistributions 20

S2.7.1 Q-Value Estimation . 20
S2.7.2 Policy Gradients . 23
S2.7.3 Q-Learning . 23

S2.8 Return Decomposition to construct a Reward Redistribution 23
S2.8.1 Return Decomposition Idea . 23
S2.8.2 Reward Redistribution based on Return Decomposition 25

S2.9 Remarks on Return Decomposition . 26
S2.9.1 Return Decomposition for Binary Reward 26
S2.9.2 Optimal Reward Redistribution reduces the MDP to a Stochastic Contextual

Bandit Problem . 27
S2.9.3 Relation to ”Backpropagation through a Model´´ 27

S3 Bias-Variance Analysis of MDP Q-Value Estimators 28
S3.1 Bias-Variance for MC and TD Estimates of the Expected Return 28
S3.2 Mean and Variance of an MDP Sample of the Return 31
S3.3 TD corrects Bias exponentially slowly with Respect to Reward Delay 33
S3.4 MC affects the Variance of Exponentially Many Estimates with Delayed Reward . 35

S4 Experiments . 42
S4.1 Artificial Tasks . 42

S4.1.1 Task (I): Grid World . 42
S4.1.2 Task (II): The Choice . 43
S4.1.3 Task(III): Trace-Back . 46
S4.1.4 Task (IV): Charge-Discharge . 50
S4.1.5 Task (V): Solving Trace-Back using policy gradient methods 50

S4.2 Atari Games . 50
S4.2.1 Architecture . 51
S4.2.2 Lessons Replay Buffer . 53
S4.2.3 Game Processing, Update Design, and Target Design 53
S4.2.4 Exploration . 55
S4.2.5 Results . 55

S5 Discussion and Frequent Questions . 59
S6 Additional Related Work . 61
S7 Reproducibility Checklist . 63
S8 References . 65

2

S1 Definition of Finite Markov Decision Processes
We consider a finite Markov decision process (MDP) P , which is a 5-tuple P = (S,A,R, p, γ):

• S is a finite set of states; St is the random variable for states at time t with value s ∈ S. St
has a discrete probability distribution.

• A is a finite set of actions (sometimes state-dependent A(s)); At is the random variable for
actions at time t with value a ∈ A. At has a discrete probability distribution.

• R is a finite set of rewards; Rt+1 is the random variable for rewards at time (t + 1) with
value r ∈ R. Rt has a discrete probability distribution.

• p(St+1 = s′, Rt+1 = r | St = s,At = a) are the transition and reward distributions over
states and rewards, respectively, conditioned on state-actions,

• γ ∈ [0, 1] is a discount factor for the reward.
The Markov policy π is a distribution over actions given the state: π(At = a | St = s). We often
equip an MDP P with a policy π without explicitly mentioning it. At time t, the random variables
give the states, actions, and rewards of the MDP, while low-case letters give possible values. At each
time t, the environment is in some state st ∈ S. The policy π takes an action at ∈ A, which causes
a transition of the environment to state st+1 and a reward rt+1 for the policy. Therefore, the MDP
creates a sequence

(S0, A0, R1, S1, A1, R2, S2, A2, R3, . . .) . (S1)

The marginal probabilities for

p(s′, r | s, a) = Pr [St+1 = s′, Rt+1 = r | St = s,At = a] (S2)

are:

p(r | s, a) = Pr [Rt+1 = r | St = s,At = a] =
∑
s′

p(s′, r | s, a) , (S3)

p(s′ | s, a) = Pr [St+1 = s′ | St = s,At = a] =
∑
r

p(s′, r | s, a) . (S4)

We use a sum convention:
∑
a,b goes over all possible values of a and b, that is, all combinations which

fulfill the constraints on a and b. If b is a function of a (fully determined by a), then
∑
a,b =

∑
a.

We denote expectations:
• Eπ is the expectation where the random variable is an MDP sequence of states, actions, and

rewards generated with policy π.
• Es is the expectation where the random variable is St with values s ∈ S.
• Ea is the expectation where the random variable is At with values a ∈ A.
• Er is the expectation where the random variable is Rt+1 with values r ∈ R.
• Es,a,r,s′,a′ is the expectation where the random variables are St+1 with values s′ ∈ S, St

with values s ∈ S, At with values a ∈ A, At+1 with values a′ ∈ A, and Rt+1 with values
r ∈ R. If more or fewer random variables are used, the notation is consistently adapted.

The return Gt is the accumulated reward starting from t+ 1:

Gt =

∞∑
k=0

γk Rt+k+1 . (S5)

The discount factor γ determines how much immediate rewards are favored over more delayed
rewards. For γ = 0 the return (the objective) is determined as the largest expected immediate reward,
while for γ = 1 the return is determined by the expected sum of future rewards if the sum exists.

State-Value and Action-Value Function. The state-value function vπ(s) for policy π and state s
is defined as

vπ(s) = Eπ [Gt | St = s] = Eπ

[∞∑
k=0

γk Rt+k+1 | St = s

]
. (S6)

3

Starting at t = 0:

vπ0 = Eπ

[∞∑
t=0

γt Rt+1

]
= Eπ [G0] , (S7)

the optimal state-value function v∗ and policy π∗ are

v∗(s) = max
π

vπ(s) , (S8)

π∗ = arg max
π

vπ(s) for all s . (S9)

The action-value function qπ(s, a) for policy π is the expected return when starting from St = s,
taking action At = a, and following policy π:

qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[∞∑
k=0

γk Rt+k+1 | St = s,At = a

]
. (S10)

The optimal action-value function q∗ and policy π∗ are

q∗(s, a) = max
π

qπ(s, a) , (S11)

π∗ = arg max
π

qπ(s, a) for all (s, a) . (S12)

The optimal action-value function q∗ can be expressed via the optimal value function v∗:

q∗(s, a) = E [Rt+1 + γ v∗(St+1) | St = s,At = a] . (S13)

The optimal state-value function v∗ can be expressed via the optimal action-value function q∗ using
the optimal policy π∗:

v∗(s) = max
a

qπ∗(s, a) = max
a

Eπ∗ [Gt | St = s,At = a] = (S14)

max
a

Eπ∗ [Rt+1 + γ Gt+1 | St = s,At = a] =

max
a

E [Rt+1 + γ v∗(St+1) | St = s,At = a] .

Finite time horizon and no discount. We consider a finite time horizon, that is, we consider only
episodes of length T , but may receive reward RT+1 at episode end at time T + 1. The finite time
horizon MDP creates a sequence

(S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . , ST−1, AT−1, RT , ST , AT , RT+1) . (S15)

Furthermore, we do not discount future rewards, that is, we set γ = 1. The return Gt from time t to
T is the sum of rewards:

Gt =

T−t∑
k=0

Rt+k+1 . (S16)

The state-value function v for policy π is

vπ(s) = Eπ [Gt | St = s] = Eπ

[
T−t∑
k=0

Rt+k+1 | St = s

]
(S17)

and the action-value function q for policy π is

qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[
T−t∑
k=0

Rt+k+1 | St = s,At = a

]
(S18)

= Eπ [Rt+1 + Gt+1 | St = s,At = a]

=
∑
s′,r

p(s′, r | s, a)

[
r +

∑
a′

π(a′ | s′) qπ(s′, a′)

]
.

4

From the Bellman equation Eq. (S18), we obtain:∑
s′

p(s′ | s, a)
∑
a′

π(a′ | s′) qπ(s′, a′) = qπ(s, a) −
∑
r

r p(r | s, a) , (S19)

Es′,a′ [q
π(s′, a′) | s, a] = qπ(s, a) − r(s, a) . (S20)

The expected return at time t = 0 for policy π is

vπ0 = Eπ [G0] = Eπ

[
T∑
t=0

Rt+1

]
, (S21)

π∗ = argmax
π

vπ0 .

The agent may start in a particular starting state S0 which is a random variable. Often S0 has only
one value s0.

Learning. The goal of learning is to find the policy π∗ that maximizes the expected future dis-
counted reward (the return) if starting at t = 0. Thus, the optimal policy π∗ is

π∗ = argmax
π

vπ0 . (S22)

We consider two learning approaches for Q-values: Monte Carlo and temporal difference.

Monte Carlo (MC). To estimate qπ(s, a), MC computes the arithmetic mean of all observed
returns (Gt | St = s,At = a) in the data. When using Monte Carlo for learning a policy we use an
exponentially weighted arithmetic mean since the policy steadily changes.
For the ith update Monte Carlo tries to minimize 1

2M(st, at)
2 with the residual M(st, at)

M(st, at) = (qπ)i(st, at) −
T−t−1∑
τ=0

γτrt+1+τ , (S23)

such that the update of the action-value q at state-action (st, at) is

(qπ)i+1(st, at) = (qπ)i(st, at) − α M(st, at) . (S24)

This update is called constant-α MC [78].

Temporal difference (TD) methods. TD updates are based on the Bellman equation. If r(s, a) and
Es′,a′ [q̂

π(s′, a′) | s, a] have been estimated, the Q-values can be updated according to the Bellman
equation:

(q̂π)
new

(s, a) = r(s, a) + γ Es′,a′ [q̂
π(s′, a′) | s, a] . (S25)

The update is applying the Bellman operator with estimates Es′,a′ [q̂
π(s′, a′) | s, a] and r(s, a) to q̂π

to obtain (q̂π)
new. The new estimate (q̂π)

new is closer to the fixed point qπ of the Bellman operator,
since the Bellman operator is a contraction
Since the estimates Es′,a′ [q̂

π(s′, a′) | s, a] and r(s, a) are not known, TD methods try to minimize
1
2B(s, a)2 with the Bellman residual B(s, a):

B(s, a) = q̂π(s, a) − r(s, a) − γ Es′,a′ [q̂
π(s′, a′)] . (S26)

TD methods use an estimate B̂(s, a) of B(s, a) and a learning rate α to make an update

q̂π(s, a)new ← q̂π(s, a) − α B̂(s, a) . (S27)

For all TD methods r(s, a) is estimated by Rt+1 and s′ by St+1, while q̂π(s′, a′) does not change
with the current sample, that is, it is fixed for the estimate. However, the sample determines which
(s′, a′) is chosen. The TD methods differ in how they select a′. SARSA [63] selects a′ by sampling
from the policy:

Es′,a′ [q̂
π(s′, a′)] ≈ q̂π(St+1, At+1)

and expected SARSA [30] averages over selections

Es′,a′ [q̂
π(s′, a′)] ≈

∑
a

π(a | St+1) q̂π(St+1, a).

5

It is possible to estimate r(s, a) separately via an unbiased minimal variance estimator like the
arithmetic mean and then perform TD updates with the Bellman error using the estimated r(s, a) [61].
Q-learning [87] is an off-policy TD algorithm which is proved to converge [88, 12]. The proofs
were later generalized [29, 82]. Q-learning uses

Es′,a′ [q̂
π(s′, a′)] ≈ max

a
q̂(St+1, a) . (S28)

The action-value function q, which is learned by Q-learning, approximates q∗ independently of the
policy that is followed. More precisely, with Q-learning q converges with probability 1 to the optimal
q∗. However, the policy still determines which state-action pairs are encountered during learning.
The convergence only requires that all action-state pairs are visited and updated infinitely often.

S2 Reward Redistribution, Return-Equivalent SDPs, Novel Learning
Algorithms, and Return Decomposition

S2.1 State Enriched MDPs
For MDPs with a delayed reward the states have to code the reward. However, for an immediate
reward the states can be made more compact by removing the reward information. For example,
states with memory of a delayed reward can be mapped to states without memory. Therefore, in
order to compare MDPs, we introduce the concept of homomorphic MDPs. We first need to define a
partition of a set induced by a function. Let B be a partition of a set X . For any x ∈ X , we denote
[x]B the block of B to which x belongs. Any function f from a set X to a set Y induces a partition
(or equivalence relation) on X , with [x]f = [x′]f if and only if f(x) = f(x′). We now can define
homomorphic MDPs.
Definition S1 (Ravindran and Barto [57, 58]). An MDP homomorphism h from an MDP P =
(S,A,R, p, γ) to an MDP P̃ = (S̃, Ã, R̃, p̃, γ̃) is a a tuple of surjections (f, g1, g2, . . . , gn) (n is
number of states), with h(s, a) = (f(s), gs(a)), where f : S → S̃ and gs : As → Ãf(s) for s ∈ S

(As are the admissible actions in state s and Ãf(s) are the admissible actions in state s̃). Furthermore,
for all s, s′ ∈ S, a ∈ As:

p̃(f(s′) | f(s), gs(a)) =
∑

s′′∈[s′]f

p(s′′ | s, a) , (S29)

p̃(r̃ | f(s), gs(a)) = p(r | s, a) . (S30)

We use [s]f = [s′]f if and only if f(s) = f(s′).

We call P̃ the homomorphic image of P under h. For homomorphic images the optimal Q-values
and the optimal policies are the same.

Lemma S1 (Ravindran and Barto [57]). If P̃ is a homomorphic image of P , then the optimal Q-
values are the same and a policy that is optimal in P̃ can be transformed to an optimal policy in P
by normalizing the number of actions a that are mapped to the same action ã.
Consequently, the original MDP can be solved by solving a homomorphic image.
Similar results have been obtained by Givan et al. using stochastically bisimilar MDPs: “Any stochas-
tic bisimulation used for aggregation preserves the optimal value and action sequence properties as
well as the optimal policies of the model” [18]. Theorem 7 and Corollary 9.1 in Givan et al. show the
facts of Lemma S1. Li et al. give an overview over state abstraction and state aggregation for Markov
decision processes, which covers homomorphic MDPs [37].
A Markov decision process P̃ is state-enriched compared to an MDP P if P̃ has the same states,
actions, transition probabilities, and reward probabilities as P but with additional information in its
states. We define state-enrichment as follows:
Definition S2. A Markov decision process P̃ is state-enriched compared to a Markov decision
process P if P is a homomorphic image of P̃ , where gs̃ is the identity and f(s̃) = s is not bijective.

Being not bijective means that there exist s̃′ and s̃′′ with f(s̃′) = f(s̃′′), that is, S̃ has more elements
than S. In particular, state-enrichment does not change the optimal policies nor the Q-values in the
sense of Lemma S1.
Proposition S1. If an MDP P̃ is state-enriched compared to an MDP P , then both MDPs have the
same optimal Q-values and the same optimal policies.

6

Proof. According to the definition P is a homomorphic image of P̃ . The statements of Proposition S1
follow directly from Lemma S1.

Optimal policies of the state-enriched MDP P̃ can be transformed to optimal policies of the original
MDP P and, vice versa, each optimal policy of the original MDP P corresponds to at least one
optimal policy of the state-enriched MDP P̃ .

S2.2 Return-Equivalent Sequence-Markov Decision Processes (SDPs)
Our goal is to compare Markov decision processes (MDPs) with delayed rewards to decision processes
(DPs) without delayed rewards. The DPs without delayed rewards can but need not to be Markov in
the rewards. Toward this end, we consider two DPs P̃ and P which differ only in their (non-Markov)
reward distributions. However for each policy π the DPs P̃ and P have the same expected return at
t = 0, that is, ṽπ0 = vπ0 , or they have the same expected return for every episode.

S2.2.1 Sequence-Markov Decision Processes (SDPs)
We first define decision processes that are Markov except for the reward, which is not required to be
Markov.

Definition S3. A sequence-Markov decision process (SDP) is defined as a finite decision process
which is equipped with a Markov policy and has Markov transition probabilities but a reward
distribution that is not required to be Markov.

Proposition S2. Markov decision processes are sequence-Markov decision processes.

Proof. MDPs have Markov transition probabilities and are equipped with Markov policies.

Definition S4. We call two sequence-Markov decision processes P and P̃ that have the same Markov
transition probabilities and are equipped with the same Markov policy sequence-equivalent.

Lemma S2. Two sequence-Markov decision processes that are sequence-equivalent have the same
probability to generate state-action sequences (s0, a0, . . . , st, at), 0 6 t 6 T .

Proof. Sequence generation only depends on transition probabilities and policy. Therefore the
probability of generating a particular sequences is the same for both SDPs.

Next we define the state-value and action-value function for sequence-Markov decision processes
(SDPs). In contrast to MDPs, the state-value and action-value functions for SDPs also depend on the
past since the return distributions are not Markov.
We have to redefine the expectation Eπ:

Eπ [. | .] = Es0,a0,...,sT ,aT [. | .] . (S31)

The expectation does not include state and actions that enter the condition.
The state-value function v for policy π is

vπ(s) = Eπ [Gt | St = s] = Eπ

[
T−t∑
k=0

Rt+k+1 | St = s

]
(S32)

= Es0,a0,...,st−1,at−1,at,st+1,at+1,...,sT ,aT

[
T−t∑
k=0

Rt+k+1 | St = s

]
and the action-value function q for policy π is

qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[
T−t∑
k=0

Rt+k+1 | St = s,At = a

]
(S33)

= Es0,a0,...,st−1,at−1,st+1,at+1,...,sT ,aT

[
T−t∑
k=0

Rt+k+1 | St = s,At = a

]
.

We extend the definitions by including the past in the state-value and action-value functions.

7

The state-value function v for policy π depending on k past state-actions is

vπ(st, at−1, st−1, . . . , at−k, st−k) (S34)
= Eπ [Gt | St = st, At−1 = at−1, St−1 = st−1, . . . , At−k = at−k, St−k = st−k]

= Eπ

[
T−t∑
k=0

Rt+k+1 | St = st, At−1 = at−1, St−1 = st−1, . . . , At−k = at−k, St−k = st−k

]

= Es0,a0,...,st−k−1,at−k−1,at,st+1,at+1,...,sT ,aT

[
T−t∑
k=0

Rt+k+1 |

St = st, At−1 = at−1, St−1 = st−1, . . . , At−k = at−k, St−k = st−k]

and the action-value function q for policy π depending on k past state-actions is

qπ(at, st, at−1, st−1, . . . , at−k, st−k) (S35)
= Eπ [Gt | At = at, St = st, At−1 = at−1, St−1 = st−1, . . . , At−k = at−k, St−k = st−k]

= Eπ

[
T−t∑
k=0

Rt+k+1 | At = at, St = st, At−1 = at−1, St−1 = st−1, . . . , At−k = at−k, St−k = st−k

]

= Es0,a0,...,st−k−1,at−k−1,st+1,at+1,...,sT ,aT

[
T−t∑
k=0

Rt+k+1 |

At = at, St = st, At−1 = at−1, St−1 = st−1, . . . , At−k = at−k, St−k = st−k] .

The state-value function v for policy π depending on the complete past is

vπ(st, . . . , a0, s0) = Eπ [Gt | St = st, . . . , A0 = a0, S0 = s0] (S36)

= Eπ

[
T−t∑
k=0

Rt+k+1 | St = st, . . . , A0 = a0, S0 = s0

]

= Eat,...,sT ,aT

[
T−t∑
k=0

Rt+k+1 | St = st, . . . , A0 = a0, S0 = s0

]
and the action-value function q for policy π depending on the complete past is

qπ(at, st, . . . , a0, s0) (S37)
= Eπ [Gt | At = at, St = st, . . . , A0 = a0, S0 = s0]

= Eπ

[
T−t∑
k=0

Rt+k+1 | At = at, St = st, . . . , A0 = a0, S0 = s0

]

= Est+1,at+1,...,sT ,aT

[
T−t∑
k=0

Rt+k+1 | At = at, St = st, . . . , A0 = a0, S0 = s0

]
.

Markov decision processes (MDPs): the state-value function v and the action-value function q
remain the same. The rewards do not depend on the past, therefore the past can be integrated out in
the definitions.
The Bellman equation does not hold any longer if the reward depends on the past. For example

qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[
T−t∑
k=0

Rt+k+1 | St = s,At = a

]
(S38)

= Eπ [Rt+1 | St = s,At = a] + Eπ

[
T−t−1∑
k=0

Rt+k+2 | St = s,At = a

]
.

Since Eπ does not average over at, st, the term Eπ

[∑T−t−1
k=0 Rt+k+2 | St = s,At = a

]
cannot be

expressed by qπ(st+1, at+1), which requires an average over at, st. Thus, the Bellman equation does
not hold as it is a recursive equation where qπ(st, at) is expressed by qπ(st+1, at+1).

8

S2.2.2 Return-Equivalent SDPs
We define return-equivalent SDPs which can be shown to have the same optimal policies.

Definition S5. Two sequence-Markov decision processes P̃ and P are return-equivalent if they differ
only in their reward but for each policy π have the same expected return ṽπ0 = vπ0 . P̃ and P are
strictly return-equivalent if they have the same expected return for every episode and for each policy
π:

Eπ

[
G̃0 | s0, a0, . . . , sT , aT

]
= Eπ [G0 | s0, a0, . . . , sT , aT] . (S39)

The definition of return-equivalence can be generalized to strictly monotonic functions f for which
ṽπ0 = f(vπ0). Since strictly monotonic functions do not change the ordering of the returns, maximal
returns stay maximal after applying the function f .
Strictly return-equivalent SDPs are return-equivalent as the next proposition states.
Proposition S3. Strictly return-equivalent sequence-Markov decision processes are return-
equivalent.

Proof. The expected return at t = 0 given a policy is the sum of the probability of generating a
sequence times the expected reward for this sequence. Both expectations are the same for two strictly
return-equivalent sequence-Markov decision processes. Therefore the expected return at time t = 0
is the same.

The next proposition states that return-equivalent SDPs have the same optimal policies.
Proposition S4. Return-equivalent sequence-Markov decision processes have the same optimal
policies.

Proof. The optimal policy is defined as maximizing the expected return at time t = 0. For each policy
the expected return at time t = 0 is the same for return-equivalent decision processes. Consequently,
the optimal policies are the same.

Two strictly return-equivalent SDPs have the same expected return for each state-action sub-sequence
(s0, a0, . . . , st, at), 0 6 t 6 T .

Lemma S3. Two strictly return-equivalent SDPs P̃ and P have the same expected return for each
state-action sub-sequence (s0, a0, . . . , st, at), 0 6 t 6 T :

Eπ

[
G̃0 | s0, a0, . . . , st, at

]
= Eπ [G0 | s0, a0, . . . , st, at] . (S40)

Proof. Since the SDPs are strictly return-equivalent, we have

Eπ

[
G̃0 | s0, a0, . . . , st, at

]
(S41)

=
∑

st+1,at+1,...,sT ,aT

pπ(st+1, at+1, . . . , sT , aT | st, at) Eπ

[
G̃0 | s0, a0, . . . , sT , aT

]
=

∑
st+1,at+1,...,sT ,aT

pπ(st+1, at+1, . . . , sT , aT | st, at) Eπ [G0 | s0, a0, . . . , sT , aT]

= Eπ [G0 | s0, a0, . . . , st, at] .

We used the marginalization of the full probability and the Markov property of the state-action
sequence.

We now give the analog definitions and results for MDPs which are SDPs.

Definition S6. Two Markov decision processes P̃ and P are return-equivalent if they differ only in
p(r̃ | s, a) and p(r | s, a) but have the same expected return ṽπ0 = vπ0 for each policy π. P̃ and P
are strictly return-equivalent if they have the same expected return for every episode and for each
policy π:

Eπ

[
G̃0 | s0, a0, . . . , sT , aT

]
= Eπ [G0 | s0, a0, . . . , sT , aT] . (S42)

Strictly return-equivalent MDPs are return-equivalent as the next proposition states.

9

Proposition S5. Strictly return-equivalent decision processes are return-equivalent.

Proof. Since MDPs are SDPs, the proposition follows from Proposition S3.

Proposition S6. Return-equivalent Markov decision processes have the same optimal policies.

Proof. Since MDPs are SDPs, the proposition follows from Proposition S4.

For strictly return-equivalent MDPs the expected return is the same if a state-action sub-sequence is
given.

Proposition S7. Strictly return-equivalent MDPs P̃ and P have the same expected return for a given
state-action sub-sequence (s0, a0, . . . , st, at), 0 6 t 6 T :

Eπ

[
G̃0 | s0, a0, . . . , st, at

]
= Eπ [G0 | s0, a0, . . . , st, at] . (S43)

Proof. Since MDPs are SDPs, the proposition follows from Lemma S3.

S2.3 Reward Redistribution for Strictly Return-Equivalent SDPs
Strictly return-equivalent SDPs P̃ and P can be constructed by a reward redistribution.

S2.3.1 Reward Redistribution
We define reward redistributions for SDPs.
Definition S7. A reward redistribution given an SDP P̃ is a fixed procedure that redistributes for
each state-action sequence s0, a0, . . . , sT , aT the realization of the associated return variable G̃0 =∑T
t=0 R̃t+1 or its expectation E

[
G̃0 | s0, a0, . . . , sT , aT

]
along the sequence. The redistribution

creates a new SDP P with redistributed reward Rt+1 at time (t + 1) and return variable G0 =∑T
t=0Rt+1. The redistribution procedure ensures for each sequence either G̃0 = G0 or

Eπ

[
G̃0 | s0, a0, . . . , sT , aT

]
= Eπ [G0 | s0, a0, . . . , sT , aT] . (S44)

Reward redistributions can be very general. A special case is if the return can be deduced from the
past sequence, which makes the return causal.
Definition S8. A reward redistribution is causal if for the redistributed reward Rt+1 the following
holds:

E [Rt+1 | s0, a0, . . . , sT , aT] = E [Rt+1 | s0, a0, . . . , st, at] . (S45)

For our approach we only need reward redistributions that are second order Markov.
Definition S9. A causal reward redistribution is second order Markov if

E [Rt+1 | s0, a0, . . . , st, at] = E [Rt+1 | st−1, at−1, st, at] . (S46)

S2.4 Reward Redistribution Constructs Strictly Return-Equivalent SDPs
Theorem S1. If the SDP P is obtained by reward redistribution from the SDP P̃ , then P̃ and P are
strictly return-equivalent.

