
Supplementary Materials

Appendix

A Implementation Details of ISDA.

Dynamic estimation of covariance matrices. During the training process using L∞, covariance
matrices are estimated by:

µ
(t)
j =

n
(t−1)
j µ

(t−1)
j +m

(t)
j µ

′(t)
j

n
(t−1)
j +m

(t)
j

, (1)

Σ
(t)
j =

n
(t−1)
j Σ

(t−1)
j +m

(t)
j Σ′

(t)
j

n
(t−1)
j +m

(t)
j

+
n
(t−1)
j m

(t)
j (µ

(t−1)
j − µ′(t)j )(µ

(t−1)
j − µ′(t)j )T

(n
(t−1)
j +m

(t)
j )2

, (2)

n
(t)
j = n

(t−1)
j +m

(t)
j (3)

where µ(t)
j and Σ

(t)
j are the estimates of average values and covariance matrices of the features of jth

class at tth step. µ′(t)j and Σ′
(t)
j are the average values and covariance matrices of the features of jth

class in tth mini-batch. n(t)j denotes the total number of training samples belonging to jth class in all

t mini-batches, and m(t)
j denotes the number of training samples belonging to jth class only in tth

mini-batch.

Gradient computation. In backward propagation, gradients of L∞ are given by:

∂L∞
∂bj

=
∂L∞
∂zj

=


ezyi∑C
j=1 ezj

− 1, j = yi
ezj∑C

j=1 ezj
, j 6= yi

, (4)

∂L∞
∂wT

j

=

{
(ai +

∑C
n=1[λ(wT

n −wT
yi

)Σi])
∂L∞
∂zj

, j = yi

(ai + λ(wT
j −wT

yi
)Σi)

∂L∞
∂zj

, j 6= yi
, (5)

∂L∞
∂ak

=

C∑
j=1

wjk
∂L∞
∂zj

, 1 ≤ k ≤ A, (6)

where wjk denotes kth element ofwj . ∂L∞/∂Θ can be obtained through the backward propagation
algorithm using ∂L∞/∂a.

B Training Details

On CIFAR, we implement the ResNet, SE-ResNet, Wide-ResNet, ResNeXt, DenseNet and Pyra-
midNet. The SGD optimization algorithm with a Nesterov momentum is applied to train all models.
Specific hyper-parameters for training are presented in Table 1.

On ImageNet, we train ResNet and ResNeXt for 120 epochs using the same l2 weight decay and
momentum as CIFAR, following [1]. The initial learning rate is set as 0.1 and divided by 10 every 30
epochs. The size of mini-batch is set as 256.

All baselines are implemented with the same training configurations mentioned above. Dropout rate
is set as 0.3 for comparison if it is not applied in the basic model, following the instruction in [2]. For
noise rate in disturb label, 0.05 is adopted in Wide-ResNet-28-10 on both CIFAR-10 and CIFAR-100

1



Table 1: Training configurations on CIFAR. ‘lr’ donates the learning rate.
Network Total Epochs Batch Size Weight Decay Momentum Initial lr lr Schedule
ResNet 160 128 1e-4 0.9 0.1 Multiplied by 0.1 in 80th and 120th epoch.

SE-ResNet 200 128 1e-4 0.9 0.1 Multiplied by 0.1 in 80th, 120th and 160th epoch.
Wide-ResNet 240 128 5e-4 0.9 0.1 Multiplied by 0.2 in 60th, 120th, 160th and 200th epoch.
DenseNet-BC 300 64 1e-4 0.9 0.1 Multiplied by 0.1 in 150th, 200th and 250th epoch.

ResNeXt 350 128 5e-4 0.9 0.05 Multiplied by 0.1 in 150th, 225th and 300th epoch.
Shake Shake 1800 64 1e-4 0.9 0.1 Cosine learning rate.
PyramidNet 1800 128 1e-4 0.9 0.1 Cosine learning rate.

Generator
(Fixed)

Convolutional 
Networks 

(Fixed)

Normalize

Fake Images

Real Images

Features

Augment

Figure 1: Overview of the algorithm. We adopt a fixed generator G obtained by training a wasserstein
gan to generate fake images for convolutional networks, and optimize the inputs of G in terms of the
consistency in both the pixel space and the deep feature space.

datasets and ResNet-110 on CIFAR 10, while 0.1 is used for ResNet-110 on CIFAR 100. Focal Loss
contains two hyper-parameters α and γ. Numerous combinations have been tested on the validation
set and we ultimately choose α = 0.5 and γ = 1 for all four experiments. For Lq loss, although [3]
states that q = 0.7 achieves the best performance in most conditions, we suggest that q = 0.4 is more
suitable in our experiments, and therefore adopted. For center loss, we find its performance is largely
affected by the learning rate of the center loss module, therefore its initial learning rate is set as 0.5
for the best generalization performance.