Proof. For redistributing the reward we have for each state-action sequence s0, a0, . . . , sT , aT the
same return G̃0 = G0, therefore

Eπ

[
G̃0 | s0, a0, . . . , sT , aT

]
= Eπ [G0 | s0, a0, . . . , sT , aT] . (S47)

For redistributing the expected return the last equation holds by definition. The last equation is the
definition of strictly return-equivalent SDPs.

The next theorem states that the optimal policies are still the same when redistributing the reward.

Theorem S2. If the SDP P is obtained by reward redistribution from the SDP P̃ , then both SDPs
have the same optimal policies.

Proof. According to Theorem S1, the SDP P is strictly return-equivalent to the SDP P̃ . According
to Proposition S3 and Proposition S4 the SDP P and the SDP P̃ have the same optimal policies.

10

S2.4.1 Special Cases of Strictly Return-Equivalent Decision Processes: Reward Shaping,
Look-Ahead Advice, and Look-Back Advice

Redistributing the reward via reward shaping [49, 90], look-ahead advice, and look-back advice [91]
is a special case of reward redistribution that leads to MDPs which are strictly return-equivalent to
the original MDP. We show that reward shaping is a special case of reward redistributions that lead to
MDPs which are strictly return-equivalent to the original MDP. First, we subtract from the potential
the constant c = (Φ(s0, a0) − γTΦ(sT , aT))/(1 − γT), which is the potential of the initial state
minus the discounted potential in the last state divided by a fixed divisor. Consequently, the sum of
additional rewards in reward shaping, look-ahead advice, or look-back advice from 1 to T is zero.
The original sum of additional rewards is

T∑
i=1

γi−1 (γΦ(si, ai) − Φ(si−1, ai−1)) = γTΦ(sT , aT) − Φ(s0, a0) . (S48)

If we assume γTΦ(sT , aT) = 0 and Φ(s0, a0) = 0, then reward shaping does not change the return
and the shaping reward is a reward redistribution leading to an MDP that is strictly return-equivalent
to the original MDP. For T → ∞ only Φ(s0, a0) = 0 is required. The assumptions can always be
fulfilled by adding a single new initial state and a single new final state to the original MDP.
Without the assumptions γTΦ(sT , aT) = 0 and Φ(s0, a0) = 0, we subtract c = (Φ(s0, a0) −
γTΦ(sT , aT))/(1− γT) from all potentials Φ, and obtain

T∑
i=1

γi−1 (γ(Φ(si, ai) − c) − (Φ(si−1, ai−1) − c)) = 0 . (S49)

Therefore, the potential-based shaping function (the additional reward) added to the original reward
does not change the return, which means that the shaping reward is a reward redistribution that leads
to an MDP that is strictly return-equivalent to the original MDP. Obviously, reward shaping is a
special case of reward redistribution that leads to a strictly return-equivalent MDP. Reward shaping
does not change the general learning behavior if a constant c is subtracted from the potential function
Φ. The Q-function of the original reward shaping and the Q-function of the reward shaping, which
has a constant c subtracted from the potential function Φ, differ by c for every Q-value [49, 90]. For
infinite horizon MDPs with γ < 1, the terms γT and γTΦ(sT , aT) vanish, therefore it is sufficient to
subtract c = Φ(s0, a0) from the potential function.
Since TD based reward shaping methods keep the original reward, they can still be exponentially slow
for delayed rewards. Reward shaping methods like reward shaping, look-ahead advice, and look-back
advice rely on the Markov property of the original reward, while an optimal reward redistribution is
not Markov. In general, reward shaping does not lead to an optimal reward redistribution according
to Section S2.6.1.
As discussed in Paragraph S2.9, the optimal reward redistribution does not comply to the Bellman
equation. Also look-ahead advice does not comply to the Bellman equation. The return for the
look-ahead advice reward R̃t+1 is

Gt =

∞∑
i=0

R̃t+i+1 (S50)

with expectations for the reward R̃t+1

Eπ

[
R̃t+1 | st+1, at+1, st, at

]
= r̃(st+1, at+1, st, at) = γΦ(st+1, at+1) − Φ(st, at) .

(S51)

The expected reward r̃(st+1, at+1, st, at) depends on future states st+1 and, more importantly, on
future actions at+1. It is a non-causal reward redistribution. Therefore look-ahead advice cannot be
directly used for selecting the optimal action at time t. For look-back advice we have

Eπ

[
R̃t+1 | st, at, st−1, at−1

]
= r̃(st, at, st−1, at−1) = Φ(st, at) − γ−1Φ(st−1, at−1) .

(S52)

Therefore look-back advice introduces a second-order Markov reward like the optimal reward
redistribution.

11

S2.5 Transforming an Immediate Reward MDP to a Delayed Reward MDP

We assume to have a Markov decision process P with immediate reward. The MDP P is transformed
into an MDP P̃ with delayed reward, where the reward is given at sequence end. The reward-
equivalent MDP P̃ with delayed reward is state-enriched, which ensures that it is an MDP.
The state-enriched MDP P̃ has

• reward:

R̃t =

{
0 , for t 6 T∑T
k=0Rk+1 , for t = T + 1 .

(S53)

• state:

s̃t = (st, ρt) , (S54)

ρt =

t−1∑
k=0

rk+1 , with Rk+1 = rk+1 . (S55)

Here we assume that ρ can only take a finite number of values to assure that the enriched states s̃ are
finite. If the original reward was continuous, then ρ can represent the accumulated reward with any
desired precision if the sequence length is T and the original reward was bounded. We assume that ρ
is sufficiently precise to distinguish the optimal policies, which are deterministic, from sub-optimal
deterministic policies. The random variable Rk+1 is distributed according to p(r | sk, ak). We
assume that the time t is coded in s in order to know when the episode ends and reward is no longer
received, otherwise we introduce an additional state variable τ = t that codes the time.

Proposition S8. If a Markov decision process P with immediate reward is transformed by above
defined R̃t and s̃t to a Markov decision process P̃ with delayed reward, where the reward is given at
sequence end, then: (I) the optimal policies do not change, and (II) for π̃(a | s̃) = π(a | s)

q̃π̃(s̃, a) = qπ(s, a) +

t−1∑
k=0

rk+1 , (S56)

for S̃t = s̃, St = s, and At = a.

Proof. For (I) we first perform an state-enrichment of P by s̃t = (st, ρt) with ρt =
∑t−1
k=0 rk+1 for

Rk+1 = rk+1 leading to an intermediate MDP. We assume that the finite-valued ρ is sufficiently
precise to distinguish the optimal policies, which are deterministic, from sub-optimal deterministic
policies. Proposition S1 ensures that neither the optimal Q-values nor the optimal policies change
between the original MDP P and the intermediate MDP. Next, we redistribute the original reward
Rt+1 according to the redistributed reward R̃t. The new MDP P̃ with state enrichment and reward
redistribution is strictly return-equivalent to the intermediate MDP with state enrichment but the
original reward. The new MDP P̃ is Markov since the enriched state ensures that R̃T+1 is Markov.
Proposition S5 and Proposition S6 ensure that the optimal policies are the same.
For (II) we show a proof without Bellman equation and a proof using the Bellman equation.
Equivalence without Bellman equation. We have G̃0 = G0. The Markov property ensures that the
future reward is independent of the already received reward:

Eπ

[
T∑
k=t

Rk+1 | St = s,At = a, ρ =

t−1∑
k=0

rk+1

]
= Eπ

[
T∑
k=t

Rk+1 | St = s,At = a

]
. (S57)

We assume π̃(a | s̃) = π(a | s).

12

We obtain

q̃π̃(s̃, a) = Eπ̃

[
G̃0 | S̃t = s̃, At = a

]
(S58)

= Eπ̃

[
T∑
k=0

Rk+1 | St = s, ρ =

t−1∑
k=0

rk+1, At = a

]

= Eπ̃

[
T∑
k=t

Rk+1 | St = s, ρ =

t−1∑
k=0

rk+1, At = a

]
+

t−1∑
k=0

rk+1

= Eπ

[
T∑
k=t

Rk+1 | St = s,At = a

]
+

t−1∑
k=0

rk+1

= qπ(s, a) +

t−1∑
k=0

rk+1 .

We used Eπ̃ = Eπ, which is ensured since reward probabilities, transition probabilities, and the
probability of choosing an action by the policy correspond to each other in both settings.
Since the optimal policies do not change for reward-equivalent and state-enriched processes, we have

q̃∗(s̃, a) = q∗(s, a) +

t−1∑
k=0

rk+1 . (S59)

Equivalence with Bellman equation. With qπ(s, a) as optimal action-value function for the original
Markov decision process, we define a new Markov decision process with action-state function q̃π̃.
For S̃t = s̃, St = s, and At = a we have

q̃π̃(s̃, a) := qπ(s, a) +

t−1∑
k=0

rk+1 , (S60)

π̃(a | s̃) := π(a | s) . (S61)

Since s̃′ = (s′, ρ′), ρ′ = r + ρ, and r̃ is constant, the values S̃t+1 = s̃′ and R̃t+1 = r̃ can be
computed from Rt+1 = r, ρ, and St+1 = s′. Therefore, we have

p̃(s̃′, r̃ | s, ρ, a) = p̃(s′, ρ′, r̃ | s, ρ, a) = p(s′, r | s, a) . (S62)

For t < T , we have r̃ = 0 and ρ′ = r + ρ, where we set r = rt+1:

q̃π̃(s̃, a) = qπ(s, a) +

t−1∑
k=0

rk+1 (S63)

=
∑
s′,r

p(s′, r | s, a)

[
r +

∑
a′

π(a′ | s′) qπ(s′, a′)

]
+

t−1∑
k=0

rk+1

=
∑
s′,ρ′

p̃(s′, ρ′, r̃ | s, ρ, a)

[
r +

∑
a′

π(a′ | s′) qπ(s′, a′)

]
+

t−1∑
k=0

rk+1

=
∑
s̃′,r̃

p̃(s̃′, r̃ | s̃, a)

[
r +

∑
a′

π(a′ | s′) qπ(s′, a′) +

t−1∑
k=0

rk+1

]

=
∑
s̃′,r̃

p̃(s̃′, r̃ | s̃, a)

[
r̃ +

∑
a′

π(a′ | s′) qπ(s′, a′) +

t∑
k=0

rk+1

]

=
∑
s̃′,r̃

p̃(s̃′, r̃ | s̃, a)

[
r̃ +

∑
a′

π̃(a′ | s̃′) q̃π̃(s̃′, a′)

]
.

For t = T we have r̃ =
∑T
k=0 rk+1 = ρ′ and qπ(s′, a′) = 0 as well as q̃π̃(s̃′, a′) = 0. Both q and q̃

must be zero for t > T since after time t = T + 1 there is no more reward. We obtain for t = T and

13

r = rT+1:

q̃π̃(s̃, a) = qπ(s, a) +

T−1∑
k=0

rk+1 (S64)

=
∑
s′,r

p(s′, r | s, a)

[
r +

∑
a′

π(a′ | s′) qπ(s′, a′)

]
+

T−1∑
k=0

rk+1

=
∑
s′,ρ′,r

p̃(s′, ρ′ | s, ρ, a)

[
r +

∑
a′

π(a′ | s′) qπ(s′, a′)

]
+

T−1∑
k=0

rk+1

=
∑
s′,ρ′,r

p̃(s′, ρ′ | s, ρ, a)

[
T∑
k=0

rk+1 +
∑
a′

π(a′ | s′) qπ(s′, a′)

]

=
∑
s̃′,ρ′

p̃(s̃′ | s̃, a)

[
ρ′ +

∑
a′

π(a′ | s′) qπ(s′, a′)

]
=
∑
s̃′,ρ′

p̃(s̃′ | s̃, a) [ρ′ + 0]

=
∑
s̃′,r̃

p̃(s̃′ | s̃, a)

[
r̃ +

∑
a′

π̃(a′ | s̃′) q̃π̃(s̃′, a′)

]
.

Since q̃π̃(s̃, a) fulfills the Bellman equation, it is the action-value function for π̃.

S2.6 Transforming an Delayed Reward MDP to an Immediate Reward SDP

Next we consider the opposite direction, where the delayed reward MDP P̃ is given and we want to
find an immediate reward SDP P that is return-equivalent to P̃ . We assume an episodic reward for P̃ ,
that is, reward is only given at sequence end. The realization of final reward, that is the realization
of the return, r̃T+1 is redistributed to previous time steps. Instead of redistributing the realization
r̃T+1 of the random variable R̃T+1, also its expectation r̃(sT , aT) = E

[
R̃T+1 | sT , aT

]
can be

redistributed since Q-value estimation considers only the mean. We used the Markov property

Eπ

[
G̃0 | s0, a0, . . . , sT , aT

]
= Eπ

[
T∑
t=0

R̃t+1 | s0, a0, . . . , sT , aT

]
(S65)

= E
[
R̃T+1 | s0, a0, . . . , sT , aT

]
= E

[
R̃T+1 | sT , aT

]
.

Redistributing the expectation reduces the variance of estimators since the variance of the random
variable is already factored out.
We assume a delayed reward MDP P̃ with reward

R̃t =

{
0 , for t 6 T

R̃T+1 , for t = T + 1 ,
(S66)

where R̃t = 0 means that the random variable R̃t is always zero. The expected reward at the last
time step is

r̃(sT , aT) = E
[
R̃T+1 | sT , aT

]
, (S67)

which is also the expected return. Given a state-action sequence (s0, a0, . . . , sT , aT), we want to
redistribute either the realization r̃T+1 of the random variable R̃T+1 or its expectation r̃(sT , aT),

14

S2.6.1 Optimal Reward Redistribution
The main goal in this paper is to derive an SDP via reward redistribution that has zero expected future
rewards. Consequently the SDP has no delayed rewards. To measure the amount of delayed rewards,
we define the expected sum of delayed rewards κ(m, t− 1).
Definition S10. For 1 6 t 6 T and 0 6 m 6 T − t, the expected sum of delayed rewards at time
(t− 1) in the interval [t+ 1, t+m+ 1] is defined as

κ(m, t− 1) = Eπ

[
m∑
τ=0

Rt+1+τ | st−1, at−1

]
. (S68)

The Bellman equation for Q-values becomes

qπ(st, at) = r(st, at) + κ(T − t− 1, t) , (S69)

where κ(T − t− 1, t) is the expected sum of future rewards until sequence end given (st, at), that
is, in the interval [t + 2, T + 1]. We aim to derive an MDP with κ(T − t − 1, t) = 0, which
gives qπ(st, at) = r(st, at). In this case, learning the Q-values reduces to estimating the average
immediate reward r(st, at) = E [Rt+1 | st, at]. Hence, the reinforcement learning task reduces to
computing the mean, e.g. the arithmetic mean, for each state-action pair (st, at). Next, we define an
optimal reward redistribution.
Definition S11. A reward redistribution is optimal, if κ(T − t− 1, t) = 0 for 0 6 t 6 T − 1.
Next theorem states that in general an MDP with optimal reward redistribution does not exist, which
is the reason why we will consider SDPs in the following.
Theorem S3. In general, an optimal reward redistribution violates the assumption that the reward
distribution is Markov, therefore the Bellman equation does not hold.

Proof. We assume an MDP P̃ with r̃(sT , aT) 6= 0 and which has policies that lead to different
expected returns at time t = 0. If all reward is given at time t = 0, all policies have the same expected
return at time t = 0. This violates our assumption, therefore not all reward can be given at t = 0. In
vector and matrix notation the Bellman equation is

qπt = rt + Pt→t+1 q
π
t+1 , (S70)

where Pt→t+1 is the row-stochastic matrix with p(st+1 | st, at)π(at+1 | st+1) at positions
((st, at), (st+1, at+1)). An optimal reward redistribution requires the expected future rewards to be
zero:

Pt→t+1 q
π
t+1 = 0 (S71)

and, since optimality requires qπt+1 = rt+1, we have

Pt→t+1 rt+1 = 0 , (S72)

where rt+1 is the vector with components r̃(st+1, at+1). Since (i) the MDPs are return-equivalent,
(ii) r̃(sT , aT) 6= 0, and (iii) not all reward is given at t = 0, an (t+ 1) exists with rt+1 6= 0. We can
construct an MDP P̃ which has (a) at least as many state-action pairs (st, at) as pairs (st+1, at+1)
and (b) the transition matrix Pt→t+1 has full rank. Pt→t+1rt+1 = 0 is now a contradiction to
rt+1 6= 0 and Pt→t+1 has full rank. Consequently, simultaneously ensuring Markov properties and
ensuring zero future return is in general not possible.

For a particular π, the next theorem states that an optimal reward redistribution, that is κ = 0, is
equivalent to a redistributed reward which expectation is the difference of consecutive Q-values of
the original delayed reward. The theorem states that an optimal reward redistribution exists but we
have to assume an SDP P that has a second order Markov reward redistribution.
Theorem S4. We assume a delayed reward MDP P̃ , where the accumulated reward is given at
sequence end. An new SDP P is obtained by a second order Markov reward redistribution, which
ensures that P is return-equivalent to P̃ . For a specific π, the following two statements are equivalent:
(I) κ(T − t− 1, t) = 0, i.e. the reward redistribution is optimal,

(II) E [Rt+1 | st−1, at−1, st, at] = q̃π(st, at) − q̃π(st−1, at−1) . (S73)

Furthermore, an optimal reward redistribution fulfills for 1 6 t 6 T and 0 6 m 6 T − t:
κ(m, t− 1) = 0 . (S74)

15

Proof. PART (I): we assume that the reward redistribution is optimal, that is,

κ(T − t− 1, t) = 0 . (S75)

The redistributed reward Rt+1 is second order Markov. We abbreviate the expected Rt+1 by ht:

E [Rt+1 | st−1, at−1, st, at] = ht . (S76)

The assumptions of Lemma S3 hold for for the delayed reward MDP P̃ and the redistributed reward
SDP P . Therefore for a given state-action sub-sequence (s0, a0, . . . , st, at), 0 6 t 6 T :

Eπ

[
G̃0 | s0, a0, . . . , st, at

]
= Eπ [G0 | s0, a0, . . . , st, at] (S77)

with G0 =
∑T
τ=0Rτ+1 and G̃0 = R̃T+1. The Markov property of the MDP P̃ ensures that the

future reward from t+ 1 on is independent of the past sub-sequence s0, a0, . . . , st−1, at−1:

Eπ

[
T−t∑
τ=0

R̃t+1+τ | st, at

]
= Eπ

[
T−t∑
τ=0

R̃t+1+τ | s0, a0, . . . , st, at

]
. (S78)

The second order Markov property of the SDP P ensures that the future reward from t + 2 on is
independent of the past sub-sequence s0, a0, . . . , st−1, at−1:

Eπ

[
T−t−1∑
τ=0

Rt+2+τ | st, at

]
= Eπ

[
T−t−1∑
τ=0

Rt+2+τ | s0, a0, . . . , st, at

]
. (S79)

Using these properties we obtain

q̃π(st, at) = Eπ

[
T−t∑
τ=0

R̃t+1+τ | st, at

]
(S80)

= Eπ

[
T−t∑
τ=0

R̃t+1+τ | s0, a0, . . . , st, at

]
= Eπ

[
R̃T+1 | s0, a0, . . . , st, at

]
= Eπ

[
T∑
τ=0

R̃τ+1 | s0, a0, . . . , st, at

]
= Eπ

[
G̃0 | s0, a0, . . . , st, at

]
= Eπ [G0 | s0, a0, . . . , st, at]

= Eπ

[
T∑
τ=0

Rτ+1 | s0, a0, . . . , st, at

]

= Eπ

[
T−t−1∑
τ=0

Rt+2+τ | s0, a0, . . . , st, at

]
+

t∑
τ=0

hτ

= Eπ

[
T−t−1∑
τ=0

Rt+2+τ | st, at

]
+

t∑
τ=0

hτ

= κ(T − t− 1, t) +

t∑
τ=0

hτ

=

t∑
τ=0

hτ .

We used

κ(T − t− 1, t) = Eπ

[
T−t−1∑
τ=0

Rt+2+τ | st, at

]
= 0 . (S81)

16

It follows that

E [Rt+1 | st−1, at−1, st, at] = ht (S82)
= q̃π(st, at) − q̃π(st−1, at−1) .

PART (II): we assume that

E [Rt+1 | st−1, at−1, st, at] = ht (S83)
= q̃π(st, at) − q̃π(st−1, at−1) .

The expectations Eπ [. | st−1, at−1] like Eπ

[
R̃T+1 | st−1, at−1

]
are expectations over all episodes

starting in (st−1, at−1) and ending in some (sT , aT).
First, we consider m = 0 and 1 6 t 6 T , therefore κ(0, t − 1) = Eπ [Rt+1 | st−1, at−1]. Since
r̃(st−1, at−1) = 0 for 1 6 t 6 T , we have

q̃π(st−1, at−1) = r̃(st−1, at−1) +
∑
st,at

p(st, at | st−1, at−1) q̃π(st, at) (S84)

=
∑
st,at

p(st, at | st−1, at−1) q̃π(st, at) .

Using this equation we obtain for 1 6 t 6 T :

κ(0, t− 1) = Est,at,Rt+1
[Rt+1 | st−1, at−1] (S85)

= Est,at [q̃π(st, at) − q̃π(st−1, at−1) | st−1, at−1]

=
∑
st,at

p(st, at | st−1, at−1) (q̃π(st, at) − q̃π(st−1, at−1))

= q̃π(st−1, at−1) −
∑
st,at

p(st, at | st−1, at−1) q̃π(st−1, at−1)

= q̃π(st−1, at−1) − q̃π(st−1, at−1) = 0 .

Next, we consider the expectation of
∑m
τ=0Rt+1+τ for 1 6 t 6 T and 1 6 m 6 T − t (for m > 0)

κ(m, t− 1) = Eπ

[
m∑
τ=0

Rt+1+τ | st−1, at−1

]
(S86)

= Eπ

[
m∑
τ=0

(q̃π(sτ+t, aτ+t) − q̃π(sτ+t−1, aτ+t−1)) | st−1, at−1

]
= Eπ [q̃π(st+m, at+m) − q̃π(st−1, at−1) | st−1, at−1]

= Eπ

[
Eπ

[
T∑

τ=t+m

R̃τ+1 | st+m, at+m

]
| st−1, at−1

]

− Eπ

[
Eπ

[
T∑

τ=t−1

R̃τ+1 | st−1, at−1

]
| st−1, at−1

]
= Eπ

[
R̃T+1 | st−1, at−1

]
− Eπ

[
R̃T+1 | st−1, at−1

]
= 0 .

We used that R̃t+1 = 0 for t < T .
For t = τ + 1 and m = T − t = T − τ − 1 we have

κ(T − τ − 1, τ) = 0 , (S87)

which characterizes an optimal reward redistribution.

17

Thus, an SDP with an optimal reward redistribution has a expected future rewards that are zero.
Equation κ(T − t− 1, t) = 0 means that the new SDP P has no delayed rewards as shown in next
corollary.
Corollary S1. An SDP with an optimal reward redistribution fulfills for 0 6 τ 6 T − t− 1

Eπ [Rt+1+τ | st−1, at−1] = 0 . (S88)

The SDP has no delayed rewards since no state-action pair can increase or decrease the expectation
of a future reward.

Proof. For τ = 0 we use κ(m, t− 1) = 0 from Theorem S4 with m = 0:

Eπ [Rt+1 | st−1, at−1] = κ(0, t− 1) = 0 . (S89)

For τ > 0, we also use κ(m, t− 1) = 0 from Theorem S4:

Eπ [Rt+1+τ | st−1, at−1] = Eπ

[
τ∑
k=0

Rt+1+k −
τ−1∑
k=0

Rt+1+k | st−1, at−1

]
(S90)

= Eπ

[
τ∑
k=0

Rt+1+k | st−1, at−1

]
− Eπ

[
τ−1∑
k=0

Rt+1+k | st−1, at−1

]
= κ(τ, t− 1) − κ(τ − 1, t− 1) = 0 − 0 = 0 .

A related approach is to ensure zero return by reward shaping if the exact value function is known
[67].
The next theorem states the major advantage of an optimal reward redistribution: q̃π(st, at) can be
estimated with an offset that depends only on st by estimating the expected immediate redistributed
reward. Thus, Q-value estimation becomes trivial and the computation of the advantage function of
the MDP P̃ is simplified.
Theorem S5. If the reward redistribution is optimal, then the Q-values of the SDP P are given by

qπ(st, at) = r(st, at) = q̃π(st, at) − Est−1,at−1
[q̃π(st−1, at−1) | st] (S91)

= q̃π(st, at) − ψπ(st) .

The SDP P and the original MDP P̃ have the same advantage function. Using a behavior policy π̆
the expected immediate reward is

Eπ̆ [Rt+1 | st, at] = q̃π(st, at) − ψπ,π̆(st) . (S92)

Proof. The expected reward r(st, at) is computed for 0 6 t 6 T , where s−1, a−1 are states and
actions, which are introduced for formal reasons at the beginning of an episode. The expected reward
r(st, at) is with q̃π(s−1, a−1) = 0:

r(st, at) = Ert+1 [Rt+1 | st, at] = Est−1,at−1 [q̃π(st, at) − q̃π(st−1, at−1) | st, at] (S93)
= q̃π(st, at) − Est−1,at−1

[q̃π(st−1, at−1) | st, at] .

The expectations Eπ [. | st, at] like Eπ

[
R̃T+1 | st, at

]
are expectations over all episodes starting in

(st, at) and ending in some (sT , aT).
The Q-values for the SDP P are defined for 0 6 t 6 T as:

qπ(st, at) = Eπ

[
T−t∑
τ=0

Rt+1+τ | st, at

]
(S94)

= Eπ [q̃π(sT , aT) − q̃π(st−1, at−1) | st, at]
= Eπ [q̃π(sT , aT) | st, at] − Eπ [q̃π(st−1, at−1) | st, at]
= q̃π(st, at) − Est−1,at−1

[q̃π(st−1, at−1) | st, at]
= r(st, at) .

18

The second equality uses

T−t∑
τ=0

Rt+1+τ =

T−t∑
τ=0

q̃π(st+τ , at+τ) − q̃π(st+τ−1, at+τ−1) (S95)

= q̃π(sT , aT) − q̃π(st−1, at−1) .

The posterior p(st−1, at−1 | st, at) is

p(st−1, at−1 | st, at) =
p(st, at | st−1, at−1) p(st−1, at−1)

p(st, at)
(S96)

=
p(st | st−1, at−1) p(st−1, at−1)

p(st)
= p(st−1, at−1 | st) ,

where we used p(st, at | st−1, at−1) = π(at | st)p(st | st−1, at−1) and p(st, at) = π(at | st)p(st).
The posterior does no longer contain at. We can express the mean of previous Q-values by the
posterior p(st−1, at−1 | st, at):

Est−1,at−1
[q̃π(st−1, at−1) | st, at] =

∑
st−1,at−1

p(st−1, at−1 | st, at) q̃π(st−1, at−1) (S97)

=
∑

st−1,at−1

p(st−1, at−1 | st) q̃π(st−1, at−1) = Est−1,at−1
[q̃π(st−1, at−1) | st] = ψπ(st) ,

with

ψπ(st) = Est−1,at−1
[q̃π(st−1, at−1) | st] . (S98)

The SDP P and the MDP P̃ have the same advantage function, since the value functions are the
expected Q-values across the actions and follow the equation vπ(st) = ṽπ(st) + ψπ(st). Therefore
ψπ(st) cancels in the advantage function of the SDP P .

Using a behavior policy π̆ the expected immediate reward is

Eπ̆ [Rt+1 | st, at] = Ert+1,π̆ [Rt+1 | st, at] = Est−1,at−1,π̆ [q̃π(st, at) − q̃π(st−1, at−1) | st, at]
(S99)

= q̃π(st, at) − Est−1,at−1,π̆ [q̃π(st−1, at−1) | st, at] .

The posterior pπ̆(st−1, at−1 | st, at) is

pπ̆(st−1, at−1 | st, at) =
pπ̆(st, at | st−1, at−1) pπ̆(st−1, at−1)

pπ̆(st, at)
(S100)

=
p(st | st−1, at−1) pπ̆(st−1, at−1)

pπ̆(st)
= pπ̆(st−1, at−1 | st) ,

where we used pπ̆(st, at | st−1, at−1) = π̆(at | st)p(st | st−1, at−1) and pπ̆(st, at) = π̆(at |
st)pπ̆(st). The posterior does no longer contain at. We can express the mean of previous Q-values
by the posterior pπ̆(st−1, at−1 | st, at):

Est−1,at−1,π̆ [q̃π(st−1, at−1) | st, at] =
∑

st−1,at−1

pπ̆(st−1, at−1 | st, at) q̃π(st−1, at−1) (S101)

=
∑

st−1,at−1

pπ̆(st−1, at−1 | st) q̃π(st−1, at−1) = Est−1,at−1,π̆ [q̃π(st−1, at−1) | st] = ψπ,π̆(st) ,

with

ψπ,π̆(st) = Est−1,at−1,π̆ [q̃π(st−1, at−1) | st] . (S102)

Therefore we have

Eπ̆ [Rt+1 | st, at] = q̃π(st, at) − ψπ,π̆(st) . (S103)

19

S2.7 Novel Learning Algorithms based on Reward Redistributions
We assume γ = 1 and a finite horizon or absorbing state original MDP P̃ with delayed reward.
According to Theorem S5, q̃π(st, at) can be estimated with an offset that depends only on st by
estimating the expected immediate redistributed reward. Thus, Q-value estimation becomes trivial
and the computation of the advantage function of the MDP P̃ is simplified. All reinforcement
learning methods like policy gradients that use arg maxat q̃

π(st, at) or the advantage function
q̃π(st, at) − Eat q̃

π(st, at) of the original MDP P̃ can be used. These methods either rely on
Theorem S5 and either estimate qπ(st, at) according to Eq. (S91) or the expected immediate reward
according to Eq. (S92). Both approaches estimate q̃π(st, at) with an offset that depends only on
st (either ψπ(st) or ψπ,π̆(st)). Behavior policies like “greedy in the limit with infinite exploration”
(GLIE) or “restricted rank-based randomized” (RRR) allow to prove convergence of SARSA [71].
These policies can be used with reward redistribution. GLIE policies can be realized by a softmax
with exploration coefficient on the Q-values, therefore ψπ(st) or ψπ,π̆(st) cancels. RRR policies
select actions probabilistically according to the ranks of their Q-values, where the greedy action
has highest probability. Therefore ψ(st) or ψπ,π̆(st) is not required. For function approximation,
convergence of the Q-value estimation together with reward redistribution and GLIE or RRR policies
can under standard assumptions be proven by the stochastic approximation theory for two time-scale
update rules [9, 31]. Proofs for convergence to an optimal policy are in general difficult, since locally
stable attractors may not correspond to optimal policies.
Reward redistribution can be used for

• (A) Q-value estimation,

• (B) policy gradients, and

• (C) Q-learning.

S2.7.1 Q-Value Estimation
Like SARSA, RUDDER learning continually predicts Q-values to improve the policy. Type (A)
methods estimate Q-values and are divided into variants (i), (ii), and (iii). Variant (i) assumes an
optimal reward redistribution and estimates q̃π(st, at) with an offset depending only on st. The
estimates are based on Theorem S5 either by on-policy direct Q-value estimation according to
Eq. (S91) or by off-policy immediate reward estimation according to Eq. (S92). Variant (ii) methods
assume a non-optimal reward redistribution and correct Eq. (S91) by estimating κ. Variant (iii)
methods use eligibility traces for the redistributed reward.

Variant (i): Estimation of q̃π(st, at) with an offset assuming optimality. Theorem S5 justifies
the estimation of q̃π(st, at) with an offset by on-policy direct Q-value estimation via Eq. (S91) or by
off-policy immediate reward estimation via Eq. (S92). RUDDER learning can be based on policies
like “greedy in the limit with infinite exploration” (GLIE) or “restricted rank-based randomized”
(RRR) [71]. GLIE policies change toward greediness with respect to the Q-values during learning.

Variant (ii): TD-learning of κ and correction of the redistributed reward. For non-optimal
reward redistributions κ(T − t− 1, t) can be estimated to correct the Q-values. TD-learning of κ.
The expected sum of delayed rewards κ(T − t− 1, t) can be formulated as

κ(T − t− 1, t) = Eπ

[
T−t−1∑
τ=0

Rt+2+τ | st, at

]
(S104)

= Eπ

Rt+2 +

T−(t+1)−1∑
τ=0

R(t+1)+2+τ | st, at

= Est+1,at+1,rt+2

Rt+2 + Eπ

T−(t+1)−1∑
τ=0

R(t+1)+2+τ | st+1, at+1

 | st, at

= Est+1,at+1,rt+2
[Rt+2 + κ(T − t− 2, t+ 1) | st, at] .

Therefore, κ(T − t− 1, t) can be estimated by Rt+2 and κ(T − t− 2, t+ 1), if the last two are drawn
together, i.e. considered as pairs. Otherwise the expectations of Rt+2 and κ(T − t− 2, t+ 1) given
(st, at) must be estimated. We can use TD-learning if the immediate reward and the sum of delayed

20

rewards are drawn as pairs, that is, simultaneously. The TD-error δκ becomes

δκ(T − t− 1, t) = Rt+2 + κ(T − t− 2, t+ 1) − κ(T − t− 1, t) . (S105)

We now define eligibility traces for κ. Let the n-step return samples of κ for 1 6 n 6 T − t be

κ(1)(T − t− 1, t) = Rt+2 + κ(T − t− 2, t+ 1) (S106)

κ(2)(T − t− 1, t) = Rt+2 + Rt+3 + κ(T − t− 3, t+ 2)

. . .

κ(n)(T − t, t) = Rt+2 + Rt+3 + . . . + Rt+n+1 + κ(T − t− n− 1, t+ n) .

The λ-return for κ is

κ(λ)(T − t− 1, t) = (1− λ)

T−t−1∑
n=1

λn−1 κ(n)(T − t− 1, t) + λT−t−1 κ(T−t)(T − t− 1, t) .

(S107)

We obtain

κ(λ)(T − t− 1, t) = Rt+2 + κ(T − t− 2, t+ 1) (S108)
+ λ (Rt+3 + κ(T − t− 3, t+ 2) − κ(T − t− 2, t+ 1))

+ λ2 (Rt+4 + κ(T − t− 4, t+ 3) − κ(T − t− 3, t+ 2))

. . .

+ λT−1−t (RT+1 + κ(0, T − 1) − κ(1, T − 2)) .

We can reformulate this as

κ(λ)(T − t− 1, t) = κ(T − t− 1, t) +

T−t−1∑
n=0

λn δκ(T − t− n− 1, t+ n) . (S109)

The κ error ∆κ is

∆κ(T − t− 1, t) = κ(λ)(T − t− 1, t) − κ(T − t− 1, t) =

T−t−1∑
n=0

λn δκ(T − t− n− 1, t+ n) .

(S110)

The derivative of

1/2 ∆κ(T − t− 1, t)2 = 1/2
(
κ(λ)(T − t− 1, t) − κ(T − t− 1, t;w)

)2

(S111)

with respect to w is

−
(
κ(λ)(T − t− 1, t) − κ(T − t− 1, t;w)

)
∇wκ(T − t− 1, t;w) (S112)

= −
T−t−1∑
n=0

λn δκ(T − t− n− 1, t+ n)∇wκ(T − t− 1, t;w) .

The full gradient of the sum of κ errors is

1/2 ∇w
T−1∑
t=0

∆κ(T − t− 1, t)2 (S113)

= −
T−1∑
t=0

T−t−1∑
n=0

λn δκ(T − t− n− 1, t+ n)∇wκ(T − t− 1, t;w)

= −
T−1∑
t=0

T−1∑
τ=t

λτ−t δκ(T − τ − 1, τ)∇wκ(T − t− 1, t;w)

= −
T−1∑
τ=0

δκ(T − τ − 1, τ)

τ∑
t=0

λτ−t ∇wκ(T − t− 1, t;w) .

21

We set n = τ − t, so that n = 0 becomes τ = t and n = T − t − 1 becomes τ = T − 1. The
recursion

f(t) = λ f(t− 1) + at , f(0) = 0 (S114)

can be written as

f(T) =

T∑
t=1

λT−t at . (S115)

Therefore, we can use following update rule for minimizing
∑T−1
t=0 ∆κ(T, t)2 with respect tow with

1 6 τ 6 T − 1:

z−1 = 0 (S116)
zτ = λ zτ−1 + ∇wκ(T − τ, τ ;w) (S117)

δκ(T − τ, τ) = Rτ+2 + κ(T − τ − 1, τ + 1;w) − κ(T − τ, τ ;w) (S118)
wnew = w + α δκ(T − τ, τ) zτ . (S119)

Correction of the reward redistribution. For correcting the redistributed reward, we apply a
method similar to reward shaping or look-back advice. This method ensures that the corrected
redistributed reward leads to an SDP that is has the same return per sequence as the SDP P . The
reward correction is

F (st, at, st−1, at−1) = κ(m, t) − κ(m, t− 1) , (S120)

we define the corrected redistributed reward as

Rc
t+1 = Rt+1 + F (st, at, st−1, at−1) = Rt+1 + κ(m, t) − κ(m, t− 1) . (S121)

We assume that κ(m,−1) = κ(m,T + 1) = 0, therefore

T+1∑
t=0

F (st, at, st−1, at−1) =

T+1∑
t=0

κ(m, t) − κ(m, t− 1) = κ(m,T + 1) − κ(m,−1) = 0 .

(S122)

Consequently, the corrected redistributed reward Rc
t+1 does not change the expected return for a

sequence, therefore, the resulting SDP has the same optimal policies as the SDP without correction.
For a predictive reward of ρ at time t = k, which can be predicted from time t = l < k to time
t = k − 1, we have:

κ(m, t) =

0 , for t < l ,

ρ , for l 6 t < k ,

0 , for t > k .

(S123)

The reward correction is

F (st, at, st−1, at−1) =

0 , for t < l ,

ρ , for t = l ,

0 , for l < t < k ,

−ρ , for t = k ,

0 , for t > k .

(S124)

Using κ as auxiliary task in predicting the return for return decomposition. A κ prediction can
serve as additional output of the function g that predicts the return and is the basis of the return
decomposition. Even a partly prediction of κ means that the reward can be distributed further back.
If g can partly predict κ, then g has all information to predict the return earlier in the sequence. If the
return is predicted earlier, then the reward will be distributed further back. Consequently, the reward
redistribution comes closer to an optimal reward redistribution. However, at the same time, κ can no
longer be predicted. The function g must find another κ that can be predicted. If no such κ is found,
then optimal reward redistribution is indicated.

22

Variant (iii): Eligibility traces assuming optimality. We can use eligibility traces to further
distribute the reward back. For an optimal reward redistribution, we have Est+1 [V (st+1)] = 0. The
new returnsRt are given by the recursion

Rt = rt+1 + λRt+1 , (S125)
RT+2 = 0 . (S126)

The expected policy gradient updates with the new returns R are Eπ [∇θ log π(at | st;θ)Rt]. To
avoid an estimation of the value function V (st+1), we assume optimality, which might not be valid.
However, the error should be small if the return decomposition works well. Instead of estimating a
value function, we can use a correction as it is shown in next paragraph.

S2.7.2 Policy Gradients
Type (B) methods are policy gradients. In the expected updates Eπ [∇θ log π(a | s;θ)qπ(s, a)]
of policy gradients, the value qπ(s, a) is replaced by an estimate of r(s, a) or by samples of the
redistributed reward. Convergence to optimal policies is guaranteed even with the offset ψπ(s) in
Eq. (S91) similar to baseline normalization for policy gradients. With baseline normalization, the
baseline b(s) = Ea[r(s, a)] =

∑
a π(a | s)r(s, a) is subtracted from r(s, a), which gives the policy

gradient Eπ [∇θ log π(a | s;θ)(r(s, a)− b(s))]. With eligibility traces using λ ∈ [0, 1] for Gλt [78],
we have the new returns Gt = rt+λGt+1 with GT+2 = 0. The expected updates with the new returns
G are Eπ [∇θ log π(at | st;θ)Gt].

S2.7.3 Q-Learning
The type (C) method is Q-learning with the redistributed reward. Here, Q-learning is justified if
immediate and future reward are drawn together, as typically done. Also other temporal difference
methods are justified when immediate and future reward are drawn together.

S2.8 Return Decomposition to construct a Reward Redistribution
We now propose methods to construct reward redistributions which ideally would be optimal. Learn-
ing with non-optimal reward redistributions does work since the optimal policies do not change
according to Theorem S2. However reward redistributions that are optimal considerably speed up
learning, since future expected rewards introduce biases in TD-methods and the high variance in
MC-methods. The expected optimal redistributed reward is according to Eq. (S73) the difference
of Q-values. The more a reward redistribution deviates from these differences, the larger are the
absolute κ-values and, in turn, the less optimal is the reward redistribution. Consequently we aim
at identifying the largest Q-value differences to construct a reward redistribution which is close to
optimal. Assume a grid world where you have to take a key to later open a door to a treasure room.
Taking the key increases the chances to receive the treasure and, therefore, is associated with a large
positive Q-value difference. Smaller positive Q-value difference are steps toward the key location.

Reinforcement Learning as Pattern Recognition. We want to transform the reinforcement learn-
ing problem into a pattern recognition problem to employ deep learning approaches. The sum of the
Q-value differences gives the difference between expected return at sequence begin and the expected
return at sequence end (telescope sum). Thus, Q-value differences allow to predict the expected
return of the whole state-action sequence. Identifying the largest Q-value differences reduce the
prediction error most. Q-value differences are assumed to be associated with patterns in state-action
transitions like taking the key in our example. The largest Q-value differences are expected to be
found more frequently in sequences with very large or very low return. The resulting task is to predict
the expected return from the whole sequence and identify which state-action transitions contributed
most to the prediction. This pattern recognition task is utilized to construct a reward redistribution,
where redistributed reward corresponds to the contribution.

S2.8.1 Return Decomposition Idea
The return decomposition idea is to predict the realization of the return or its expectation by a function
g from the state-action sequence

(s, a)0:T := (s0, a0, s1, a1, . . . , sT , aT) . (S127)

The return is the accumulated reward along the whole sequence (s, a)0:T . The function g depends
on the policy π that is used to generate the state-action sequences. Subsequently, the prediction
or the realization of the return is distributed over the sequence with the help of g. One important

23

advantage of a deterministic function g is that it predicts with proper loss functions and if being
perfect the expected return. Therefore, it removes the sampling variance of returns. In particular
the variance of probabilistic rewards is averaged out. Even an imperfect function g removes the
variance as it is deterministic. As described later, the sampling variance may be reintroduced when
strictly return-equivalent SDPs are ensured. We want to determine for each sequence element its
contribution to the prediction of the function g. Contribution analysis computes the contribution of
each state-action pair to the prediction, that is, the information of each state-action pair about the
prediction. In principle, we can use any contribution analysis method. However, we prefer three
methods: (A) Differences in predictions. If we can ensure that g predicts the sequence-wide return at
every time step. The difference of two consecutive predictions is a measure of the contribution of
the current state-action pair to the return prediction. The difference of consecutive predictions is the
redistributed reward. (B) Integrated gradients (IG) [76]. (C) Layer-wise relevance propagation (LRP)
[1]. The methods (B) and (C) use information later in the sequence for determining the contribution
of the current state-action pair. Therefore, they introduce a non-Markov reward. However, the
non-Markov reward can be viewed as probabilistic reward. Since probabilistic reward increases the
variance, we prefer method (A).

Explaining Away Problem. We still have to tackle the problem that reward causing actions do
not receive redistributed rewards since they are explained away by later states. To describe the
problem, assume an MDP P̃ with the only reward at sequence end. To ensure the Markov property,
states in P̃ have to store the reward contributions of previous state-actions; e.g. sT has to store all
previous contributions such that the expectation r̃(sT , aT) is Markov. The explaining away problem
is that later states are used for return prediction, while reward causing earlier actions are missed. To
avoid explaining away, between the state-action pair (st, at) and its predecessor (st−1, at−1), where
(s−1, a−1) are introduced for starting an episode. The sequence of differences is defined as

∆0:T :=
(
∆(s−1, a−1, s0, a0), . . . ,∆(sT−1, aT−1, sT , aT)

)
. (S128)

We assume that the differences ∆ are mutually independent [28]:

p (∆(st−1, at−1, st, at) | ∆(s−1, a−1, s0, a0), . . . ,∆(st−2, at−2, st−1, at−1), (S129)
∆(st, at, st+1, at+1) . . . ,∆(sT−1, aT−1, sT , aT)) = p (∆(st−1, at−1, st, at)) .

The function g predicts the realization of the sequence-wide return or its expectation from the
sequence ∆0:T :

g
(
∆0:T

)
= E

[
R̃T+1 | sT , aT

]
= r̃T+1 . (S130)

Return decomposition deconstructs g into contributions ht = h(∆(st−1, at−1, st, at) at time t:

g
(
∆0:T

)
=

T∑
t=0

h(∆(st−1, at−1, st, at)) = r̃T+1 . (S131)

If we can assume that g can predict the return at every time step:

g
(
∆0:t

)
= Eπ

[
R̃T+1 | st, at

]
, (S132)

then we use the contribution analysis method "differences of return predictions", where the contribu-
tions are defined as:

h0 = h(∆(s−1, a−1, s0, a0)) := g
(
∆0:0

)
(S133)

ht = h(∆(st−1, at−1, st, at)) := g
(
∆0:t

)
− g

(
∆0:(t−1)

)
. (S134)

We assume that the sequence-wide return cannot be predicted from the last state. The reason is
that either immediate rewards are given only at sequence end without storing them in the states or
information is removed from the states. Therefore, a relevant event for predicting the final reward
must be identified by the function g. The prediction errors at the end of the episode become, in
general, smaller since the future is less random. Therefore, prediction errors later in the episode are
up-weighted while early predictions ensure that information is captured in ht for being used later.
The prediction at time T has the largest weight and relies on information from the past.
If g does predict the return at every time step, contribution analysis decomposes g. For decomposing
a linear g one can use the Taylor decomposition (a linear approximation) of g with respect to the
h [1, 45]. A non-linear g can be decomposed by layerwise relevance propagation (LRP) [1, 46] or
integrated gradients (IG) [76].

24

S2.8.2 Reward Redistribution based on Return Decomposition
We assume a return decomposition

g
(
∆0:T

)
=

T∑
t=0

ht , (S135)

with

h0 = h(∆(s−1, a−1, s0, a0)) , (S136)
ht = h(∆(st−1, at−1, st, at)) for 0 < t 6 T . (S137)

We use these contributions for redistributing the reward. The reward redistribution is given by the
random variable Rt+1 for the reward at time t+ 1. These new redistributed rewards Rt+1 must have
the contributions ht as mean:

E [Rt+1 | st−1, at−1, st, at] = ht (S138)

The reward R̃T+1 of P̃ is probabilistic and the function g might not be perfect, therefore neither
g(∆0:T) = r̃T+1 for the return realization r̃T+1 nor g(∆0:T) = r̃(sT , aT) for the expected return
holds. To assure strictly return-equivalent SDPs, we have to compensate for both a probabilistic
reward R̃T+1 and an imperfect function g. The compensation is given by

r̃T+1 −
T∑
τ=0

ht . (S139)

We compensate with an extra reward RT+2 at time T + 2 which is immediately given after RT+1 at
time T + 1 after the state-action pair (sT , aT). The new redistributed reward Rt+1 is

E [R1 | s0, a0] = h0 , (S140)
E [Rt+1 | st−1, at−1, st, at] = ht for 0 < t 6 T , (S141)

RT+2 = R̃T+1 −
T∑
t=0

ht , (S142)

where the realization r̃T+1 is replaced by its random variable R̃T+1. If the prediction of g is perfect,
then we can set RT+2 = 0 and redistribute the expected return which is the predicted return. RT+2

compensates for both a probabilistic reward R̃T+1 and an imperfect function g. Consequently all
variance of sampling the return is moved to RT+2. Only the imperfect function g must be corrected
while the variance does not matter. However, we cannot distinguish, e.g. in early learning phases,
between errors of g and random reward. A perfect g results in an optimal reward redistribution.
Next theorem shows that Theorem S4 holds also for the correction RT+2.
Theorem S6. The optimality conditions hold also for reward redistributions with corrections:

κ(T − t+ 1, t− 1) = 0 . (S143)

Proof. The expectation of κ(T − t + 1, t − 1) =
∑T−t+1
τ=0 Rt+1+τ , that is κ(m, t − 1) with m =

T − t+ 1.

Eπ

[
T−t+1∑
τ=0

Rt+1+τ | st−1, at−1

]
(S144)

= Eπ

[
R̃T+1 − q̃π(sT , aT) +

T−t∑
τ=0

(q̃π(sτ+t, aτ+t) − q̃π(sτ+t−1, aτ+t−1)) | st−1, at−1

]
= Eπ

[
R̃T+1 − q̃π(st−1, at−1) | st−1, at−1

]
= Eπ

[
R̃T+1 | st−1, at−1

]
− Eπ

[
Eπ

[
T∑

τ=t−1

R̃τ+1 | st−1, at−1

]
| st−1, at−1

]
= Eπ

[
R̃T+1 | st−1, at−1

]
− Eπ

[
R̃T+1 | st−1, at−1

]
= 0 .

25

If we substitute t− 1 by t (t one step further and m one step smaller) it follows

κ(T − t, t) = 0 . (S145)

Next, we consider the case t = T + 1, that is κ(0, T), which is the expected correction. We will use
following equality for the expected delayed reward at sequence end:

q̃π(sT , aT) = ER̃T+1

[
R̃T+1 | sT , aT

]
= r̃T+1(sT , aT) , (S146)

since q̃π(sT+1, aT+1) = 0. For t = T + 1 we obtain

ERT+2
[RT+2 | sT , aT] = ER̃T+1

[
R̃T+1 − q̃π(sT , aT) | sT , aT

]
(S147)

= r̃T+1(sT , aT) − r̃T+1(sT , aT) = 0 .

In the experiments we also use a uniform compensation where each reward has the same contribution
to the compensation:

R1 = h0 +
1

T + 1

(
R̃T+1 −

T∑
τ=0

h(∆(sτ−1, aτ−1, sτ , aτ))

)
(S148)

Rt+1 = ht +
1

T + 1

(
R̃T+1 −

T∑
τ=0

h(∆(sτ−1, aτ−1, sτ , aτ))

)
. (S149)

Consequently all variance of sampling the return is uniformly distributed across the sequence. Also
the error of g is uniformly distributed across the sequence.
An optimal reward redistribution implies

g
(
∆0:t

)
=

t∑
τ=0

h(∆(sτ−1, aτ−1, sτ , aτ)) = q̃π(st, at) (S150)

since the expected reward is

E [Rt+1 | st−1, at−1, st, at] = h(∆(st−1, at−1, st, at)) (S151)
= q̃π(st, at) − q̃π(st−1, at−1)

according to Eq. (S73) in Theorem S4 and

h0 = h(∆(s−1, a−1, s0, a0)) (S152)

= g
(
∆0:0

)
= q̃π(s0, a0) .

S2.9 Remarks on Return Decomposition
S2.9.1 Return Decomposition for Binary Reward
A special case is a reward that indicates success or failure by giving a reward of 1 or 0, respectively.
The return is equal to the final reward R, which is a Bernoulli variable. For each state s or each
state-action pair (s, a) the expected return can be considered as a Bernoulli variable with success
probability pR(s) or pR(s, a). The value function is vπ(s) = Eπ(G | s) = pR(s) and the action-
value is qπ(s) = Eπ(G | s, a) = pR(s, a) which is in both cases the expectation of success. In this
case, the optimal reward redistribution tracks the success probability

R1 = h0 = h(∆(s−1, a−1, s0, a0)) = q̃π(s0, a0) = pR(s0, a0) (S153)
Rt+1 = ht = h(∆(st−1, at−1, st, at)) = q̃π(st, at) − q̃π(st−1, at−1) (S154)

= pR(st, at) − pR(st−1, at−1) for 0 < t 6 T

RT+2 = R̃T+1 − r̃T+1 = R − pR(sT , aT) . (S155)

The redistributed reward is the change in the success probability. A good action increases the success
probability and obtains a positive reward while a bad action reduces the success probability and
obtains a negative reward.

26

S2.9.2 Optimal Reward Redistribution reduces the MDP to a Stochastic Contextual Bandit
Problem

The new SDP P has a redistributed reward with random variable Rt at time t distributed according to
p(r | st, at). Theorem S5 states

qπ(st, at) = r(st, at) . (S156)

This equation looks like a contextual bandit problem, where r(st, at) is an estimate of the mean
reward for action at for state or context st. Contextual bandits [36, p. 208] are characterized by a
conditionally σ-subgaussian noise (Def. 5.1 [36, p. 68]). We define the zero mean noise variable η by

ηt = η(st, at) = Rt − r(st, at) , (S157)

where we assume that ηt is a conditionally σ-subgaussian noise variable. Therefore, η is distributed
according to p(r − r(st, at) | st, at) and fulfills

E [η(st, at)] = 0 , (S158)

E [exp(λη(st, at)] 6 exp(λ2σ2/2) . (S159)

Subgaussian random variables have tails that decay almost as fast as a Gaussian. If the reward r is
bounded by |r| < B, then η is bounded by |η| < B and, therefore, a B-subgaussian. For binary
rewards it is of interest that a Bernoulli variable is 0.5-subgaussian [36, p. 71]. In summary, an
optimal reward redistribution reduces the MDP to a stochastic contextual bandit problem.

S2.9.3 Relation to ”Backpropagation through a Model´´
The relation of reward redistribution if applied to policy gradients and ”Backpropagation through a
Model´´ is discussed here. For a delayed reward that is only received at the end of an episode, we
decompose the return r̃T+1 into

g(∆0:T) = r̃T+1 =

T∑
t=0

h(∆(st−1, at−1, st, at)) . (S160)

The policy gradient for an optimal reward redistribution is

Eπ [∇θ log π(at | st;θ) h(∆(st−1, at−1, st, at))] . (S161)

Summing up the gradient for one episode, the gradient becomes

Eπ

[
T∑
t=0

∇θ log π(at | st;θ) h(∆(st−1, at−1, st, at))

]
(S162)

= Eπ [Jθ(log π(a | s;θ)) h(∆(s′,a′, s,a))] ,

where a′ = (a−1, a0, a1, . . . , aT−1) and a = (a0, a1, . . . , aT) are the sequences of actions,
s′ = (s−1, s0, s1, . . . , sT−1) and s = (s0, s1, . . . , sT) are the sequences of states, Jθ(log π) is
the Jacobian of the log-probability of the state sequence with respect to the parameter vector θ, and
h(∆(s′,a′, s,a)) is the vector with entries h(∆(st−1, at−1, st, at)).
An alternative approach via sensitivity analysis is ”Backpropagation through a Model´´, where
g(∆0:T) is maximized, that is, the return is maximized. Continuous actions are directly fed into g
while probabilistic actions are sampled before entering g. Analog to gradients used for Restricted
Boltzmann Machines, for probabilistic actions the log-likelihood of the actions is used to construct a
gradient. The likelihood can also be formulated as the cross-entropy between the sampled actions
and the action probability. The gradient for ”Backpropagation through a Model´´ is

Eπ [Jθ(log π(a | s;θ))∇ag(∆0:T)] , (S163)

where ∇ag(∆0:T) is the gradient of g with respect to the action sequence a.
If for ”Backpropagation through a Model´´ the model gradient with respect to actions is replaced by
the vector of contributions of actions in the model, then we obtain redistribution applied to policy
gradients.

27

S3 Bias-Variance Analysis of MDP Q-Value Estimators
Bias-variance investigations have been done for Q-learning. Grünewälder & Obermayer [20] investi-
gated the bias of temporal difference learning (TD), Monte Carlo estimators (MC), and least-squares
temporal difference learning (LSTD). Mannor et al. [40] and O’Donoghue et al. [50] derived bias and
variance expressions for updating Q-values.
The true, but unknown, action-value function qπ is the expected future return. We assume to have
the data D, which is a set of state-action sequences with return, that is a set of episodes with return.
Using data D, qπ is estimated by q̂π = q̂π(D), which is an estimate with bias and variance. For bias
and variance we have to compute the expectation ED [.] over the data D. The mean squared error
(MSE) of an estimator q̂π(s, a) is

mse q̂π(s, a) = ED

[(
q̂π(s, a) − qπ(s, a)

)2]
. (S164)

The bias of an estimator q̂π(s, a) is

bias q̂π(s, a) = ED [q̂π(s, a)] − qπ(s, a) . (S165)

The variance of an estimator q̂π(s, a) is

var q̂π(s, a) = ED

[(
q̂π(s, a) − ED [q̂π(s, a)]

)2]
. (S166)

The bias-variance decomposition of the MSE of an estimator q̂π(s, a) is

mse q̂π(s, a) = var q̂π(s, a) +
(
bias q̂π(s, a)

)2
. (S167)

The bias-variance decomposition of the MSE of an estimator q̂π as a vector is

mse q̂π = ED

[∑
s,a

(
q̂π(s, a) − qπ(s, a)

)2]
= ED

[
‖q̂π − qπ‖2

]
, (S168)

bias q̂π = ED [q̂π] − qπ , (S169)

var q̂π = ED

[∑
s,a

(
q̂π(s, a) − ED [q̂π(s, a)]

)2]
= TrVarD [q̂π] , (S170)

mse q̂π = var q̂π +
(
bias q̂π

)T
bias q̂π . (S171)

S3.1 Bias-Variance for MC and TD Estimates of the Expected Return
Monte Carlo (MC) computes the arithmetic mean q̂π(s, a) of Gt for (st = s, at = a) over the
episodes given by the data.
For temporal difference (TD) methods, like SARSA, with learning rate α the updated estimate of
qπ(st, at) is:

(q̂π)
new

(st, at) = q̂π(st, at) − α
(
q̂π(st, at) − Rt+1 − γ q̂π(st+1, at+1)

)
= (1 − α) q̂π(st, at) + α

(
Rt+1 + γ q̂π(st+1, at+1)

)
. (S172)

Similar updates are used for expected SARSA and Q-learning, where only at+1 is chosen differently.
Therefore, for the estimation of q̂π(st, at), SARSA andQ-learning perform an exponentially weighted
arithmetic mean of (Rt+1 +γq̂π(st+1, at+1)). If for the updates q̂π(st+1, at+1) is fixed on some data,
then SARSA and Q-learning perform an exponentially weighted arithmetic mean of the immediate
reward Rt+1 plus averaging over which q̂π(st+1, at+1) (which (st+1, at+1)) is chosen. In summary,
TD methods like SARSA and Q-learning are biased via q̂π(st+1, at+1) and perform an exponentially
weighted arithmetic mean of the immediate reward Rt+1 and the next (fixed) q̂π(st+1, at+1).
Bias-Variance for Estimators of the Mean. Both Monte Carlo and TD methods, like SARSA
and Q-learning, respectively, estimate qπ(s, a) = E [Gt | s, a], which is the expected future return.
The expectations are estimated by either an arithmetic mean over samples with Monte Carlo or an
exponentially weighted arithmetic mean over samples with TD methods. Therefore, we are interested
in computing the bias and variance of these estimators of the expectation. In particular, we consider
the arithmetic mean and the exponentially weighted arithmetic mean.
We assume n samples for a state-action pair (s, a). However, the expected number of samples
depends on the probabilistic number of visits of (s, a) per episode.

28

Arithmetic mean. For n samples {X1, . . . , Xn} from a distribution with mean µ and variance σ2,
the arithmetic mean, its bias and and its variance are:

µ̂n =
1

n

n∑
i=1

Xi , bias(µ̂n) = 0 , var(µ̂n) =
σ2

n
. (S173)

The estimation variance of the arithmetic mean is determined by σ2, the variance of the distribution
the samples are drawn from.
Exponentially weighted arithmetic mean. For n samples {X1, . . . , Xn} from a distribution with
mean µ and variance σ, the variance of the exponential mean with initial value µ0 is

µ̂0 = µ0 , µ̂k = (1 − α) µ̂k−1 + α Xk , (S174)

which gives

µ̂n = α

n∑
i=1

(1 − α)n−i Xi + (1 − α)n µ0 . (S175)

This is a weighted arithmetic mean with exponentially decreasing weights, since the coefficients sum
up to one:

α

n∑
i=1

(1 − α)n−i + (1 − α)n = α
1− (1− α)n

1− (1− α)
+ (1− α)n (S176)

= 1 − (1 − α)n + (1 − α)n = 1 .

The estimator µ̂n is biased, since:

bias(µ̂n) = E [µ̂n] − µ = E

[
α

n∑
i=1

(1 − α)n−i Xi

]
+ (1 − α)n µ0 − µ (S177)

= α

n∑
i=1

(1 − α)n−iE [Xi] + (1 − α)n µ0 − µ

= µ α

n−1∑
i=0

(1 − α)i + (1 − α)n µ0 − µ

= µ (1 − (1 − α)n) + (1 − α)n µ0 − µ = (1 − α)n (µ0 − µ) .

29

Asymptotically (n→∞) the estimate is unbiased. The variance is

var(µ̂n) = E
[
µ̂2
n

]
− E2 [µ̂n] (S178)

= E

α2
n∑
i=1

n∑
j=1

(1 − α)n−i Xi (1 − α)n−j Xj

+ E

[
2 (1 − α)n µ0 α

n∑
i=1

(1 − α)n−i Xi

]
+ (1 − α)2n µ2

0

− ((1 − α)n (µ0 − µ) + µ)
2

= α2 E

 n∑
i=1

(1 − α)2(n−i) X2
i +

n∑
i=1

n∑
j=1,j 6=i

(1 − α)n−i Xi (1 − α)n−j Xj

+ 2 (1 − α)n µ0 µ α

n∑
i=1

(1 − α)n−i + (1 − α)2n µ2
0

− ((1 − α)n µ0 + (1 − (1 − α)n) µ)
2

= α2

(
n∑
i=1

(1 − α)2(n−i)

(
σ2 + µ2

 +

n∑
i=1

n∑
j=1,j 6=i

(1 − α)n−i (1 − α)n−j µ2

+ 2 (1 − α)n µ0 µ (1 − (1 − α)n) + (1 − α)2n µ2

0

− (1 − α)2n µ2
0 − 2 (1 − α)n µ0 (1 − (1 − α)n) µ − (1 − (1 − α)n)2 µ2

= σ2 α2
n−1∑
i=0

(
(1 − α)2

)i
+ µ2 α2

(
n−1∑
i=0

(1 − α)i

)2

− (1 − (1 − α)n)2 µ2

= σ2 α2 1− (1 − α)2n

1− (1 − α)2
= σ2 α (1 − (1 − α)2n)

2− α
.

Also the estimation variance of the exponentially weighted arithmetic mean is proportional to σ2,
which is the variance of the distribution the samples are drawn from.
The deviation of random variable X from its mean µ can be analyzed with Chebyshev’s inequality.
Chebyshev’s inequality [8, 81] states that for a random variableX with expected value µ and variance
σ̃2 and for any real number ε > 0:

Pr [|X − µ| > ε σ̃] 6
1

ε2
(S179)

or, equivalently,

Pr [|X − µ| > ε] 6
σ̃2

ε2
. (S180)

For n samples {X1, . . . , Xn} from a distribution with expectation µ and variance σ we compute the
arithmetic mean 1

n

∑n
i=1Xi. If X is the arithmetic mean, then σ̃2 = σ2/n and we obtain

Pr

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

]
6

σ2

n ε2
. (S181)

Following Grünewälder and Obermayer [20], Bernstein’s inequality can be used to describe the
deviation of the arithmetic mean (unbiased estimator of µ) from the expectation µ (see Theorem 6 of
Gábor Lugosi’s lecture notes [39]):

Pr

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ > ε

]
6 2 exp

(
− ε2 n

2 σ2 + 2 M ε
3

)
, (S182)

where |X − µ| < M .

30

S3.2 Mean and Variance of an MDP Sample of the Return

Since the variance of the estimators of the expectations (arithmetic mean and exponentially weighted
arithmetic mean) is governed by the variance of the samples, we compute mean and variance of the
return estimate qπ(s, a). We follow [73, 79, 80] for deriving the mean and variance.
We consider an MDP with finite horizon T , that is, each episode has length T . The finite horizon
MDP can be generalized to an MDP with absorbing (terminal) state s = E. We only consider proper
policies, that is there exists an integer n such that from any initial state the probability of achieving
the terminal state E after n steps is strictly positive. T is the time to the first visit of the terminal state:
T = min k | sk = E. The return G0 is:

G0 =

T∑
k=0

γk Rk+1 . (S183)

The action-value function, the Q-function, is the expected return

Gt =

T−t∑
k=0

γk Rt+k+1 (S184)

if starting in state St = s and action At = a:

qπ(s, a) = Eπ [Gt | s, a] . (S185)

The second moment of the return is:

Mπ(s, a) = Eπ
[
G2
t | s, a

]
. (S186)

The variance of the return is:

V π(s, a) = Varπ [Gt | s, a] = Mπ(s, a) −
(
qπ(s, a)

)2
. (S187)

Using Es′,a′(f(s′, a′)) =
∑
s′ p(s

′ | s, a)
∑
a′ π(a′ | s′)f(s′, a′), and analogously Vars′,a′ and

Varr, the next Theorem S7 gives mean and variance V π(s, a) = Varπ [Gt | s, a] of sampling returns
from an MDP.

Theorem S7. The mean qπ and variance V π of sampled returns from an MDP are

qπ(s, a) =
∑
s′,r

p(s′, r | s, a)

(
r + γ

∑
a′

π(a′ | s′)qπ(s′, a′)

)
= r(s, a) + γEs′,a′ [q

π(s′, a′) | s, a] ,

V π(s, a) = Varr [r | s, a] + γ2 (Es′,a′ [V
π(s′, a′) | s, a] + Vars′,a′ [q

π(s′, a′) | s, a]) . (S188)

Proof. The Bellman equation for Q-values is

qπ(s, a) =
∑
s′,r

p(s′, r | s, a)

(
r + γ

∑
a′

π(a′ | s′) qπ(s′, a′)

)
(S189)

= r(s, a) + γ Es′,a′ [q
π(s′, a′) | s, a] .

This equation gives the mean if drawing one sample. We use

r(s, a) =
∑
r

r p(r | s, a) , (S190)

r2(s, a) =
∑
r

r2 p(r | s, a) . (S191)

31

For the second moment, we obtain [79]:

Mπ(s, a) = Eπ
[
G2
t | s, a

]
(S192)

= Eπ

(T−t∑
k=0

γkRt+k+1

)2

| s, a

= Eπ

(Rt+1 +

T−t∑
k=1

γk Rt+k+1

)2

| s, a

= r2(s, a) + 2 r(s, a) Eπ

[
T−t∑
k=1

γk Rt+k+1 | s, a

]

+ Eπ

(T−t∑
k=1

γk Rt+k+1

)2

| s, a

= r2(s, a) + 2γ r(s, a)

∑
s′

p(s′ | s, a)
∑
a′

π(a′ | s′) qπ(s′, a′)

+ γ2
∑
s′

p(s′ | s, a)
∑
a′

π(a′ | s′) Mπ(s′, a′)

= r2(s, a) + 2γ r(s, a) Es′,a′ [q
π(s′, a′) | s, a] + γ2 Es′,a′ [M

π(s′, a′) | s, a] .

For the variance, we obtain:

V π(s, a) = Mπ(s, a) −
(
qπ(s, a)

)2
(S193)

= r2(s, a) − (r(s, a))2 + γ2 Es′,a′ [M
π(s′, a′) | s, a] − γ2 E2

s′,a′ [q
π(s′, a′) | s, a]

= Varr [r | s, a] + γ2
(

Es′,a′
[
Mπ(s′, a′) −

(
qπ(s′, a′)

)2 | s, a]
− E2

s′,a′ [q
π(s′, a′) | s, a] + Es′,a′

[(
qπ(s′, a′)

)2 | s, a])
= Varr [r | s, a] + γ2 (Es′,a′ [V

π(s′, a′) | s, a] + Vars′,a′ [q
π(s′, a′) | s, a]) .

For deterministic reward, that is, Varr [r | s, a] = 0, the corresponding result is given as Equation (4)
in Sobel 1982 [73] and as Proposition 3.1 (c) in Tamar et al. 2012 [79].
For temporal difference (TD) learning, the next Q-values are fixed to q̂π(s′, a′) when drawing a
sample. Therefore, TD is biased, that is, both SARSA andQ-learning are biased. During learning with
according updates of Q-values, q̂π(s′, a′) approaches qπ(s′, a′), and the bias is reduced. However,
this reduction of the bias is exponentially small in the number of time steps between reward and
updated Q-values, as we will see later. The reduction of the bias is exponentially small for eligibility
traces, too.
The variance recursion Eq. (S188) of sampled returns consists of three parts:

• (1) the immediate variance Varr [r | s, a] of the immediate reward stemming from the
probabilistic reward p(r | s, a),

• (2) the local variance γ2Vars′,a′ [q
π(s′, a′) | s, a] from state transitions p(s′ | s, a) and new

actions π(a′ | s′),
• (3) the expected variance γ2Es′,a′ [V

π(s′, a′) | s, a] of the next Q-values.
For different settings the following parts may be zero:

• (1) the immediate variance Varr [r | s, a] is zero for deterministic immediate reward,
• (2) the local variance γ2Vars′,a′ [q

π(s′, a′) | s, a] is zero for (i) deterministic state transitions
and deterministic policy and for (ii) γ = 0 (only immediate reward),

• (3) the expected variance γ2Es′,a′ [V
π(s′, a′) | s, a] of the next Q-values is zero for (i)

temporal difference (TD) learning, since the next Q-values are fixed and set to their current
estimates (if just one sample is drawn) and for (ii) γ = 0 (only immediate reward).

32

The local variance Vars′,a′ [q
π(s′, a′) | s, a] is the variance of a linear combination of Q-values

weighted by a multinomial distribution
∑
s′ p(s

′ | s, a)
∑
a′ π(a′ | s′). The local variance is

Vars′,a′ [q
π(s′, a′) | s, a] =

∑
s′

p(s′ | s, a)
∑
a′

π(a′ | s′)
(
qπ(s′, a′)

)2
(S194)

−

(∑
s′

p(s′ | s, a)
∑
a′

π(a′ | s′) qπ(s′, a′)

)2

.

This result is Equation (6) in Sobel 1982 [73]. Sobel derived these formulas also for finite horizons
and an analog formula if the reward depends also on the next state, that is, for p(r | s, a, s′).
Monte Carlo uses the accumulated future rewards for updates, therefore its variance is given by the
recursion in Eq. (S188). TD, however, fixes qπ(s′, a′) to the current estimates q̂π(s′, a′), which do
not change in the current episode. Therefore, TD has Es′,a′ [V

π(s′, a′) | s, a] = 0 and only the local
variance Vars′,a′ [q

π(s′, a′) | s, a] is present. For n-step TD, the recursion in Eq. (S188) must be
applied (n− 1) times. Then, the expected next variances are zero since the future reward is estimated
by q̂π(s′, a′).
Delayed rewards. For TD and delayed rewards, information on new data is only captured by the
last step of an episode that receives a reward. This reward is used to update the estimates of the
Q-values of the last state q̂(sT , aT). Subsequently, the reward information is propagated one step
back via the estimates q̂ for each sample. The drawn samples (state action sequences) determine
where information is propagated back. Therefore, delayed reward introduces a large bias for TD over
a long period of time, since the estimates q̂(s, a) need a long time to reach their true Q-values.
For Monte Carlo and delayed rewards, the immediate variance Varr [r | s, a] = 0 except for the last
step of the episode. The delayed reward increases the variance of Q-values according to Eq. (S188).
Sample Distribution Used by Temporal Difference and Monte Carlo. Monte Carlo (MC) sam-
pling uses the true mean and true variance, where the true mean is

qπ(s, a) = r(s, a) + γ Es′,a′ [q
π(s′, a′) | s, a] (S195)

and the true variance is

V π(s, a) = Varr [r | s, a] + γ2 (Es′,a′ [V
π(s′, a′) | s, a] + Vars′,a′ [q

π(s′, a′) | s, a]) .
(S196)

Temporal difference (TD) methods replace qπ(s′, a′) by q̂π(s′, a′) which does not depend on the
drawn sample. The mean which is used by temporal difference is

qπ(s, a) = r(s, a) + γ Es′,a′ [q̂
π(s′, a′) | s, a] . (S197)

This mean is biased by

γ (Es′,a′ [q̂
π(s′, a′) | s, a] − Es′,a′ [q

π(s′, a′) | s, a]) . (S198)

The variance used by temporal difference is

V π(s, a) = Varr [r | s, a] + γ2 Vars′,a′ [q̂
π(s′, a′) | s, a] , (S199)

since V π(s′, a′) = 0 if q̂π(s′, a′) is used instead of the future reward of the sample. The variance of
TD is smaller than for MC, since variances are not propagated back.

S3.3 TD corrects Bias exponentially slowly with Respect to Reward Delay
Temporal Difference. We show that TD updates for delayed rewards are exponentially small,
fading exponentially with the number of delay steps. Q-learning with learning rates 1/i at the
ith update leads to an arithmetic mean as estimate, which was shown to be exponentially slow
[4]. If for a fixed learning rate the agent always travels along the same sequence of states, then
TD is superquadratic [4]. We, however, consider the general case where the agent travels along
random sequences due to a random environment or due to exploration. For a fixed learning rate, the
information of the delayed reward has to be propagated back either through the Bellman error or via
eligibility traces. We first consider backpropagation of reward information via the Bellman error. For
each episode the reward information is propagated back one step at visited state-action pairs via the
TD update rule. We denote the Q-values of episode i as qi and assume that the state action pairs

33

(st, at) are the most visited ones. We consider the update of qi(st, at) of a state-action pair (st, at)
that is visited at time t in the ith episode:
qi+1(st, at) = qi(st, at) + α δt , (S200)

δt = rt+1 + max
a′

qi(st+1, a
′) − qi(st, at) (Q-learning) (S201)

δt = rt+1 +
∑
a′

π(a′ | st+1) qi(st+1, a
′) − qi(st, at) (expected SARSA) . (S202)

Temporal Difference with Eligibility Traces. Eligibility traces have been introduced to propagate
back reward information of an episode and are now standard for TD(λ) [72]. However, the eligibility
traces are exponentially decaying when propagated back. The accumulated trace is defined as [72]:

et+1(s, a) =

{
γ λ et(s, a) for s 6= st or a 6= at ,

γ λ et(s, a) + 1 for s = st and a = at ,
(S203)

while the replacing trace is defined as [72]:

et+1(s, a) =

{
γ λ et(s, a) for s 6= st or a 6= at ,

1 for s = st and a = at .
(S204)

With eligibility traces using λ ∈ [0, 1], the λ-return Gλt is [78]

Gλt = (1− λ)

∞∑
n=1

λn−1 G
(n)
t , (S205)

G
(n)
t = rt+1 + γ rt+2 + . . . + γn−1rt+n + γn−1 V (st+n) . (S206)

We obtain

Gλt = (1− λ)

∞∑
n=1

λn−1 G
(n)
t (S207)

= (1− λ)

(
rt+1 + γ V (st+1) +

∞∑
n=2

λn−1 G
(n)
t

)

= (1− λ)

(
rt+1 + γ V (st+1) +

∞∑
n=1

λn G
(n+1)
t

)

= (1− λ)

(
rt+1 + γ V (st+1) + λ γ

∞∑
n=1

λn−1 G
(n)
t+1 +

∞∑
n=1

λn rt+1

)

= (1− λ)

∞∑
n=0

λn rt+1 + (1− λ)γ V (st+1) + λ γ Gλt+1

= rt+1 + (1− λ)γ V (st+1) + λ γ Gλt+1 .

We use the naive Q(λ), where eligibility traces are not set to zero. In contrast, Watkins’ Q(λ) [87]
zeros out eligibility traces after non-greedy actions, that is, if not the maxa is chosen. Therefore,
the decay is even stronger for Watkin’s Q(λ). Another eligibility trace method is Peng’s Q(λ) [52]
which also does not zero out eligibility traces.
The next Theorem S8 states that the decay of TD is exponential for Q-value updates in an MDP with
delayed reward, even for eligibility traces. Thus, for delayed rewards TD requires exponentially many
updates to correct the bias, where the number of updates is exponential in the delay steps.
Theorem S8. For initialization q0(st, at) = 0 and delayed reward with rt = 0 for t 6 T ,
q(sT−i, aT−i) receives its first update not earlier than at episode i via qi(sT−i, aT−i) = αi+1r1

T+1,
where r1

T+1 is the reward of episode 1. Eligibility traces with λ ∈ [0, 1) lead to an exponential decay
of (γλ)k when the reward is propagated k steps back.

Proof. If we assume that Q-values are initialized with zero, then q0(st, at) = 0 for all (st, at). For
delayed rewards we have rt = 0 for t 6 T . The Q-value q(sT−i, aT−i) at time T − i can receive an
update for the first time at episode i. Since all Q-values have been initialized with zero, the update is

qi(sT−i, aT−i) = αi+1 r1
T+1 , (S208)

34

where r1
T+1 is the reward at time T + 1 for episode 1.

We move on to eligibility traces, where the update for a state s is

qt+1(s, a) = qt(s, a) + α δt et(s, a) , (S209)

δt = rt+1 + max
a′

qt(st+1, a
′) − qt(st, at) . (S210)

If states are not revisited, the eligiblity trace at time t+ k for a visit of state st at time t is:

et+k(st, at) =
(
γ λ
)k
. (S211)

If all δt+i are zero except for δt+k, then the update of q(s, a) is

qt+k+1(s, a) = qt+k(s, a) + α δt+k et+k(s, a) = qt+k(s, a) + α
(
γ λ
)k
δt+k . (S212)

A learning rate of α = 1 does not work since it would imply to forget all previous learned estimates,
and therefore no averaging over episodes would exist. Since α < 1, we observe exponential decay
backwards in time for online updates.

S3.4 MC affects the Variance of Exponentially Many Estimates with Delayed Reward
The variance for Monte Carlo is

V π(s, a) = Varr [r | s, a] + γ2 (Es′,a′ [V
π(s′, a′) | s, a] + Vars′,a′ [q

π(s′, a′) | s, a]) .
(S213)

This is a Bellman equation of the variance. For undiscounted reward γ = 1, we obtain

V π(s, a) = Varr [r | s, a] + Es′,a′ [V
π(s′, a′) | s, a] + Vars′,a′ [q

π(s′, a′) | s, a] . (S214)

If we define the “on-site” variance ω as

ω(s, a) = Varr [r | s, a] + Vars′,a′ [q
π(s′, a′) | s, a] , (S215)

we get

V π(s, a) = ω(s, a) + Es′,a′ [V
π(s′, a′) | s, a] . (S216)

This is the solution of the general formulation of the Bellman operator. The Bellman operator is
defined component-wise for any variance V as

Tπ [V] (s, a) = ω(s, a) + Es′,a′ [V (s′, a′) | s, a] . (S217)

For proper policies π a unique fixed point V π exists:

V π = Tπ [V π] (S218)

V π = lim
k→∞

(Tπ)
k
V , (S219)

where V is any initial variance. The operator Tπ is continuous, monotonically increasing (component-
wise larger or smaller), and a contraction mapping for a weighted sup-norm. If we define the operator
Tπ as depending on the on-site variance ω, that is Tπω, then it is monotonically in ω. We obtain
component-wise for ω > ω̃:

Tπω [q] (s, a) − Tπω̃ [q] (s, a) (S220)

= (ω(s, a) + Es′,a′ [q(s
′, a′)]) − (ω̃(s, a) + Es′,a′ [q(s

′, a′)])

= ω(s, a) − ω̃(s, a) > 0 .

It follows for the fixed points V π of Tπω and Ṽ π of Tπω̃:

V π(s, a) > Ṽ π(s, a) . (S221)

Therefore if

ω(s, a) = Varr [r | s, a] + Vars′,a′ [q
π(s′, a′) | s, a] > (S222)

ω̃(s, a) = Ṽarr [r | s, a] + Ṽars′,a′ [q
π(s′, a′) | s, a]

then

V π(s, a) > Ṽ π(s, a) . (S223)

35

Theorem S9. Starting from the sequence end at t = T , as long as ω(st, at) > ω̃(st, at) holds also
the following holds:

V (st, at) > Ṽ (st, at) . (S224)

If for (st, at) the strict inequality ω(st, at) > ω̃(st, at) holds, then we have the strict inequality

V (st, at) > Ṽ (st, at) . (S225)

If p(st, at | st−1, at−1) 6= 0 for some (st−1, at−1) then

Est,at [V (st, at) | st−1, at−1] > Est,at

[
Ṽ (st, at) | st−1, at−1

]
. (S226)

Therefore, the strict inequality ω(st, at) > ω̃(st, at) is propagated back as a strict inequality of
variances.

Proof. Proof by induction: Induction base: V (sT+1, aT+1) = Ṽ (sT+1, aT+1) = 0 and
ω(sT , aT) = ω̃(sT , aT) = 0.
Induction step ((t+ 1)→ t): The induction hypothesis is that for all (st+1, at+1) we have

V (st+1, at+1) > Ṽ (st+1, at+1) (S227)

and ω(st, at) > ω̃(st, at). It follows that

Est+1,at+1
[V (st+1, at+1)] > Est+1,at+1

[
Ṽ (st+1, at+1)

]
. (S228)

We obtain

V (st, at) − Ṽ (st, at) (S229)

=
(
ω(st, at) + Est+1,at+1 [V (st+1, at+1)]

)
−
(
ω̃(st, at) + Est+1,at+1

[
Ṽ (st+1, at+1)

])
= ω(st, at) − ω̃(st, at) > 0 .

If for (st, at) the strict inequality ω(st, at) > ω̃(st, at) holds, then we have the strict inequality
V (st, at) > Ṽ (st, at). If p(st, at | st−1, at−1) 6= 0 for some (st−1, at−1) then

Est,at [V (st, at) | st−1, at−1] > Est,at

[
Ṽ (st, at) | st−1, at−1

]
. (S230)

Therefore, the strict inequality ω(st, at) > ω̃(st, at) is propagated back as a strict inequality of
variances as long as p(st, at | st−1, at−1) 6= 0 for some (st−1, at−1).
The induction goes through as long as ω(st, at) > ω̃(st, at).

In Stephen Patek’s PhD thesis, [51] Lemma 5.1 on page 88-89 and proof thereafter state that if
ω̃(s, a) = ω(s, a)− λ, then the solution Ṽ π is continuous and decreasing in λ. From the inequality
above it follows that

V π(s, a) − Ṽ π(s, a) = (TπωV
π) (s, a) −

(
Tπω̃Ṽ

π
)

(s, a) (S231)

= ω(s, a) − ω̃(s, a) + Es′,a′
[
V π(s′, a′) − Ṽ π(s′, a′) | s, a

]
> ω(s, a) − ω̃(s, a) .

Time-Agnostic States. We defined a Bellman operator as

Tπ [V π] (s, a) = ω(s, a) +
∑
s′

p(s′ | s, a)
∑
a′

π(a′ | s′) V π(s′, a′) (S232)

= ω(s, a) + (V π)
T
p(s, a) ,

where V π is the vector with value V π(s′, a′) at position (s′, a′) and p(s, a) is the vector with value
p(s′ | s, a)π(a′ | s′) at position (s′, a′). The fixed point equation is known as the Bellman equation.
In vector and matrix notation the Bellman equation reads

Tπ [V π] = ω + P V π , (S233)

36

where P is the row-stochastic matrix with p(s′ | s, a)π(a′ | s′) at position ((s, a), (s′, a′)). We
assume that the set of state-actions {(s, a)} is equal to the set of next state-actions {(s′, a′)}, therefore
P is a square row-stochastic matrix. This Bellman operator has the same characteristics as the
Bellman operator for the action-value function qπ .
Since P is a row-stochastic matrix, the Perron-Frobenius theorem says that (1) P has as largest
eigenvalue 1 for which the eigenvector corresponds to the steady state and (2) the absolute value
of each (complex) eigenvalue is smaller equal 1. Only the eigenvector to eigenvalue 1 has purely
positive real components. Equation 7 of Bertsekas and Tsitsiklis, 1991, [7] states that

(Tπ)
t
[V π] =

t−1∑
k=0

P k ω + P t V π . (S234)

Applying the operator Tπ recursively t times can be written as [7]:

(Tπ)
t
[V π] =

t−1∑
k=0

P k ω + P t V π . (S235)

In particular for V π = 0, we obtain

(Tπ)
t
[0] =

t−1∑
k=0

P k ω . (S236)

For finite horizon MDPs, the values V π = 0 are correct for time step T + 1 since no reward for
t > T + 1 exists. Therefore, the “backward induction algorithm” [55, 56] gives the correct solution:

V π = (Tπ)
T

[0] =

T−1∑
k=0

P k ω . (S237)

The product of square stochastic matrices is a stochastic matrix, therefore P k is a stochastic matrix.
Perron-Frobenius theorem states that the spectral radius R(P k) of the stochastic matrix P k is:
R(P k) = 1. Furthermore, the largest eigenvalue is 1 and all eigenvalues have absolute values smaller
or equal one. Therefore, ω can have large influence on V π at every time step.

Time-Aware States. Next we consider time-aware MDPs, where transitions occur only from states
st to st+1. The transition matrix from states st to st+1 is denoted by Pt. We assume that Pt are
row-stochastic matrices which are rectangular, that is Pt ∈ Rm×n.
Definition S12. A row-stochastic matrix A ∈ Rm×n has non-negative entries and the entries of
each row sum up to one.
It is known that the product of square stochastic matrices A ∈ Rn×n is a stochastic matrix. We show
in next theorem that this holds also for rectangular matrices.
Lemma S4. The product C = AB with C ∈ Rm×k of a row-stochastic matrixA ∈ Rm×n and a
row-stochastic matrixB ∈ Rn×k is row-stochastic.

Proof. All entries of C are non-negative since they are sums and products of non-negative entries of
A andB. The row-entries of C sum up to one:∑

k

Cik =
∑
k

∑
j

Aij Bjk =
∑
j

Aij
∑
k

Bjk =
∑
j

Aij = 1 . (S238)

We will use the ∞-norm and the 1-norm of a matrix, which are defined based on the ∞-norm
‖x‖∞ = maxi |xi| and 1-norm ‖x‖1 =

∑
i |xi| of a vector x.

Definition S13. The∞-norm of a matrix is the maximum absolute row sum:

‖A‖∞ = max
‖x‖∞=1

‖A x‖∞ = max
i

∑
j

|Aij | . (S239)

The 1-norm of a matrix is the maximum absolute column sum:

‖A‖1 = max
‖x‖1=1

‖A x‖1 = max
j

∑
i

|Aij | . (S240)

37

The statements of next theorem are known as Perron-Frobenius theorem for square stochastic matrices
A ∈ Rn×n, e.g. that the spectral radius R is R(A) = 1. We extend the theorem to a “∞-norm
equals one” property for rectangular stochastic matricesA ∈ Rm×n.
Lemma S5 (Perron-Frobenius). IfA ∈ Rm×n is a row-stochastic matrix, then

‖A‖∞ = 1 ,
∥∥AT

∥∥
1

= 1 , and for n = m R(A) = 1 . (S241)

Proof. A ∈ Rm×n is a row-stochastic matrix, therefore Aij = |Aij |. Furthermore, the rows of A
sum up to one. Thus, ‖A‖∞ = 1. Since the column sums ofAT are the row sums ofA, it follows
that

∥∥AT
∥∥

1
= 1.

For square stochastic matrices, that is m = n, Gelfand’s Formula (1941) says that for any matrix
norm ‖.‖, for the spectral normR(A) of a matrixA ∈ Rn×n we obtain:

R(A) = lim
k→∞

∥∥Ak
∥∥1/k

. (S242)

Since the product of row-stochastic matrices is a row-stochastic matrix, Ak is a row-stochastic
matrix. Consequently

∥∥Ak
∥∥
∞ = 1 and

∥∥Ak
∥∥1/k

∞ = 1. Therefore, the spectral norm R(A) of a
row-stochastic matrixA ∈ Rn×n is

R(A) = 1 . (S243)

The last statement follows from Perron-Frobenius theorem, which says that the spectral radius of P
is 1.

Using random matrix theory, we can guess how much the spectral radius of a rectangular matrix
deviates from that of a square matrix. Let A ∈ Rm×n be a matrix whose entries are independent
copies of some random variable with zero mean, unit variance, and finite fourth moment. The
Marchenko-Pastur quarter circular law for rectangular matrices says that for n = m the maximal
singular value is 2

√
m [41]. Asymptotically we have for the maximal singular value smax(A) ∝√

m+
√
n [62]. A bound on the largest singular value is given by [74]:

s2
max(A) 6 (

√
m +

√
n)2 + O(

√
n log(n)) a.s. (S244)

Therefore, a rectangular matrix modifies the largest singular value by a factor of a = 0.5(1 +
√
n/m)

compared to a m×m square matrix. In the case that tstates are time aware, transitions only occur
from states st to st+1. The transition matrix from states st to st+1 is denoted by Pt.
States affected by the on-site variance ωk (reachable states). Typically, states in st have only few
predecessor states in st−1 compared to Nt−1, the number of possible states in st−1. Only for those
states in st−1 the transition probability to the state in st is larger than zero. That is, each i ∈ st+1

has only few j ∈ st for which pt(i | j) > 0. We now want to know how many states have increased
variance due to ωk, that is how many states are affected by ωk. In a general setting, we assume
random connections.
Let Nt be the number of all states st that are reachable after t time steps of an episode. N̄ =

1/k
∑k
t=1Nt is the arithmetic mean of Nt. Let ct be the average connectivity of a state in st to states

in st−1 and c̄ =
(∏k

t=1 ct
)1/k

the geometric mean of the ct. Let nt be the number of states in st
that are affected by the on-site variance ωk at time k for t 6 k. The number of states affected by
ωk is ak =

∑k
t=0 nt. We assume that ωk only has one component larger than zero, that is, only

one state at time t = k is affected: nk = 1. The number of affected edges from st to st−1 is ctnt.
However, states in st−1 may be affected multiple times by different affected states in st. Figure S1
shows examples of how affected states affect states in a previous time step. The left panel shows no
overlap since affected states in st−1 connect only to one affected state in st. The right panel shows
some overlap since affected states in st−1 connect to multiple affected states in st.
The next theorem states that the on-site variance ωk can have large effect on the variance of each
previous state-action pair. Furthermore, for small k the number of affected states grows exponentially,
while for large k it grows only linearly after some time t̂. Figure S2 shows the function which
determines how much ak grows with k.
Theorem S10. For t 6 k, ωk contributes to V π

t by the term Pt←k ωk, where ‖Pt←k‖∞ = 1.
The number ak of states affected by the on-site variance ωk is

ak =

k∑
t=0

(
1 −

(
1 − ct

Nt−1

)nt
)
Nt−1 . (S245)

38

t = 1 s11 s12 s13 s14 s15 s16 s17 s18

t = 2 s21 s22 s23 s24 s25 s26 s27 s28

t = 3 s31 s32 s33 s34 s35 s36 s37 s38

t = 4 s41 s42 s43 s44 s45 s46 s47 s48

t = 5 s51 s52 s53 s54 s55 s56 s57 s58

t = 1 s11 s12 s13 s14 s15 s16 s17 s18

t = 2 s21 s22 s23 s24 s25 s26 s27 s28

t = 3 s31 s32 s33 s34 s35 s36 s37 s38

t = 4 s41 s42 s43 s44 s45 s46 s47 s48

t = 5 s51 s52 s53 s54 s55 s56 s57 s58

Figure S1: Examples of how affected states (cyan) affect states in a previous time step (indicated by
cyan edges) starting with n5 = 1 (one affected state). The left panel shows no overlap since affected
states in st−1 connect only to one affected state in st. The right panel shows some overlap since
affected states in st−1 connect to multiple affected states in st.

Proof. The “backward induction algorithm” [55, 56] gives with V π
T+1 = 0 and on-site variance

ωT+1 = 0:

V π
t =

T∑
k=t

k−1∏
τ=t

Pτ ωk , (S246)

where we define
∏t−1
τ=tPτ = I and [ωk](sk,ak) = ω(sk, ak).

Since the product of two row-stochastic matrices is a row-stochastic matrix according to Lemma S4,
Pt←k =

∏k−1
τ=t Pτ is a row-stochastic matrix. Since ‖Pt←k‖∞ = 1 according to Lemma S5, each

on-site variance ωk with t 6 k can have large effects on V π
t . Using the row-stochastic matrices

Pt←k, we can reformulate the variance:

V π
t =

T∑
k=t

Pt←k ωk , (S247)

with ‖Pt←k‖∞ = 1. The on-site variance ωk at step k increases all variances V π
t with t 6 k.

Next we proof the second part of the theorem, which considers the growth of ak. To compute ak we
first have to know nt. For computing nt−1 from nt, we want to know how many states are affected
in st−1 if nt states are affected in st. The answer to this question is the expected coverage when
searching a document collection using a set of independent computers [11]. We follow the approach
of Cox et al. [11]. The minimal number of affected states in st−1 is ct, where each of the ct affected
states in st−1 connects to each of the nt states in st (maximal overlap). The maximal number of
affected states in st−1 is ctnt, where each affected state in st−1 connects to only one affected state in
st (no overlap). We consider a single state in st. The probability of a state in st−1 being connected
to this single state in st is ct/Nt−1 and being not connected to this state in st is 1− ct/Nt−1. The
probability of a state in st−1 being not connected to any of the nt affected states in st is(

1 − ct
Nt−1

)nt

. (S248)

The probability of a state in st−1 being at least connected to one of the nt affected states in st is

1 −
(

1 − ct
Nt−1

)nt

. (S249)

39

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

x

1.
0

−
 (

1.
0−

c/
N

)^
x

c/N

0.1

0.3

Scaling Function for N_t

Figure S2: The function
(

1−
(

1− ct
Nt−1

)nt
)

which scales Nt−1 in Theorem S10. This function
determines the growth of ak, which is exponentially at the beginning, and then linearly when the
function approaches 1.

Thus, the expected number of distinct states in st−1 being connected to one of the nt affected states
in st is

nt−1 =

(
1 −

(
1 − ct

Nt−1

)nt
)
Nt−1 . (S250)

The number ak of affected states by ωk is

ak =

k∑
t=0

(
1 −

(
1 − ct

Nt−1

)nt
)
Nt−1 . (S251)

Corollary S2. For small k, the number ak of states affected by the on-site variance ωk at step k
grows exponentially with k by a factor of c̄:

ak > c̄k . (S252)

For large k and after some time t > t̂, the number ak of states affected by ωk grows linearly with k
with a factor of N̄ :

ak ≈ at̂−1 + (k − t̂+ 1) N̄ . (S253)

Proof. For small nt with ctnt

Nt−1
� 1, we have(

1 − ct
Nt−1

)nt

≈ 1 − ct nt
Nt−1

, (S254)

40

thus

nt−1 ≈ ct nt . (S255)

For large Nt−1 compared to the number of connections ct of a single state in st to states in st−1, we
have the approximation

(
1 − ct

Nt−1

)nt

=

((
1 +

−ct
Nt−1

)Nt−1
)nt/Nt−1

≈ exp(−(ct nt)/Nt−1) . (S256)

We obtain

nt−1 = (1 − exp(−(ct nt)/Nt−1)) Nt−1 . (S257)

For small nt, we again have

nt−1 ≈ ct nt . (S258)

Therefore, for small k − t, we obtain

nt ≈
k∏
τ=t

cτ ≈ c̄k−t . (S259)

Thus, for small k the number ak of states affected by ωk is

ak =

k∑
t=0

nt ≈
k∑
t=0

c̄k−t =

k∑
t=0

c̄t =
c̄k+1 − 1

c̄− 1
> c̄k . (S260)

Consequently, for small k the number ak of states affected by ωk grows exponentially with k by
a factor of c̄. For large k, at a certain time t > t̂, nt has grown such that ctnt > Nt−1, yielding
exp(−(ctnt)/Nt−1) ≈ 0, and thus

nt ≈ Nt . (S261)

Therefore

ak − at̂−1 =

k∑
t=t̂

nt ≈
k∑
t=t̂

Nt ≈ (k − t̂+ 1) N̄ . (S262)

Consequently, for large k the number ak of states affected by ωk grows linearly with k by a factor of
N̄ .

Therefore, we aim for decreasing the on-site variance ωk for large k, in order to reduce the variance.
In particular, we want to avoid delayed rewards and provide the reward as soon as possible in each
episode. Our goal is to give the reward as early as possible in each episode to reduce the variance of
action-values that are affected by late rewards and their associated immediate and local variances.

41

S4 Experiments
S4.1 Artificial Tasks
This section provides more details for the artificial tasks (I), (II) and (III) in the main paper. Addition-
ally, we include artificial task (IV) characterized by deterministic reward and state transitions, and
artificial task (V) which is solved using policy gradient methods.

S4.1.1 Task (I): Grid World
This environment is characterized by probabilistic delayed rewards. It illustrates a situation, where
a time bomb explodes at episode end. The agent has to defuse the bomb and then run away as far
as possible since defusing fails with a certain probability. Alternatively, the agent can immediately
run away, which, however, leads to less reward on average since the bomb always explodes. The
Grid World is a quadratic 31 × 31 grid with bomb at coordinate [30, 15] and start at [30 − d, 15],
where d is the delay of the task. The agent can move in four different directions (up, right, left, and
down). Only moves are allowed that keep the agent on the grid. The episode finishes after 1.5d steps.
At the end of the episode, with a given probability of 0.5, the agent receives a reward of 1000 if it
has visited bomb. At each time step the agent receives an immediate reward of c · t · h, where the
factor c depends on the chosen action, t is the current time step, and h is the Hamming distance to
bomb. Each move of the agent, which reduces the Hamming distance to bomb, is penalized by the
immediate reward via c = −0.09. Each move of the agent, which increases the Hamming distance to
bomb, is rewarded by the immediate reward via c = 0.1. The agent is forced to learn the Q-values
precisely, since the immediate reward of directly running away hints at a sub-optimal policy.
For non-deterministic reward, the agent receives the delayed reward for having visited bomb with
probability p(rT+1 = 100 | sT , aT). For non-deterministic transitions, the probability of transiting
to next state s′ is p(s′ | s, a). For the deterministic environment these probabilities were either 1 or
zero.

Policy evaluation: learning the action-value estimator for a fixed policy. First, the theoretical
statements on bias and variance of estimating the action-values by TD in Theorem S8 and by MC
in Theorem S10 are experimentally verified for a fixed policy. Secondly, we consider the bias and
variance of TD and MC estimators of the transformed MDP with optimal reward redistribution
according to Theorem S5.
The new MDP with an optimal reward redistribution has advantages over the original MDP both for
TD and MC. For TD, the new MDP corrects the bias exponentially faster and for MC it has fewer
number of action-values with high variance. Consequently, estimators for the new MDP learn faster
than the same estimators in the original MDP.
Since the bias-variance analysis is defined for a particular number of samples drawn from a fixed
distribution, we need to fix the policy for sampling. We use an ε-greedy version of the optimal policy,
where ε is chosen such that on average in 10% of the episodes the agent visits bomb. For the analysis,
the delay ranges from 5 to 30 in steps of 5. The true Q-table for each delay is computed by backward
induction and we use 10 different action-value estimators for computing bias and variance.
For the TD update rule we use the exponentially weighted arithmetic mean that is sample-updates,
with initial value q0(s, a) = 0. We only monitor the mean and the variance for action-value estimators
at the first time step, since we are interested in the time required for correcting the bias. 10 different
estimators are run for 10,000 episodes. Figure S3a shows the bias correction for different delays,
normalized by the first error.
For the MC update rule we use the arithmetic mean for policy evaluation (later we will use constant-
α MC for learning the optimal policy). For each delay, a test set of state-actions for each delay
is generated by drawing 5,000 episodes with the ε-greedy optimal policy. For each action-value
estimator the mean and the variance is monitored every 10 visits. If every action-value has 500 updates
(visits), learning is stopped. Bias and variance are computed based on 10 different action-value
estimators. As expected from Section S3.1, in Figure S3b the variance decreases by 1/n, where n is
the number of samples. Figure S3b shows that the number of state-actions with a variance larger than
a threshold increases exponentially with the delay. This confirms the statements of Theorem S10.

Learning the optimal policy. For finding the optimal policy for the Grid World task, we apply
Monte Carlo Tree Search (MCTS), Q-learning, and Monte Carlo (MC). We train until the greedy
policy reaches 90% of the return of the optimal policy. The learning time is measured by the number
of episodes. We use sample updates for Q-learning and MC [78]. For MCTS the greedy policy
uses 0 for the exploration constant in UCB1 [33]. The greedy policy is evaluated in 100 episodes

42

0 2000 4000 6000 8000 10000
samples

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
sq

ua
re

d
bi

as

delay 5
delay 10
delay 15
delay 20
delay 25

(a)

0 100 200 300 400 500
number of samples

0

500

1000

1500

2000

va
ria

nc
e

delay 5
delay 10
delay 15
delay 20
delay 25
delay 30

(b)

Figure S3: (a) Experimental evaluation of bias and variance of different Q-value estimators on the
Grid World. (b) Normalized bias reduction for different delays. Right: Average variance reduction
for the 10th highest values.

intervals. The MCTS selection step begins in the start state, which is the root of the game tree that is
traversed using UCB1 [33] as the tree policy. If a tree-node gets visited the first time, it is expanded
with an initial value obtained by 100 simulated trajectories that start at this node. These simulations
use a uniform random policy whose average Return is calculated. The backpropagation step uses
the MCTS(1) update rule [32]. The tree policies exploration constant is

√
2. Q-learning and MC

use a learning rate of 0.3 and an ε-greedy policy with ε = 0.3. For RUDDER the optimal reward
redistribution using a return decomposition as stated in Section S2.6.1 is used. For each delay and
each method, 300 runs with different seeds are performed to obtain statistically relevant results.

Estimation of the median learning time and quantiles. The performance of different methods is
measured by the median learning time in terms of episodes. We stop training at 100 million episodes.
Some runs, especially for long delays, have taken too long and have thus been stopped. To resolve
this bias the quantiles of the learning time are estimated by fitting a distribution using right censored
data [17] .The median is still robustly estimated if more than 50% of runs have finished, which is the
case for all plotted datapoints. We find that for delays where all runs have finished the learning time
follows a Log-normal distribution. Therefore, we fit a Log-normal distribution on the right censored
data. We estimate the median from the existing data, and use maximum likelihood estimation to
obtain the second distribution parameter σ2. The start value of the σ2 estimation is calculated by the
measured variance of the existing data which is algebraically transformed to get the σ parameter.

S4.1.2 Task (II): The Choice
In this experiment we compare RUDDER, temporal difference (TD) and Monte Carlo (MC) in
an environment with delayed deterministic reward and probabilistic state transitions to investigate
how reward information is transferred back to early states. This environment is a variation of our
introductory pocket watch example and reveals problems of TD and MC, while contribution analysis
excels. In this environment, only the first action at the very beginning determines the reward at the
end of the episode.

The environment is an MDP consisting of two actions a ∈ A = {+,−}, an initial state s0,
two charged states s+, s−, two neutral states s⊕, s	, and a final state sf . After the first action
a0 ∈ A = {+,−} in state s0, the agent transits to state s+ for action a0 = + and to s− for action
a0 = −. Subsequent state transitions are probabilistic and independent on actions. With probability
pC the agent stays in the charged states s+ or s−, and with probability (1− pC) it transits from s+ or
s− to the neutral states s⊕ or s	, respectively. The probability to go from neutral states to charged
states is pC , and the probability to stay in neutral states is (1− pC). Probabilities to transit from s+

43

s0

s+

s−

s⊕

s	

sF

1

1

1

1

a+

a− 1

1

Figure S4: State transition diagram for The Choice task. The diagram is a simplification of the actual
MDP.

or s⊕ to s− or s	 or vice versa are zero. Thus, the first action determines whether that agent stays
in "+"-states or "−"-states. The reward is determined by how many times the agent visits charged
states plus a bonus reward depending on the agent’s first action. The accumulative reward is given at
sequence end and is deterministic. After T time steps, the agent is in the final state sf , in which the
reward RT+1 is provided. RT+1 is the sum of 3 deterministic terms:

1. R0, the baseline reward associated to the first action;
2. RC , the collected reward across states, which depends on the number of visits n to the

charged states;
3. Rb, a bonus if the first action a0 = +.

The expectations of the accumulative rewards for R0 and RC have the same absolute value but
opposite signs, therefore they cancel in expectation over episodes. Thus, the expected return of an
episode is the expected reward Rb: p(a0 = +)b. The rewards are defined as follows:

c0 =

{
1 if a0 = +

−1 if a0 = − , (S263)

Rb =

{
b if a0 = +

0 if a0 = − , (S264)

RC = c0 C n , (S265)
R0 = − c0 C pC T , (S266)

RT+1 = RC + R0 + Rb , (S267)

where C is the baseline reward for charged states, and pC the probability of staying in or transiting
to charged states. The expected visits of charged states is E[n] = pCT and E[RT+1] = E[Rb] =
p(a0 = +)b.

Methods compared: The following methods are compared:
1. Q-learning with eligibility traces according to Watkins [87],
2. Monte Carlo,
3. RUDDER with reward redistribution.

For RUDDER, we use an LSTM without lessons buffer and without safe exploration. Contribution
analysis is realized by differences of return predictions. For MC,Q-values are the exponential moving
average of the episode return. For RUDDER, the Q-values are estimated by an exponential moving
average of the reward redistribution.

Performance evaluation and results. The task is considered as solved when the exponential
moving average of the selection of the desired action at time t = 0 is equal to 1 − ε, where ε
is the exploration rate. The performances of the compared methods are measured by the average
learning time in the number of episodes required to solve the task. A Wilcoxon signed-rank test
is performed between the learning time of RUDDER and those of the other methods. Statistical
significance p-values are obtained by Wilcoxon signed-rank test. RUDDER with reward redistribution
is significantly faster than all other methods with p-values < 10−8. Table S1 reports the number of
episodes required by different methods to solve the task. RUDDER with reward redistribution clearly
outperforms all other methods.

44

Table S1: Number of episodes required by different methods to solve the grid world task with delayed reward. Numbers give the mean and the standard deviation
over 100 trials. RUDDER with reward redistribution clearly outperforms all other TD methods.

Method Delay 10 Delay 15 Delay 20
RUDDER 3520.06 ± 2343.79 p = 5.00E-01 3062.07 ± 1278.92 p = 5.00E-01 3813.96 ± 2738.18 p = 5.00E-01
MC 10920.64 ± 7550.04 p = 5.03E-24 17102.89 ± 12640.09 p = 1.98E-30 22910.85 ± 19149.02 p = 1.25E-28
Q 66140.76 ± 1455.33 p = 1.28E-34 115352.25 ± 1962.20 p = 1.28E-34 171571.94 ± 2436.25 p = 1.28E-34

Method Delay 25 Delay 30 Delay 35
MC 39772 ± 47460 p < 1E-29 41922 ± 36618 p < 1E-30 50464 ± 60318 p < 1E-30
Q 234912 ± 2673 p < 1E-33 305894 ± 2928 p < 1E-33 383422 ± 4346 p < 1E-22
RUDDER 4112 ± 3769 3667 ± 1776 3850 ± 2875

Method Delay 40 Delay 45 Delay 50
MC 56945 ± 54150 p < 1E-30 69845 ± 79705 p < 1E-31 73243 ± 70399 p = 1E-31
Q 466531 ± 3515 p = 1E-22
RUDDER 3739 ± 2139 4151 ± 2583 3884 ± 2188

Method Delay 100 Delay 500
MC 119568 ± 110049 p < 1E-11 345533 ± 320232 p < 1E-16
RUDDER 4147 ± 2392 5769 ± 4309

45

S4.1.3 Task(III): Trace-Back
This section supports the artificial task (III) – Trace-Back – in the main paper. RUDDER is compared
to potential-based reward shaping methods. In this experiment, we compare reinforcement learning
methods that have to transfer back information about a delayed reward. These methods comprise
RUDDER, TD(λ) and potential-based reward shaping approaches. For potential-based reward shaping
we compare the original reward shaping [49], look-forward advice, and look-back advice [90] with
three different potential functions. Methods that transfer back reward information are characterized by
low variance estimates of the value function or the action-value function, since they use an estimate
of the future return instead of the future return itself. To update the estimates of the future returns,
reward information has to be transferred back. The task in this experiment can be solved by Monte
Carlo estimates very fast, which do not transfer back information but use samples of the future
return for the estimation instead. However, Monte Carlo methods have high variance, which is not
considered in this experiment.

The environment is a 15×15 grid, where actions move the agent from its current position in 4
adjacent positions (up, down, left, right), except the agent would be moved outside the grid. The
number of steps (moves) per episode is T = 20. The starting position is (7, 7) in the middle of the
grid. The maximal return is a combination of negative immediate reward and positive delayed reward.
To obtain the maximum return, the policy must move the agent up in the time step t = 1 and right in
the following time step t = 2. In this case, the agent receives an immediate reward of -50 at t = 2
and a delayed reward of 150 at the end of the episode at t = 20, that is, a return of 100. Any other
combination of actions gives the agent immediate reward of 50 at t = 2 without any delayed reward,
that is, a return of 50. To ensure Markov properties the position of the agent, the time, as well as
the delayed reward are coded in the state. The future reward discount rate γ is set to 1. The state
transition probabilities are deterministic for the first two moves. For t > 2 and for each action, state
transition probabilities are equal for each possible next state (uniform distribution), meaning that
actions after t = 2 do not influence the return. For comparisons of long delays, both the size of the
grid and the length of the episode are increased. For a delay of n, a (3n/4)× (3n/4) grid is used
with an episode length of n, and starting position (3n/8, 3n/8).

Compared methods. We compare different TD(λ) and potential-based reward shaping methods.
For TD(λ), the baseline is Q(λ), with eligibility traces λ = 0.9 and λ = 0 and Watkins’ implementa-
tion [87]. The potential-based reward shaping methods are the original reward shaping, look-ahead
advice as well as look-back advice. For look-back advice, we use SARSA(λ) [63] instead of Q(λ) as
suggested by the authors [90]. Q-values are represented by a state-action table, that is, we consider
only tabular methods. In all experiments an ε-greedy policy with ε = 0.2 is used. All three reward
shaping methods require a potential function φ, which is based on the reward redistribution (r̃t) in
three different ways:
(I) The Potential function φ is the difference of LSTM predictions, which is the redistributed reward
Rt:

φ(st) = E [Rt+1 | st] or (S268)
φ(st, at) = E [Rt+1 | st, at] . (S269)

(II) The potential function φ is the sum of future redistributed rewards, i.e. the q-value of the
redistributed rewards. In the optimal case, this coincides with implementation (I):

φ(st) = E

[
T∑
τ=t

Rτ+1 | st

]
or (S270)

φ(st, at) = E

[
T∑
τ=t

Rτ+1 | st, at

]
. (S271)

(III) The potential function φ corresponds to the LSTM predictions. In the optimal case this corre-
sponds to the accumulated reward up to t plus the q-value of the delayed MDP:

φ(st) = E

[
T∑
τ=0

R̃τ+1 | st

]
or (S272)

φ(st, at) = E

[
T∑
τ=0

R̃τ+1 | st, at

]
. (S273)

46

The following methods are compared:
1. Q-learning with eligibility traces according to Watkins (Q(λ)),
2. SARSA with eligibility traces (SARSA(λ)),
3. Reward Shaping with potential functions (I), (II), or (III) according to Q-learning and

eligibility traces according to Watkins,
4. Look-ahead advise with potential functions (I), (II), or (III) with Q(λ),
5. Look-back advise with potential functions (I), (II), or (III) with SARSA(λ),
6. RUDDER with reward redistribution for Q-value estimation and RUDDER applied on top

of Q-learning.
RUDDER is implemented with an LSTM architecture without output gate nor forget gate. For this
experiments, RUDDER does not use lessons buffer nor safe exploration. For contribution analysis we
use differences of return predictions. For RUDDER, the Q-values are estimated by an exponential
moving average (RUDDER Q-value estimation) or alternatively by Q-learning.

Performance evaluation: The task is considered solved when the exponential moving average of
the return is above 90, which is 90% of the maximum return. Learning time is the number of episodes
required to solve the task. The first evaluation criterion is the average learning time. The Q-value
differences at time step t = 2 are monitored. The Q-values at t = 2 are the most important ones,
since they have to predict whether the maximal return will be received or not. At t = 2 the immediate
reward acts as a distraction since it is -50 for the action leading to the maximal return (a+) and 50 for
all other actions (a−). At the beginning of learning, the Q-value difference between a+ and a− is
about -100, since the immediate reward is -50 and 50, respectively. Once the Q-values converge to
the optimal policy, the difference approaches 50. However, the task will already be correctly solved
as soon as this difference is positive. The second evaluation criterion is the Q-value differences at
time step t = 2, since it directly shows to what extend the task is solved.

Results: Table S1 reports the number of episodes required by different methods to solve the
task. The mean and the standard deviation over 100 trials are given. A Wilcoxon signed-rank test
is performed between the learning time of RUDDER and those of the other methods. Statistical
significance p-values are obtained by Wilcoxon signed-rank test. RUDDER with reward redistribution
is significantly faster than all other methods with p-values < 10−17. Tables S2,S3 report the results
for all methods.

47

Table S2: Number of episodes required by different methods to solve the Trace-Back task with delayed reward. The numbers represent the mean and the standard
deviation over 100 trials. RUDDER with reward redistribution significantly outperforms all other methods.

Method Delay 6 Delay 8 Delay 10
Look-back I 6074 ± 952 p = 1E-22 13112 ± 2024 p = 1E-22 21715 ± 4323 p = 1E-06
Look-back II 4584 ± 917 p = 1E-22 9897 ± 2083 p = 1E-22 15973 ± 4354 p = 1E-06
Look-back III 4036.48 ± 1424.99 p = 5.28E-17 7812.72 ± 2279.26 p = 1.09E-23 10982.40 ± 2971.65 p = 1.03E-07
Look-ahead I 14469.10 ± 1520.81 p = 1.09E-23 28559.32 ± 2104.91 p = 1.09E-23 46650.20 ± 3035.78 p = 1.03E-07
Look-ahead II 12623.42 ± 1075.25 p = 1.09E-23 24811.62 ± 1986.30 p = 1.09E-23 43089.00 ± 2511.18 p = 1.03E-07
Look-ahead III 16050.30 ± 1339.69 p = 1.09E-23 30732.00 ± 1871.07 p = 1.09E-23 50340.00 ± 2102.78 p = 1.03E-07
Reward Shaping I 14686.12 ± 1645.02 p = 1.09E-23 28223.94 ± 3012.81 p = 1.09E-23 46706.50 ± 3649.57 p = 1.03E-07
Reward Shaping II 11397.10 ± 905.59 p = 1.09E-23 21520.98 ± 2209.63 p = 1.09E-23 37033.40 ± 1632.24 p = 1.03E-07
Reward Shaping III 12125.48 ± 1209.59 p = 1.09E-23 23680.98 ± 1994.07 p = 1.09E-23 40828.70 ± 2748.82 p = 1.03E-07
Q(λ) 14719.58 ± 1728.19 p = 1.09E-23 28518.70 ± 2148.01 p = 1.09E-23 44017.20 ± 3170.08 p = 1.03E-07
SARSA(λ) 8681.94 ± 704.02 p = 1.09E-23 23790.40 ± 836.13 p = 1.09E-23 48157.50 ± 1378.38 p = 1.03E-07
RUDDER Q(λ) 726.72 ± 399.58 p = 3.49E-04 809.86 ± 472.27 p = 3.49E-04 906.13 ± 514.55 p = 3.36E-02
RUDDER 995.59 ± 670.31 p = 5.00E-01 1128.82 ± 741.29 p = 5.00E-01 1186.34 ± 870.02 p = 5.00E-01

Method Delay 12 Delay 15 Delay 17
Look-back I 33082.56 ± 7641.57 p = 1.09E-23 49658.86 ± 8297.85 p = 1.28E-34 72115.16 ± 21221.78 p = 1.09E-23
Look-back II 23240.16 ± 9060.15 p = 1.09E-23 29293.94 ± 7468.94 p = 1.28E-34 42639.38 ± 17178.81 p = 1.09E-23
Look-back III 15647.40 ± 4123.20 p = 1.09E-23 20478.06 ± 5114.44 p = 1.28E-34 26946.92 ± 10360.21 p = 1.09E-23
Look-ahead I 66769.02 ± 4333.47 p = 1.09E-23 105336.74 ± 4977.84 p = 1.28E-34 136660.12 ± 5688.32 p = 1.09E-23
Look-ahead II 62220.56 ± 3139.87 p = 1.09E-23 100505.05 ± 4987.16 p = 1.28E-34 130271.88 ± 5397.61 p = 1.09E-23
Look-ahead III 72804.44 ± 4232.40 p = 1.09E-23 115616.59 ± 5648.99 p = 1.28E-34 149064.68 ± 7895.48 p = 1.09E-23
Reward Shaping I 68428.04 ± 3416.12 p = 1.09E-23 107399.17 ± 5242.88 p = 1.28E-34 137032.14 ± 6663.12 p = 1.09E-23
Reward Shaping II 56225.24 ± 3778.86 p = 1.09E-23 93091.44 ± 5233.02 p = 1.28E-34 122224.20 ± 5545.63 p = 1.09E-23
Reward Shaping III 60071.52 ± 3809.29 p = 1.09E-23 99476.40 ± 5607.08 p = 1.28E-34 130103.50 ± 6005.61 p = 1.09E-23
Q(λ) 66952.16 ± 4137.67 p = 1.09E-23 107438.36 ± 5327.95 p = 1.28E-34 135601.26 ± 6385.76 p = 1.09E-23
SARSA(λ) 78306.28 ± 1813.31 p = 1.09E-23 137561.92 ± 2350.84 p = 1.28E-34 186679.12 ± 3146.78 p = 1.09E-23
RUDDER Q(λ) 1065.16 ± 661.71 p = 3.19E-01 972.73 ± 702.92 p = 1.13E-04 1101.24 ± 765.76 p = 1.54E-01
RUDDER 1121.70 ± 884.35 p = 5.00E-01 1503.08 ± 1157.04 p = 5.00E-01 1242.88 ± 1045.15 p = 5.00E-01

48

Table S3: Cont. Number of episodes required by different methods to solve the Trace-Back task with delayed reward. The numbers represent the mean and the
standard deviation over 100 trials. RUDDER with reward redistribution significantly outperforms all other methods.

Method Delay 20 Delay 25
Look-back I 113873.30 ± 31879.20 p = 1.03E-07
Look-back II 56830.30 ± 19240.04 p = 1.03E-07 111693.34 ± 73891.21 p = 1.09E-23
Look-back III 35852.10 ± 11193.80 p = 1.03E-07
Look-ahead I 187486.50 ± 5142.87 p = 1.03E-07
Look-ahead II 181974.30 ± 5655.07 p = 1.03E-07 289782.08 ± 11984.94 p = 1.09E-23
Look-ahead III 210029.90 ± 6589.12 p = 1.03E-07
Reward Shaping I 189870.30 ± 7635.62 p = 1.03E-07 297993.28 ± 9592.30 p = 1.09E-23
Reward Shaping II 170455.30 ± 6004.24 p = 1.03E-07 274312.10 ± 8736.80 p = 1.09E-23
Reward Shaping III 183592.60 ± 6882.93 p = 1.03E-07 291810.28 ± 10114.97 p = 1.09E-23
Q(λ) 186874.40 ± 7961.62 p = 1.03E-07
SARSA(λ) 273060.70 ± 5458.42 p = 1.03E-07 454031.36 ± 5258.87 p = 1.09E-23
RUDDER I 1048.97 ± 838.26 p = 5.00E-01 1236.57 ± 1370.40 p = 5.00E-01
RUDDER II 1159.30 ± 731.46 p = 8.60E-02 1195.75 ± 859.34 p = 4.48E-01

49

S4.1.4 Task (IV): Charge-Discharge
The Charge-Discharge task depicted in Figure S5 is characterized by deterministic reward and state
transitions. The environment consists of two states: charged C / discharged D and two actions charge
c / discharge d. The deterministic reward is r(D, d) = 1, r(C, d) = 10, r(D, c) = 0, and r(C, c) = 0.
The reward r(C, d) is accumulated for the whole episode and given only at time T + 1, where T
corresponds to the maximal delay of the reward. The optimal policy alternates between charging and
discharging to accumulate a reward of 10 every other time step. The smaller immediate reward of
1 distracts the agent from the larger delayed reward. The distraction forces the agent to learn the
value function well enough to distinguish between the contribution of the immediate and the delayed
reward to the final return.

D

D C

D C D

D C D C

D C D C D

c

d

c

d

c

c

c

c

d

c

c

dc

d

d

d

d

d

d c

t = 1

t = 2

t = 3

t = 4

r5 = 0 r5 = 10 r5 = 20

Figure S5: The Charge-Discharge task with two basic states: charged C and discharged D. In each
state the actions charge c leading to the charged state C and discharge d leading to discharged state
D are possible. Action d in the discharged state D leads to a small immediate reward of 1 and in
the charged state C to a delayed reward of 10. After sequence end T = 4, the accumulated delayed
reward rT+1 = r5 is given.

For this task, the RUDDER backward analysis is based on monotonic LSTMs and on layer-wise
relevance propagation (LRP). The reward redistribution provided by RUDDER uses an LSTM which
consists of 5 memory cells and is trained with Adam and a learning rate of 0.01. The reward
redistribution is used to learn an optimal policy by Q-learning and by MC with a learning rate of
0.1 and an exploration rate of 0.1. Again, we use sample updates for Q-learning and MC [78]. The
learning is stopped either if the agent achieves 90% of the reward of the optimal policy or after a
maximum number of 10 million episodes. For each T and each method, 100 runs with different seeds
are performed to obtain statistically relevant results. For delays with runs which did not finish within
100m episodes we estimate parameters like described in Paragraph S4.1.1.

S4.1.5 Task (V): Solving Trace-Back using policy gradient methods
In this experiment, we compare policy gradient methods instead of Q-learning based methods. These
methods comprise RUDDER on top of PPO with and without GAE, and a baseline PPO using GAE.
The environment and performance evaluation are the same as reported in Task III. Again, RUDDER
is exponentially faster than PPO. RUDDER on top of PPO is slightly better with GAE than without.

S4.2 Atari Games
In this section we describe the implementation of RUDDER for Atari games. The implementation
is largely based on the OpenAI baselines package [13] for the RL components and our package for
the LSTM reward redistribution model, which will be announced upon publication. If not specified
otherwise, standard input processing, such as skipping 3 frames and stacking 4 frames, is performed
by the OpenAI baselines package.
We consider the 52 Atari games that were compatible with OpenAI baselines, Arcade Learning
Environment (ALE) [6], and OpenAI Gym [10]. Games are divided into episodes, i.e. the loss
of a life or the exceeding of 108k frames trigger the start of a new episode without resetting the
environment. Source code will be made available at upon publication.

50

101112131415 20 25 30
delay of the reward

104

105

#e
pi

so
de

s RUDDER
RUDDER+GAE
PPO

Figure S6: Comparison of performance of RUDDER with GAE (RUDDER+GAE) and without
GAE (RUDDER) and PPO with GAE (PPO) on artificial task V with respect to the learning time in
episodes (median of 100 trials) in log scale vs. the delay of the reward. The shadow bands indicate
the 40% and 60% quantiles. Again, RUDDER significantly outperforms all other methods.

S4.2.1 Architecture
We use a modified PPO architecture and a separate reward redistribution model. While parts of the
two could be combined, this separation allows for better comparison between the PPO baseline with
and without RUDDER.

PPO architecture. The design of the policy and the value network relies on the ppo2 implemen-
tation [13], which is depicted in Figure S7 and summarized in Table S4. The network input, 4
stacked Atari game frames [44], is processed by 3 convolution layers with ReLU activation functions,
followed by a fully connected layer with ReLU activation functions. For PPO with RUDDER 2
output units, for the original and redistributed reward value function, and another set of output units
for the policy prediction are applied. For the PPO baseline without RUDDER the output unit for the
redistributed reward value function is omitted.

Reward redistribution model. Core of the reward redistribution model is an LSTM layer contain-
ing 64 memory cells with sigmoid gate activations, tanh input nonlinearities, and identity output
activation functions, as illustrated in Figure S7 and summarized in Table S4. This LSTM implemen-
tation omits output gate and forget gate to simplify the network dynamics. Identity output activation
functions were chosen to support the development of linear counting dynamics within the LSTM
layer, as is required to count the reward pieces during an episode chunk. Furthermore, the input gate
is only connected recurrently to other LSTM blocks and the cell input is only connected to forward
connections from the lower layer. For the vision system the same architecture was used as with the
PPO network, with the first convolution layer being doubled to process ∆ frames and full frames
separately in the first layer. Additionally, the memory cell layer receives the vision feature activations
of the PPO network, the current action, and the approximate in-game time as inputs. No gradients
from the reward redistribution network are propagated over the connections to the PPO network.
After the LSTM layer, the reward redistribution model has one output node for the prediction ĝ of
the return realization g of the return variable G0. The reward redistribution model has 4 additional
output nodes for the auxiliary tasks as described in Section S4.2.3.

51

Stacked
Frames

Conv.Layer0
8x8x32, strides=4

Conv.Layer1
4x4x64, strides=2

Conv.Layer2
3x3x64, strides=1

Dense Layer
n=512

Conv.Layer3
8x8x32, strides=4

Conv.Layer4
8x8x32, strides=4

Conv.Layer5
4x4x64, strides=2

Conv.Layer6
3x3x64, strides=1

LSTM Layer

ĝπv

Single
Frame

Delta-
Frame

at

Figure S7: RUDDER architecture for Atari games as described in Section S4.2.1. Left: The ppo2
implementation [13]. Right: LSTM reward redistribution architecture. The reward redistribution
network has access to the PPO vision features (dashed lines) but no gradient is propagated between
the networks. The LSTM layer receives the current action and an approximate in-game-time as
additional input. The PPO outputs v for value function prediction and π for policy prediction each
represent multiple output nodes: the original and redistributed reward value function prediction for
v and the outputs for all of the available actions for π. Likewise, the reward redistribution network
output ĝ represents multiple outputs, as described in Section S4.2.3 Details on layer configuration are
given in Table S4.

Layer Specifications Layer Specifications

Conv.Layer 0 features 32 Conv.Layer 4 features 32
kernelsize 8x8 kernelsize 8x8
striding 4x4 striding 4x4
act ReLU act ReLU
initialization orthogonal, gain=

√
2 initialization orthogonal, gain=0.1

Conv.Layer 1 features 64 Conv.Layer 5 features 64
kernelsize 4x4 kernelsize 4x4
striding 2x2 striding 2x2
act ReLU act ReLU
initialization orthogonal, gain=

√
2 initialization orthogonal, gain=0.1

Conv.Layer 2 features 64 Conv.Layer 6 features 64
kernelsize 3x3 kernelsize 3x3
striding 1x1 striding 1x1
act ReLU act ReLU
initialization orthogonal, gain=

√
2 initialization orthogonal, gain=0.1

Dense Layer features 512 LSTM Layer cells 64
act ReLU gate act. sigmoid
initialization orthogonal, gain=

√
2 ci act. tanh

Conv.Layer 3 features 32 output act. linear
kernelsize 8x8 bias ig trunc.norm., mean= −5
striding 4x4 bias ci trunc.norm., mean= 0
act ReLU fwd.w. ci trunc.norm., scale= 0.0001
initialization orthogonal, gain=0.1 fwd.w. ig omitted

rec.w. ci omitted
rec.w. ig trunc.norm., scale= 0.001
og omitted
fg omitted

Table S4: Specifications of PPO and RUDDER architectures as shown in Figure S7. Truncated
normal initialization has the default values mean= 0, stddev= 1 and is optionally multiplied by a
factor scale.

52

S4.2.2 Lessons Replay Buffer
The lessons replay buffer is realized as a priority-based buffer containing up to 128 samples. New
samples are added to the buffer if (i) the buffer is not filled or if (ii) the new sample is considered
more important than the least important sample in the buffer, in which case the new sample replaces
the least important sample.
Importance of samples for the buffer is determined based on a combined ranking of (i) the reward
redistribution model error and (ii) the difference of the sample return to the mean return of all samples
in the lessons buffer. Each of these two rankings contributes equally to the final ranking of the sample.
Samples with higher loss and greater difference to the mean return achieve a higher ranking.
Sampling from the lessons buffer is performed as a sampling from a softmax function on the sample-
losses in the buffer. Each sample is a sequence of 512 consecutive transitions, as described in the last
paragraph of Section S4.2.3.

S4.2.3 Game Processing, Update Design, and Target Design
Reward redistribution is performed in an online fashion as new transitions are sampled from the
environment. This allows to keep the original update schema of the PPO baseline, while still using
the redistributed reward for the PPO updates. Training of the reward redistribution model is done
separately on the lessons buffer samples from Section S4.2.2. These processes are described in more
detail in the following paragraphs.

Reward Scaling. As described in the main paper, rewards for the PPO baseline and RUDDER are
scaled based on the maximum return per sample encountered during training so far. With i samples
sampled from the environment and a maximum return of gmax

i = max16j6i{|gj |} encountered, the
scaled reward rnew is

rnew =
10 r

gmax
i

. (S274)

Goal of this scaling is to normalize the reward r to range [−10, 10] with a linear scaling, suitable for
training the PPO and reward redistribution model. Since the scaling is linear, the original proportions
between rewards are kept. Downside to this approach is that if a new maximum return is encountered,
the scaling factor is updated, and the models have to readjust.

Reward redistribution. Reward redistribution is performed using differences of return predictions
of the LSTM network. That is, the differences of the reward redistribution model prediction ĝ at time
step t and t−1 serve as contribution analysis and thereby give the redistributed reward rt = ĝt−ĝt−1.
This allows for online reward redistribution on the sampled transitions before they are used to train
the PPO network, without waiting for the game sequences to be completed.
To assess the current quality of the reward redistribution model, a quality measure based on the
relative absolute error of the prediction ĝT at the last time step T is introduced:

quality = 1 − |g − ĝT |
µ

1

1− ε
, (S275)

with ε as quality threshold of ε = 80% and the maximum possible error µ as µ = 10 due to the
reward scaling applied. quality is furthermore clipped to be within range [0, 1].

PPO model. The ppo2 implementation [13] samples from the environment using multiple agents in
parallel. These agents play individual environments but share all weights, i.e. they are distinguished
by random effects in the environment or by exploration. The value function and policy network is
trained online on a batch of transitions sampled from the environment. Originally, the policy/value
function network updates are adjusted using a policy loss, a value function loss, and an entropy term,
each with dedicated scaling factors [68]. To decrease the number of hyperparameters, the entropy
term scaling factor is adjusted automatically using Proportional Control to keep the policy entropy in
a predefined range.
We use two value function output units to predict the value functions of the original and the re-
distributed reward. For the PPO baseline without RUDDER, the output unit for the redistributed
reward is omitted. Analogous to the ppo2 implementation, these two value function predictions
serve to compute the advantages used to scale the policy gradient updates. For this, the ad-
vantages for original reward ao and redistributed reward ar are combined as a weighted sum
a = ao (1 − qualityv) + ar quality. The PPO value function loss term Lv is replaced by
the sum of the value function vo loss Lo for the original reward and the scaled value function vr loss

53

Lr for the redistributed reward, such that Lv = Lo+Lr quality. Parameter values were taken from
the original paper [68] and implementation [13]. Additionally, a coarse hyperparameter search was
performed with value function coefficients {0.1, 1, 10} and replacing the static entropy coefficient by
a Proportional Control scaling of the entropy coefficient. The Proportional Control target entropy
was linearly decreased from 1 to 0 over the course of training. PPO baseline hyperparamters were
used for PPO with RUDDER without changes.
Parameter values are listed in Table S5.

Reward redistribution model. The loss of the reward redistribution model for a sample is com-
posed of four parts. (i) The main loss Lm, which is the squared prediction loss of g at the last time
step T of the episode

Lm = (g − ĝT)
2
, (S276)

(ii) the continuous prediction loss Lc of g at each time step

Lc =
1

T + 1

T∑
t=0

(g − ĝt)
2
, (S277)

(iii) the loss Le of the prediction of the output at t+ 10 at each time step t

Le =
1

T − 9

T−10∑
t=0

(
ĝt+10 − ̂(ĝt+10)t

)2

, (S278)

as well as (iv) the loss on 3 auxiliary tasks. At every time step t, these auxiliary tasks are (1) the
prediction of the action-value function q̂t, (2) the prediction of the accumulated original reward r̃ in
the next 10 frames

∑t+10
i=t r̃i, and (3) the prediction of the accumulated reward in the next 50 frames∑t+50

i=t r̃i, resulting in the final auxiliary loss La as

La1 =
1

T + 1

T∑
t=0

(qt − q̂t)
2
, (S279)

La2 =
1

T − 9

T−10∑
t=0

t+10∑
i=t

r̃i −
̂(t+10∑
i=t

r̃i

)
t

2

, (S280)

La3 =
1

T − 49

T−50∑
t=0

t+50∑
i=t

r̃i −
̂(t+50∑
i=t

r̃i

)
t

2

, (S281)

La =
1

3
(La1 + La2 + La3) . (S282)

The final loss for the reward redistribution model is then computed as

L = Lm +
1

10
(Lc + Le + La) . (S283)

The continuous prediction and earlier prediction losses Lc and Le push the reward redistribution
model toward performing an optimal reward redistribution. This is because important events that are
redundantly encoded in later states are stored as early as possible. Furthermore, the auxiliary loss La
speeds up learning by adding more information about the original immediate rewards to the updates.
The reward redistribution model is only trained on the lessons buffer. Training epochs on the lessons
buffer are performed every 104 PPO updates or if a new sample was added to the lessons buffer.
For each such training epoch, 8 samples are sampled from the lessons buffer. Training epochs are
repeated until the reward redistribution quality is sufficient (quality > 0) for all replayed samples
in the last 5 training epochs.
The reward redistribution model is not trained or used until the lessons buffer contains at least 32
samples and samples with different return have been encountered.
Parameter values are listed in Table S5.

54

PPO RUDDER
learning rate 2.5 · 10−4 learning rate 10−4

policy coefficient 1.0 L2 weight decay 10−7

initial entropy coefficient 0.01 gradient clipping 0.5
value function coefficient 1.0 optimization ADAM

Table S5: Left: Update parameters for PPO model. Entropy coefficient is scaled via Proportional
Control with the target entropy linearly annealed from 1 to 0 over the course of learning. Unless
stated otherwise, default parameters of ppo2 implementation [13] are used. Right: Update parameters
for reward redistribution model of RUDDER.

Sequence chunking and Truncated Backpropagation Through Time (TBPTT). Ideally, RUD-
DER would be trained on completed game sequences, to consequently redistribute the reward within
a completed game. To shorten computational time for learning the reward redistribution model, the
model is not trained on completed game sequences but on sequence chunks consisting of 512 time
steps. The beginning of such a chunk is treated as beginning of a new episode for the model and ends
of episodes within this chunk reset the state of the LSTM, so as to not redistribute rewards between
episodes. To allow for updates on sequence chunks even if the game sequence is not completed, the
PPO value function prediction is used to estimate the expected future reward at the end of the chunk.
Utilizing TBPTT to further speed up LSTM learning, gradients for the reward redistribution LSTM
are cut after every 128 time steps.

S4.2.4 Exploration
Safe exploration to increase the likelihood of observing delayed rewards is an important feature of
RUDDER. We use a safe exploration strategy, which is realized by normalizing the output of the
policy network to range [0, 1] and randomly picking one of the actions that is above a threshold
θ. Safe exploration is activated once per sequence at a random sequence position for a random
duration between 0 and the average game length l̄. Thereby we encourage long but safe off-policy
trajectories within parts of the game sequences. Only 2 of the 8 parallel actors use safe exploration
with θ1 = 0.001 and θ1 = 0.5, respectively. All actors sample from the softmax policy output.
To avoid policy lag during safe exploration transitions, we use those transitions only to update the
reward redistribution model but not the PPO model.

S4.2.5 Results
Training curves for 3 random seeds for PPO baseline and PPO with RUDDER are shown in Figure S8
and scores are listed in Table S6 for all 52 Atari games. Training was conducted over 200M game
frames (including skipped frames), as described in the experiments section of the main paper.
We investigated failures and successes of RUDDER in different Atari games. RUDDER failures were
observed to be mostly due to LSTM failures and comprise e.g. slow learning in Breakout, explaining
away in Double Dunk, spurious redistributed rewards in Hero, overfitting to the first levels in Qbert,
and exploration problems in MontezumaRevenge. RUDDER successes were observed to be mostly
due to redistributing rewards to important key actions that would otherwise not receive reward, such
as moving towards the built igloo in Frostbite, diving up for refilling oxygen in Seaquest, moving
towards the treasure chest in Venture, and shooting at the shield of the enemy boss UFO, thereby
removing its shield.

55

0 50 100 150 200
0

2500

5000

7500

10000
Alien

0 50 100 150 200
0

500

1000

1500

2000
Amidar

0 50 100 150 200
0

5000

10000

15000

20000
Assault

0 50 100 150 200
0

75000

150000

225000

300000
Asterix

0 50 100 150 200

0

150000

300000

450000

600000
Asteroids

0 50 100 150 200

0

1250000

2500000

3750000

5000000
Atlantis

0 50 100 150 200

0

500

1000

1500

2000
BankHeist

0 50 100 150 200
0

12500

25000

37500

50000
BattleZone

0 50 100 150 200
0

2000

4000

6000

8000
BeamRider

0 50 100 150 200

1000

1500

2000

2500

3000
Berzerk

0 50 100 150 200
0

75

150

225

300
Bowling

0 50 100 150 200

0

50

100

150

200
Boxing

0 50 100 150 200

0

125

250

375

500
Breakout

0 50 100 150 200
0

15000

30000

45000

60000
Centipede

0 50 100 150 200
0

5000

10000

15000

20000
ChopperCommand

0 50 100 150 200
0

50000

100000

150000

200000
CrazyClimber

0 50 100 150 200

0

175000

350000

525000

700000
DemonAttack

0 50 100 150 200
-30

-22

-15

-8

0
DoubleDunk

0 50 100 150 200

0

750

1500

2250

3000
Enduro

0 50 100 150 200
-200

-125

-50

25

100
FishingDerby

0 50 100 150 200

0

10

20

30

40
Freeway

0 50 100 150 200

0

2250

4500

6750

9000
Frostbite

0 50 100 150 200
0

50000

100000

150000

200000
Gopher

0 50 100 150 200
0

750

1500

2250

3000
Gravitar

0 50 100 150 200
0

10000

20000

30000

40000
Hero

0 50 100 150 200
-8

-5

-2

1

4
IceHockey

0 50 100 150 200

0

5000

10000

15000

20000
Kangaroo

0 50 100 150 200
0

5000

10000

15000

20000
Krull

0 50 100 150 200

10000

25000

40000

55000

70000
KungFuMaster

0 50 100 150 200
-1

000

1
MontezumaRevenge

0 50 100 150 200

0

2500

5000

7500

10000
MsPacman

0 50 100 150 200
0

5000

10000

15000

20000
NameThisGame

0 50 100 150 200

0

75000

150000

225000

300000
Phoenix

0 50 100 150 200
-3000

-2250

-1500

-750

0
Pitfall

0 50 100 150 200
-30

-15

0

15

30
Pong

0 50 100 150 200
-2000

-1500

-1000

-500

0

PrivateEye

0 50 100 150 200
0

10000

20000

30000

40000
Qbert

0 50 100 150 200

0

12500

25000

37500

50000
RoadRunner

0 50 100 150 200
0

15

30

45

60
Robotank

0 50 100 150 200

1000

2500

4000

5500

7000
Seaquest

0 50 100 150 200

-30000

-28750

-27500

-26250

-25000

Skiing

0 50 100 150 200
0

1250

2500

3750

5000
Solaris

0 50 100 150 200
0

750

1500

2250

3000
SpaceInvaders

0 50 100 150 200
0

17500

35000

52500

70000
StarGunner

0 50 100 150 200
-30

-15

0

15

30
Tennis

0 50 100 150 200

3000

4250

5500

6750

8000
TimePilot

0 50 100 150 200
0

75

150

225

300
Tutankham

0 50 100 150 200

0

500

1000

1500

2000
Venture

0 50 100 150 200

20000

22500

25000

27500

30000
VideoPinball

0 50 100 150 200
0

1250

2500

3750

5000
WizardOfWor

0 50 100 150 200
0

75000

150000

225000

300000
YarsRevenge

0 50 100 150 200

0

5000

10000

15000

20000
Zaxxon

baseline
RUDDER

Figure S8: Training curves for PPO baseline and PPO with RUDDER over 200M game frames, 3
runs with different random seeds each. Curves show scores during training of a single agent that does
not use safe exploration, smoothed using Locally Weighted Scatterplot Smoothing (y-value estimate
using 20% of data with 10 residual-based re-weightings).

56

average final
baseline RUDDER % baseline RUDDER %

Alien 1,878 3,087 64.4 3,218 5,703 77.3
Amidar 787 724 -8.0 1,242 1,054 -15.1
Assault 5,788 4,242 -26.7 10,373 11,305 9.0
Asterix 10,554 18,054 71.1 29,513 102,930 249
Asteroids 22,065 4,905 -77.8 310,505 154,479 -50.2
Atlantis 1,399,753 1,655,464 18.3 3,568,513 3,641,583 2.0
BankHeist 936 1,194 27.5 1,078 1,335 23.8
BattleZone 12,870 17,023 32.3 24,667 28,067 13.8
BeamRider 2,372 4,506 89.9 3,994 6,742 68.8
Berzerk 1,261 1,341 6.4 1,930 2,092 8.4
Bowling 61.5 179 191 56.3 192 241
Boxing 98.0 94.7 -3.4 100 99.5 -0.5
Breakout 217 153 -29.5 430 352 -18.1
Centipede 25,162 23,029 -8.5 53,000 36,383 -31.4
ChopperCommand 6,183 5,244 -15.2 10,817 9,573 -11.5
CrazyClimber 125,249 106,076 -15.3 140,080 132,480 -5.4
DemonAttack 28,684 46,119 60.8 464,151 400,370 -13.7
DoubleDunk -9.2 -13.1 -41.7 -0.3 -5.1 -1,825
Enduro 759 777 2.5 2,201 1,339 -39.2
FishingDerby 19.5 11.7 -39.9 52.0 36.3 -30.3
Freeway 26.7 25.4 -4.8 32.0 31.4 -1.9
Frostbite 3,172 4,770 50.4 5,092 7,439 46.1
Gopher 8,126 4,090 -49.7 102,916 23,367 -77.3
Gravitar 1,204 1,415 17.5 1,838 2,233 21.5
Hero 22,746 12,162 -46.5 32,383 15,068 -53.5
IceHockey -3.1 -1.9 39.4 -1.4 1.0 171
Kangaroo 2,755 9,764 254 5,360 13,500 152
Krull 9,029 8,027 -11.1 10,368 8,202 -20.9
KungFuMaster 49,377 51,984 5.3 66,883 78,460 17.3
MontezumaRevenge 0.0 0.0 38.4 0.0 0.0 0.0
MsPacman 4,096 5,005 22.2 6,446 6,984 8.3
NameThisGame 8,390 10,545 25.7 10,962 17,242 57.3
Phoenix 15,013 39,247 161 46,758 190,123 307
Pitfall -8.4 -5.5 34.0 -75.0 0.0 100
Pong 19.2 18.5 -3.9 21.0 21.0 0.0
PrivateEye 102 34.1 -66.4 100 33.3 -66.7
Qbert 12,522 8,290 -33.8 28,763 16,631 -42.2
RoadRunner 20,314 27,992 37.8 35,353 36,717 3.9
Robotank 24.9 32.7 31.3 32.2 47.3 46.9
Seaquest 1,105 2,462 123 1,616 4,770 195
Skiing -29,501 -29,911 -1.4 -29,977 -29,978 0.0
Solaris 1,393 1,918 37.7 616 1,827 197
SpaceInvaders 778 1,106 42.1 1,281 1,860 45.2
StarGunner 6,346 29,016 357 18,380 62,593 241
Tennis -13.5 -13.5 0.2 -4.0 -5.3 -32.8
TimePilot 3,790 4,208 11.0 4,533 5,563 22.7
Tutankham 123 151 22.7 140 163 16.3
Venture 738 885 20.1 820 1,350 64.6
VideoPinball 19,738 19,196 -2.7 15,248 16,836 10.4
WizardOfWor 3,861 3,024 -21.7 6,480 5,950 -8.2
YarsRevenge 46,707 60,577 29.7 109,083 178,438 63.6
Zaxxon 6,900 7,498 8.7 12,120 10,613 -12.4

Table S6: Scores on all 52 considered Atari games for the PPO baseline and PPO with RUDDER
and the improvement by using RUDDER in percent (%). Agents are trained for 200M game frames
(including skipped frames) with no-op starting condition, i.e. a random number of up to 30 no-
operation actions at the start of each game. Episodes are prematurely terminated if a maximum
of 108K frames is reached. Scoring metrics are (a) average, the average reward per completed
game throughout training, which favors fast learning [68] and (b) final, the average over the last 10
consecutive games at the end of training, which favors consistency in learning. Scores are shown for
one agent without safe exploration.

57

Visual Confirmation of Detecting Relevant Events by Reward Redistribution. We visually con-
firm a meaningful and helpful redistribution of reward in both Bowling and Venture during training.
As illustrated in Figure S9, RUDDER is capable of redistributing a reward to key events in a game,
drastically shortening the delay of the reward and quickly steering the agent toward good policies.
Furthermore, it enriches sequences that were sparse in reward with a dense reward signal. Video
demonstrations are available at https://goo.gl/EQerZV.

Figure S9: Observed return decomposition by RUDDER in two Atari games with long delayed
rewards. Left: In the game Bowling, reward is only given after a turn which consist of multiple rolls.
RUDDER identifies the actions that guide the ball in the right direction to hit all pins. Once the ball
hit the pins, RUDDER detects the delayed reward associated with striking the pins down. In the
figure only 100 frames are represented but the whole turn spans more than 200 frames. In the original
game, the reward is given only at the end of the turn. Right: In the game Venture, reward is only
obtained after picking up the treasure. RUDDER guides the agent (red) towards the treasure (golden)
via reward redistribution. Reward is redistributed to entering a room with treasure. Furthermore, the
redistributed reward gradually increases as the agent approaches the treasure. The environment only
gives reward at the event of collecting the treasure.

58

https://goo.gl/EQerZV

S5 Discussion and Frequent Questions
RUDDER and reward rescaling. RUDDER works with no rescaling, various rescalings, and
sign function as we have confirmed in additional experiments. Rescaling ensures similar reward
magnitudes across different Atari games, therefore the same hyperparameters can be used for all
games. For LSTM and PPO, we only scale the original return by a constant factor, therefore do not
change the problem and do not simplify it. The sign function, in contrast, may simplify the problem
but may change the optimal policy.

RUDDER for infinite horizon: Continual Learning. RUDDER assumes a finite horizon problem.
For games and for most tasks in real world these assumptions apply: "did you solve the task?" (make
tax declaration, convince a customer to buy, design a drug, drive a car to a location, assemble a car,
build a building, clean the room, cook a meal, pass the Turing test). In general our approach can be
extended to continual learning with discounted reward. Only the transformation of an immediate
reward MDP to an MDP with episodic reward is no longer possible. However the delayed reward
problem becomes more obvious and also more serious when not discounting the reward.

Is the LSTM in RUDDER a state-action value function? For reward redistribution we assume
an MDP with one reward (=return) at sequence end which can be predicted from the last state-action
pair. When introducing the ∆-states, the reward cannot be predicted from the last ∆ and the task is
no longer Markov. However the return can be predicted from the sequence of ∆s. Since the ∆s are
mutually independent, the contribution of each ∆ to the return must be stored in the hidden states of
the LSTM to predict the final reward. The ∆ can be generic as states and actions can be numbered
and then the difference of this numbers can be used for ∆.
In applications like Atari games with immediate rewards we give the accumulated reward at the end
of the episode without enriching the states. This has a similar effect as using ∆. We force the LSTM
to build up an internal state which tracks the already accumulated reward.
Indeed, the LSTM is the value function at time t based on the ∆ sub-sequence up to t. The LSTM
prediction can be decomposed into two sub-predictions. The first sub-prediction is the contribution of
the already known ∆ sub-sequence up to t to the return (backward view). The second sub-prediction
is the expected contribution of the unknown future sequence from t+1 onwards to the return (forward
view). However, we are not interested in the second sub-prediction but only in the contribution of ∆t

to the prediction of the expected return. The second sub-prediction is irrelevant for our approach. We
cancel the second sub-prediction via the differences of predictions. The difference at time t gives the
contribution of ∆t to the expected return.
Empirical confirmation: Four years ago, we started this research project with using LSTM as a value
function but we failed. This was the starting point for RUDDER. In the submission, we used LSTM
predictions in artificial task (IV) as potential function for reward shaping, look-ahead advice, and
look-back advice. Furthermore, we investigated LSTM as a value function for artificial task (II) but
these results have not been included. At the time where RUDDER already solved the task, the LSTM
error was too large to allow learning via a value function. Problem is the large variance of the returns
at the beginning of the sequence which hinders LSTM learning (forward view). RUDDER LSTM
learning was initiated by propagating back prediction errors at the sequence end, where the variance
of the return is lower (backward view). These late predictions initiated the storing of key events at the
sequence beginning even with high prediction errors. The redistributed reward at the key events led
RUDDER solve the task. Concluding: at the time RUDDER solved the task, the early predictions are
not learned due to the high variance of the returns. Therefore using the predictions as value function
does not help (forward view).
Example: The agent has to take a key to open the door. Since it is an MDP, the agent is always aware
to have the key indicated by a key bit to be on. The reward can be predicted in the last step. Using
differences ∆ the key bit is zero, except for the step where the agent takes the key. Thus, the LSTM
has to store this event and will transfer reward to it.

Compensation reward. The compensation corrects for prediction errors of g (g is the sum of h).
The prediction error of g can have two sources: (1) the probabilistic nature of the reward, (2) an
approximation error of g for the expected reward. We aim to make (2) small and then the correction is
only for the probabilistic nature of the reward. The compensation error depends on g, which, in turn,
depends on the whole sequence. The dependency on state-action pairs from t = 0 to T − 1 is viewed
as random effect, therefore the compensation reward only depends on the last state-action pair.
That ht and Rt+1 depends only on (st, at, st−1, at−1) is important to prove Theorem 3. Then at−1

cancels and the advantage function remains the same.

59

Connection theory and algorithms. Theorem 1 and Theorem 2 ensure that the algorithms are
correct since the optimal policies do not change even for non-optimal return decompositions. In
contrast to TD methods which are biased, Theorem 3 shows that the update rule Q-value estimation is
unbiased when assuming optimal decomposition. Theorem 4 explicitly derives optimality conditions
for the expected sum of delayed rewards “kappa” and measures the distance to optimality. This
“kappa” is used for learning and is explicitly estimated to correct learning if an optimal decomposition
cannot be assured. The theorems are used to justify following learning methods (A) and (B):
(A) Q-value estimation: (i) Direct Q-value estimation (not Q-learning) according to Theorem 3 is
given in Eq. (9) when an optimal decomposition is assumed. (ii) Q-value estimation with correction
by kappa according to Theorem 4, when optimal decomposition is not assumed. Here kappa is learned
by TD as given in Eq. (10). (iii) Q-value estimation using eligibility traces. (B) Policy gradient:
Theorems are used as for Q-value estimation as in (A) but now the Q-values serve for policy gradient.
(C) Q-learning: Here the properties in Theorem 3 and Theorem 4 are ignored.
We also show variants (not in the main paper) on page 31 and 32 of using kappa “Correction of the
reward redistribution” by reward shaping with kappa and “Using kappa as auxiliary task in predicting
the return for return decomposition”.

Optimal return decomposition, contributions, and policy. The Q-value qπ depends on a partic-
ular policy π. The function h depends on policy π since h predicts the expected return (Eπ[R̃T+1])
which depends on π. Thus, both return decomposition and optimal return decomposition are defined
for a particular policy π. A reward redistribution from a return decomposition leads to a return equiv-
alent MDP. Return equivalent MDPs are defined via all policies even if the reward redistribution was
derived from a particular policy. A reward redistribution depends only on the state-action sequence
but not on the policy that generated this sequence. Also ∆ does not depend on a policy.

Optimal policies are preserved for every state. We assume all states are reachable via at least
one non-zero transition probability to each state and policies that have a non-zero probability for
each action due to exploration. For an MDP being optimal in the initial state is the same as being
optimal in every reachable state. This follows from recursively applying the Bellman optimality
equation to the initial value function. The values of the following states must be optimal otherwise
the initial value function is smaller. Only states to which the transition probability is zero the Bellman
optimality equation does not determine the optimality.
All RL algorithms are suitable. For example we applied TD, Monte Carlo, Policy Gradient, which all
work faster with the new MDP.

Limitations. In all of the experiments reported in this manuscript, we show that RUDDER signifi-
cantly outperforms other methods for delayed reward problems. However, RUDDER might not be
effective when the reward is not delayed since LSTM learning takes extra time and has problems with
very long sequences. Furthermore, reward redistribution may introduce disturbing spurious reward
signals.

60

S6 Additional Related Work
Delayed Reward. To learn delayed rewards there are three phases to consider: (i) discovering
the delayed reward, (ii) keeping information about the delayed reward, (iii) learning to receive the
delayed reward to secure it for the future. Recent successful reinforcement learning methods provide
solutions to one or more of these phases. Most prominent are Deep Q-Networks (DQNs) [43, 44],
which combine Q-learning with convolutional neural networks for visual reinforcement learning [34].
The success of DQNs is attributed to experience replay [38], which stores observed state-reward
transitions and then samples from them. Prioritized experience replay [64, 27] advanced the sampling
from the replay memory. Different policies perform exploration in parallel for the Ape-X DQN and
share a prioritized experience replay memory [27]. DQN was extended to double DQN (DDQN)
[83, 84] which helps exploration as the overestimation bias is reduced. Noisy DQNs [16] explore
by a stochastic layer in the policy network (see [26, 65]). Distributional Q-learning [5] profits from
noise since means that have high variance are more likely selected. The dueling network architecture
[85, 86] separately estimates state values and action advantages, which helps exploration in unknown
states. Policy gradient approaches [92] explore via parallel policies, too. A2C has been improved by
IMPALA through parallel actors and correction for policy-lags between actors and learners [15]. A3C
with asynchronous gradient descent [42] and Ape-X DPG [27] also rely on parallel policies. Proximal
policy optimization (PPO) extends A3C by a surrogate objective and a trust region optimization that
is realized by clipping or a Kullback-Leibler penalty [68].
Recent approaches aim to solve learning problems caused by delayed rewards. Function approxi-
mations of value functions or critics [44, 42] bridge time intervals if states associated with rewards
are similar to states that were encountered many steps earlier. For example, assume a function that
has learned to predict a large reward at the end of an episode if a state has a particular feature. The
function can generalize this correlation to the beginning of an episode and predict already high
reward for states possessing the same feature. Multi-step temporal difference (TD) learning [77, 78]
improved both DQNs and policy gradients [25, 42]. AlphaGo and AlphaZero learned to play Go
and Chess better than human professionals using Monte Carlo Tree Search (MCTS) [69, 70]. MCTS
simulates games from a time point until the end of the game or an evaluation point and therefore
captures long delayed rewards. Recently, world models using an evolution strategy were successful
[21]. These forward view approaches are not feasible in probabilistic environments with a high
branching factor of state transition.

Backward View. We propose learning from a backward view, which either learns a separate model
or analyzes a forward model. Examples of learning a separate model are to trace back from known
goal states [14] or from high reward states [19]. However, learning a backward model is very
challenging. When analyzing a forward model that predicts the return then either sensitivity analysis
or contribution analysis may be utilized. The best known backward view approach is sensitivity
analysis (computing the gradient) like ”Backpropagation through a Model´´ [48, 59, 60, 89, 3].
Sensitivity analysis has several drawbacks: local minima, instabilities, exploding or vanishing
gradients, and proper exploration [26, 65]. The major drawback is that the relevance of actions is
missed since sensitivity analysis does not consider their contribution to the output but only their effect
on the output when slightly perturbing them.
We use contribution analysis since sensitivity analysis has serious drawbacks. Contribution analysis
determines how much a state-action pair contributes to the final prediction. To focus on state-
actions which are most relevant for learning is known from prioritized sweeping for model-based
reinforcement learning [47]. Contribution analysis can be done by computing differences of return
predictions when adding another input, by zeroing out an input and then compute the change in
the prediction, by contribution-propagation [35], by a contribution approach [54], by excitation
backprop [93], by layer-wise relevance propagation (LRP) [1], by Taylor decomposition [1, 45], or
by integrated gradients (IG) [76].

LSTM. LSTM was already used in reinforcement learning [66] for advantage learning [2], for
constructing a potential function for reward shaping by representing the return by a sum of LSTM
outputs across an episode [75], and learning policies [23, 42, 24].

Reward Shaping, Look-Ahead Advice, Look-Back Advice. Redistributing the reward is fun-
damentally different from reward shaping [49, 90], look-ahead advice, and look-back advice [91].
However, these methods can be viewed as a special case of reward redistribution that result in an
MDP that is return-equivalent to the original MDP as is shown in Section S2.2. On the other hand
every reward function can be expressed as look-ahead advice [22]. In contrast to these methods,

61

reward redistribution is not limited to potential functions, where the additional reward is the potential
difference, therefore it is a more general concept than shaping reward or look-ahead/look-back advice.
The major difference of reward redistribution to reward shaping, look-ahead advice, and look-back
advice is that the last three keep the original rewards. Both look-ahead advice and look-back advice
have not been designed for replacing for the original rewards. Since the original reward is kept, the
reward redistribution is not optimal according to Section S2.6.1. The original rewards may have long
delays that cause an exponential slow-down of learning. The added reward improves sampling but a
delayed original reward must still be transferred to the Q-values of early states that caused the reward.
The concept of return-equivalence of SDPs resulting from reward redistributions allows to eliminate
the original reward completely. Reward shaping can replace the original reward. However, it only
depends on states but not on actions, and therefore, it cannot identify relevant actions without the
original reward.

62

S7 Reproducibility Checklist
We followed the reproducibility checklist [53] and point to relevant sections.

For all models and algorithms presented, check if you include:
• A clear description of the mathematical setting, algorithm, and/or model.

Description of mathematical settings starts at paragraph "MDP Definitions and Return-
Equivalent Sequence-Markov Decision Processes (SDPs)".
Description of novel learning algorithms starts at paragraph "Novel Learning Algorithms
Based on Reward Redistributions".

• An analysis of the complexity (time, space, sample size) of any algorithm.
Plots in Figure 1 show the number of episodes, i.e. the sample size, which are needed for
convergence to the optimal policies. They are evaluated for different algorithms and delays
in all artificial tasks. For Atari games, the number of samples corresponds to the number of
game frames. See paragraph "Atari Games". We further present a bias-variance analysis of
TD and MC learning in Section S3.1 and Section S3.2 in the Supplements.

• A link to a downloadable source code, with specification of all dependencies, including
external libraries.
https://github.com/ml-jku/rudder

For any theoretical claim, check if you include:
• A statement of the result.

The main theorems:

– Theorem 1
– Theorem 2
– Theorem 3

Additional supporting theorems can be found in the Section S2 of the Supplements.

• A clear explanation of any assumptions.
Section S2 in the Supplements covers all the assumptions for the main theorems.

• A complete proof of the claim.
Proof of the main theorems are moved to the Supplements.

– Proof of Theorem 1 can be found after Theorem S2 in the Supplements.
– Proof of Theorem 2 can be found after Theorem S4 in the Supplements.
– Proof of Theorem 3 can be found after Theorem S5 in the Supplements.

Proofs for additional theorems can also be found in this Supplements.

For all figures and tables that present empirical results, check if you include:
• A complete description of the data collection process, including sample size.

For artificial tasks the environment descriptions can be found in the section "Artificial Tasks"
in the main paper. For Atari games, we use the standard sampling procedures as in OpenAI
Gym [10] (description can be found in paragraph "Atari Games".

• A link to a downloadable version of the dataset or simulation environment.
Link to our repository: https://github.com/ml-jku/rudder

• An explanation of any data that were excluded, description of any pre-processing step
For Atari games, we use the standard pre-processing described in [42].

• An explanation of how samples were allocated for training / validation / testing.
For artificial tasks, description of training and evaluation are included in Section S4.1 in
the Supplements. For Atari games, description of training and evaluation are included
Section S4.1 in the Supplements.

• The range of hyper-parameters considered, method to select the best hyper-parameter
configuration, and specification of all hyper-parameters used to generate results.
A description can be found at paragraph "PPO model" in the Supplements.

63

https://github.com/ml-jku/rudder
https://github.com/ml-jku/rudder

• The exact number of evaluation runs.
For artificial tasks evaluation was performed during training runs. See Figure 1. For
Atari games see paragraph "Atari Games". We also provide a more detailed description in
Section S4.1 and Section S4.2 in the Supplements.

• A description of how experiments were run. For artificial task, description can be found
at section "Experiments".
For Atari games, description starts at paragraph "Atari Games". We also provide a more
detailed description in Section S4.1 and Section S4.2 in the Supplements.

• A clear definition of the specific measure or statistics used to report results.
For artificial tasks, see Section S4.1. For Atari games, see Section S4.2 and the caption of
Table 1. We also provide a more detailed description in Section S4.1 and Section S4.2 in the
Supplements.

• Clearly defined error bars.
For artificial tasks, see caption of Figure 1, second line. For Atari games we show all runs in
Figure S8 in the Supplements.

• A description of results with central tendency (e.g. mean) & variation (e.g. stddev).
An exhaustive description of the results including mean, variance and significant test, is
included in Table S1, Table S2 and Table S3 in Section S4.1 in the Supplements.

• A description of the computing infrastructure used.
We distributed all runs across 2 CPUs per run and 1 GPU per 4 runs for Atari experiments.
We used various GPUs including GTX 1080 Ti, TITAN X, and TITAN V. Our algorithm
takes approximately 10 days.

64

S8 References
[1] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On pixel-wise

explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE,
10(7):e0130140, 2015.

[2] B. Bakker. Reinforcement learning with long short-term memory. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages
1475–1482. MIT Press, 2002.

[3] B. Bakker. Reinforcement learning by backpropagation through an lstm model/critic. In IEEE
International Symposium on Approximate Dynamic Programming and Reinforcement Learning,
pages 127–134, 2007.

[4] F. Beleznay, T. Grobler, and C. Szepesvári. Comparing value-function estimation algorithms in
undiscounted problems. Technical Report TR-99-02, Mindmaker Ltd., 1999.

[5] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research (ICML), pages
449–458. PMLR, 2017.

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

[7] D. P. Bertsekas and J. N. Tsitsiklis. An analysis of stochastic shortest path problems. Math.
Oper. Res., 16(3), 1991.

[8] I.-J. Bienaymé. Considérations àl’appui de la découverte de laplace. Comptes Rendus de
l’Académie des Sciences, 37:309–324, 1853.

[9] V. S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters,
29(5):291–294, 1997.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. ArXiv, 1606.01540, 2016.

[11] I. J. Cox, R. Fu, and L. K. Hansen. Probably approximately correct search. In Advances in
Information Retrieval Theory, pages 2–16. Springer, Berlin, Heidelberg, 2009.

[12] P. Dayan. The convergence of TD(λ) for general λ. Machine Learning, 8:341, 1992.

[13] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu. Openai baselines. https://github.com/openai/baselines, 2017.

[14] A. D. Edwards, L. Downs, and J. C. Davidson. Forward-backward reinforcement learning.
ArXiv, 1803.10227, 2018.

[15] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, S. Legg, and K. Kavukcuoglu. IMPALA: Scalable distributed Deep-RL with
importance weighted actor-learner architectures. In J. Dy and A. Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, 2018. ArXiv: 1802.01561.

[16] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos,
D. Hassabis, O. Pietquin, C. Blundell, and S. Legg. Noisy networks for exploration. ArXiv,
1706.10295, 2018. Sixth International Conference on Learning Representations (ICLR).

[17] Irène Gijbels. Censored data. Wiley Interdisciplinary Reviews: Computational Statistics,
2(2):178–188, 2010.

[18] R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization in Markov
decision processes. Artificial Intelligence, 147(1):163–223, 2003.

65

https://github.com/openai/baselines

[19] A. Goyal, P. Brakel, W. Fedus, T. Lillicrap, S. Levine, H. Larochelle, and Y. Bengio. Recall
traces: Backtracking models for efficient reinforcement learning. ArXiv, 1804.00379, 2018.

[20] S. Grünewälder and K. Obermayer. The optimal unbiased value estimator and its relation to
LSTD, TD and MC. Machine Learning, 83(3):289–330, 2011.

[21] D. Ha and J. Schmidhuber. World models. ArXiv, 1803.10122, 2018.

[22] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Now’e. Expressing arbitrary reward functions
as potential-based advice. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI’15), pages 2652–2658, 2015.

[23] M. J. Hausknecht and P. Stone. Deep recurrent Q-Learning for partially observable MDPs.
ArXiv, 1507.06527, 2015.

[24] N. Heess, G. Wayne, Y. Tassa, T. P. Lillicrap, M. A. Riedmiller, and D. Silver. Learning and
transfer of modulated locomotor controllers. ArXiv, 1610.05182, 2016.

[25] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. G. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning.
ArXiv, 1710.02298, 2017.

[26] S. Hochreiter. Implementierung und Anwendung eines ‘neuronalen’ Echtzeit-Lernalgorithmus
für reaktive Umgebungen. Practical work, Supervisor: J. Schmidhuber, Institut für Informatik,
Technische Universität München, 1990.

[27] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van Hasselt, and D. Silver. Dis-
tributed prioritized experience replay. ArXiv, 1803.00933, 2018. Sixth International Conference
on Learning Representations (ICLR).

[28] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons,
New York, 2001.

[29] T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence of stochastic iterative dynamic
programming algorithms. Neural Computation, 6(6):1185–1201, 1994.

[30] G. H. John. When the best move isn’t optimal: Q-learning with exploration. In Proceedings
of the 10th Tenth National Conference on Artificial Intelligence, Menlo Park, CA, 1994. AAAI
Press., page 1464, 1994.

[31] P. Karmakar and S. Bhatnagar. Two time-scale stochastic approximation with controlled Markov
noise and off-policy temporal-difference learning. Mathematics of Operations Research, 2017.

[32] P. Khandelwal, E. Liebman, S. Niekum, and P. Stone. On the analysis of complex backup
strategies in Monte Carlo Tree Search. In International Conference on Machine Learning, pages
1319–1328, 2016.

[33] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In European Conference on
Machine Learning, pages 282–293. Springer, 2006.

[34] J. Koutník, G. Cuccu, J. Schmidhuber, and F. Gomez. Evolving large-scale neural networks for
vision-based reinforcement learning. In Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’13, pages 1061–1068, 2013.

[35] W. Landecker, M. D. Thomure, L. M. A. Bettencourt, M. Mitchell, G. T. Kenyon, and S. P.
Brumby. Interpreting individual classifications of hierarchical networks. In IEEE Symposium
on Computational Intelligence and Data Mining (CIDM), pages 32–38, 2013.

[36] T. Lattimore and C. Szepesvá. Bandit Algorithms. Cambridge University Press, 2018. Draft of
28th July, Revision 1016.

[37] L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for MDPs.
In Ninth International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2006.

66

[38] L. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis, Carnegie
Mellon University, Pittsburgh, 1993.

[39] G. Lugosi. Concentration-of-measure inequalities. In Summer School on Machine Learning at
the Australian National University,Canberra, 2003. Lecture notes of 2009.

[40] S. Mannor, D. Simester, P. Sun, and J. N. Tsitsiklis. Bias and variance approximation in value
function estimates. Management Science, 53(2):308–322, 2007.

[41] V. A. Marŏenko and L. A. Pastur. Distribution of eigenvalues or some sets of random matrices.
Mathematics of the USSR-Sbornik, 1(4):457, 1967.

[42] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In M. F. Balcan and K. Q. Weinberger,
editors, Proceedings of the 33rd International Conference on Machine Learning (ICML),
volume 48 of Proceedings of Machine Learning Research, pages 1928–1937. PMLR, 2016.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Ried-
miller. Playing Atari with deep reinforcement learning. ArXiv, 1312.5602, 2013.

[44] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, , and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[45] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller. Explaining nonlinear
classification decisions with deep Taylor decomposition. Pattern Recognition, 65:211 – 222,
2017.

[46] G. Montavon, W. Samek, and K.-R. Müller. Methods for interpreting and understanding deep
neural networks. Digital Signal Processing, 73:1–15, 2017.

[47] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with less data
and less time. Machine Learning, 13(1):103–130, 1993.

[48] P. W. Munro. A dual back-propagation scheme for scalar reinforcement learning. In Proceedings
of the Ninth Annual Conference of the Cognitive Science Society, Seattle, WA, pages 165–176,
1987.

[49] A. Y. Ng, D. Harada, and S. J. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Proceedings of the Sixteenth International Conference on
Machine Learning (ICML’99), pages 278–287, 1999.

[50] B. O’Donoghue, I. Osband, R. Munos, and V. Mnih. The uncertainty Bellman equation and
exploration. ArXiv, 1709.05380, 2017.

[51] S. D. Patek. Stochastic and shortest path games: theory and algorithms. PhD thesis, Mas-
sachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science,
1997.

[52] J. Peng and R. J. Williams. Incremental multi-step Q-learning. Machine Learning, 22(1):283–
290, 1996.

[53] J. Pineau. The machine learning reproducibility checklist, 2018.

[54] B. Poulin, R. Eisner, D. Szafron, P. Lu, R. Greiner, D. S. Wishart, A. Fyshe, B. Pearcy, C. Mac-
Donell, and J. Anvik. Visual explanation of evidence in additive classifiers. In Proceedings
of the 18th Conference on Innovative Applications of Artificial Intelligence (IAAI), volume 2,
pages 1822–1829, 2006.

[55] M. L. Puterman. Markov decision processes. In Stochastic Models, volume 2 of Handbooks in
Operations Research and Management Science, chapter 8, pages 331–434. Elsevier, 1990.

[56] M. L. Puterman. Markov Decision Processes. John Wiley & Sons, Inc., 2005.

67

[57] B. Ravindran and A. G. Barto. Symmetries and model minimization in Markov decision
processes. Technical report, University of Massachusetts, Amherst, MA, USA, 2001.

[58] B. Ravindran and A. G. Barto. SMDP homomorphisms: An algebraic approach to abstraction in
semi-Markov decision processes. In Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI’03), pages 1011–1016, San Francisco, CA, USA, 2003. Morgan
Kaufmann Publishers Inc.

[59] A. J. Robinson. Dynamic Error Propagation Networks. PhD thesis, Trinity Hall and Cambridge
University Engineering Department, 1989.

[60] T. Robinson and F. Fallside. Dynamic reinforcement driven error propagation networks with
application to game playing. In Proceedings of the 11th Conference of the Cognitive Science
Society, Ann Arbor, pages 836–843, 1989.

[61] J. Romoff, A. Piché, P. Henderson, V. Francois-Lavet, and J. Pineau. Reward estimation for
variance reduction in deep reinforcement learning. ArXiv, 1805.03359, 2018.

[62] M. Rudelson and R. Vershynin. Non-asymptotic theory of random matrices: extreme singular
values. ArXiv, 1003.2990, 2010.

[63] G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Technical
Report TR 166, Cambridge University Engineering Department, 1994.

[64] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. ArXiv,
1511.05952, 2015.

[65] J. Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised neural
networks for dynamic reinforcement learning and planning in non-stationary environments.
Technical Report FKI-126-90 (revised), Institut für Informatik, Technische Universität München,
1990. Experiments by Sepp Hochreiter.

[66] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117,
2015.

[67] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. ArXiv, 1506.02438, 2015. Fourth International
Conference on Learning Representations (ICLR’16).

[68] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. ArXiv, 1707.06347, 2018.

[69] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[70] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis. Mastering Chess and
Shogi by self-play with a general reinforcement learning algorithm. ArXiv, 1712.01815, 2017.

[71] S. Singh, T. Jaakkola, M. Littman, and C. Szepesvári. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine Learning, 38:287–308, 2000.

[72] S. P. Singh and R. S. Sutton. Reinforcement learning with replacing eligibility traces. Machine
Learning, 22:123–158, 1996.

[73] M. J. Sobel. The variance of discounted Markov decision processes. Journal of Applied
Probability, 19(4):794–802, 1982.

[74] A. Soshnikov. A note on universality of the distribution of the largest eigenvalues in certain
sample covariance matrices. J. Statist. Phys., 108(5-6):1033–1056, 2002.

68

[75] P.-H. Su, D. Vandyke, M. Gasic, N. Mrksic, T.-H. Wen, and S. Young. Reward shaping with
recurrent neural networks for speeding up on-line policy learning in spoken dialogue systems.
In Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and
Dialogue, pages 417–421. Association for Computational Linguistics, 2015.

[76] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. ArXiv,
1703.01365, 2017.

[77] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3:9–44, 1988.

[78] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 2 edition, 2018.

[79] A. Tamar, D. DiCastro, and S. Mannor. Policy gradients with variance related risk criteria.
In J. Langford and J. Pineau, editors, Proceedings of the 29th International Conference on
Machine Learning (ICML’12), 2012.

[80] A. Tamar, D. DiCastro, and S. Mannor. Learning the variance of the reward-to-go. Journal of
Machine Learning Research, 17(13):1–36, 2016.

[81] P. Tchebichef. Des valeurs moyennes. Journal de mathématiques pures et appliquées 2,
12:177–184, 1867.

[82] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning,
16(3):185–202, 1994.

[83] H. van Hasselt. Double Q-learning. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages
2613–2621. Curran Associates, Inc., 2010.

[84] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double Q-learning.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pages 2094–2100.
AAAI Press, 2016.

[85] Z. Wang, N. de Freitas, and M. Lanctot. Dueling network architectures for deep reinforcement
learning. ArXiv, 1511.06581, 2015.

[86] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. de Freitas. Dueling network
architectures for deep reinforcement learning. In M. F. Balcan and K. Q. Weinberger, editors,
Proceedings of the 33rd International Conference on Machine Learning (ICML), volume 48 of
Proceedings of Machine Learning Research, pages 1995–2003. PMLR, 2016.

[87] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, 1989.

[88] C. J. C. H. Watkins and P. Dayan. Q-Learning. Machine Learning, 8:279–292, 1992.

[89] P. J. Werbos. A menu of designs for reinforcement learning over time. In W. T. Miller, R. S.
Sutton, and P. J. Werbos, editors, Neural Networks for Control, pages 67–95. MIT Press,
Cambridge, MA, USA, 1990.

[90] E. Wiewiora. Potential-based shaping and Q-value initialization are equivalent. Journal of
Artificial Intelligence Research, 19:205–208, 2003.

[91] E. Wiewiora, G. Cottrell, and C. Elkan. Principled methods for advising reinforcement learning
agents. In Proceedings of the Twentieth International Conference on International Conference
on Machine Learning (ICML’03), pages 792–799, 2003.

[92] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992.

[93] J. Zhang, Z. L. Lin, J. Brandt, X. Shen, and S. Sclaroff. Top-down neural attention by excitation
backprop. In Proceedings of the 14th European Conference on Computer Vision (ECCV), pages
543–559, 2016. part IV.

69

	Definition of Finite Markov Decision Processes
	Reward Redistribution, Return-Equivalent SDPs, Novel Learning Algorithms, and Return Decomposition
	State Enriched MDPs
	Return-Equivalent Sequence-Markov Decision Processes (SDPs)
	Sequence-Markov Decision Processes (SDPs)
	Return-Equivalent SDPs

	Reward Redistribution for Strictly Return-Equivalent SDPs
	Reward Redistribution

	Reward Redistribution Constructs Strictly Return-Equivalent SDPs
	Special Cases of Strictly Return-Equivalent Decision Processes: Reward Shaping, Look-Ahead Advice, and Look-Back Advice

	Transforming an Immediate Reward MDP to a Delayed Reward MDP
	Transforming an Delayed Reward MDP to an Immediate Reward SDP
	Optimal Reward Redistribution

	Novel Learning Algorithms based on Reward Redistributions
	Q-Value Estimation
	Policy Gradients
	Q-Learning

	Return Decomposition to construct a Reward Redistribution
	Return Decomposition Idea
	Reward Redistribution based on Return Decomposition

	Remarks on Return Decomposition
	Return Decomposition for Binary Reward
	Optimal Reward Redistribution reduces the MDP to a Stochastic Contextual Bandit Problem
	Relation to ''Backpropagation through a Model

	Bias-Variance Analysis of MDP Q-Value Estimators
	Bias-Variance for MC and TD Estimates of the Expected Return
	Mean and Variance of an MDP Sample of the Return
	TD corrects Bias exponentially slowly with Respect to Reward Delay
	MC affects the Variance of Exponentially Many Estimates with Delayed Reward

	Experiments
	Artificial Tasks
	Task (I): Grid World
	Task (II): The Choice
	Task(III): Trace-Back
	Task (IV): Charge-Discharge
	Task (V): Solving Trace-Back using policy gradient methods

	Atari Games
	Architecture
	Lessons Replay Buffer
	Game Processing, Update Design, and Target Design
	Exploration
	Results

	Discussion and Frequent Questions
	Additional Related Work
	Reproducibility Checklist
	References