For generator-based augmentation methods, we apply the GANs structures introduced in [4, 5, 6, 7]
to train the generators. For WGAN, a generator is trained for each class in CIFAR-10 dataset. For
CGAN, ACGAN and infoGAN, a single model is simply required to generate images of all classes.
A 100 dimension noise drawn from a standard normal distribution is adopted as input, generating
images corresponding to their label. Specially, infoGAN takes additional input with two dimensions,
which represent specific attributes of the whole training set. Synthetic images are involved with a
fixed ratio in every mini-batch. Based on the experiments on the validation set, the proportion of
generalized images is set as 1/6.

C Reversing Convolutional Networks

To explicitly demonstrate the semantic changes generated by ISDA, we propose an algorithm to map
deep features back to the pixel space. Some extra visualization results are shown in Figure 2.

An overview of the algorithm is presented in Figure 1. As there is no closed-form inverse function
for convolutional networks like ResNet or DenseNet, the mapping algorithm acts in a similar way
to [8] and [9], by fixing the model and adjusting inputs to find images corresponding to the given
features. However, given that ISDA augments semantics of images in essence, we find it insignificant
to directly optimize the inputs in the pixel space. Therefore, we add a fixed pre-trained generator G,
which is obtained through training a wasserstein GAN [4], to produce images for the classification
model, and optimize the inputs of the generator instead. This approach makes it possible to effectively
reconstruct images with augmented semantics.

The mapping algorithm can be divided into two steps:

Step I. Assume a random variable z is normalized to ẑ and input to G, generating fake image G(ẑ).
xi is a real image sampled from the dataset (such as CIFAR). G(ẑ) and xi are forwarded through a
pre-trained convolutional network to obtain deep feature vectors f(G(ẑ)) and ai. The first step of

2



Initial Restored Augmented Initial Restored Augmented

Figure 2: Extra visualization results.
the algorithm is to find the input noise variable zi corresponding to xi, namely

zi = arg min
z
‖f(G(ẑ))− ai‖22 + η‖G(ẑ)− xi‖22, s.t. ẑ =

z − z
std(z)

, (7)

where z and std(z) are the average value and the standard deviation of z, respectively. The
consistency of both the pixel space and the deep feature space are considered in the loss function, and
we introduce a hyper-parameter η to adjust the relative importance of two objectives.

Step II. We augment ai with ISDA, forming ãi and reconstructe it in the pixel space. Specifically,
we search for z′i corresponding to ãi in the deep feature space, with the start point zi found in Step I:

z′i = arg min
z′
‖f(G(ẑ′))− ãi‖22, s.t. ẑ′ =

z′ − z′
std(z′)

. (8)

As the mean square error in the deep feature space is optimized to 0, G(ẑi
′) is supposed to represent

the image corresponding to ãi.

The proposed algorithm is performed on a single batch. In practice, a ResNet-32 network is used as
the convolutional network. We solve Eq. (7), (8) with a standard gradient descent (GD) algorithm of
10000 iterations. The initial learning rate is set as 10 and 1 for Step I and Step II respectively, and is
divided by 10 every 2500 iterations. We apply a momentum of 0.9 and a l2 weight decay of 1e-4.

D Extra Experimental Results

(a) ResNet-110 on CIFAR-10 (b) ResNet-110 on CIFAR-100

Figure 3: Comparison with state-of-the-art image classification methods.
Curves of test errors of state-of-the-art methods and ISDA are presented in Figure 3. ISDA outper-
forms other methods consistently, and shows the best generalization performance in all situations.
Notably, ISDA decreases test errors more evidently in CIFAR-100, which demonstrates that our
method is more suitable for datasets with fewer samples. This observation is consistent with the
results in the paper. In addition, among other methods, center loss shows competitive performance
with ISDA on CIFAR-10, but it fails to significantly enhance the generalization in CIFAR-100.

3



References

[1] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with stochastic
depth,” in ECCV, 2016, pp. 646–661.

[2] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,” Journal of Machine Learning Research,
vol. 15, pp. 1929–1958, 2014.

[3] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for training deep neural networks
with noisy labels,” in NeurIPS, 2018.

[4] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” CoRR, vol. abs/1701.07875, 2017.
[5] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” CoRR, vol. abs/1411.1784,

2014.
[6] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier gans,” in

ICML, 2017, pp. 2642–2651.
[7] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan: Interpretable

representation learning by information maximizing generative adversarial nets,” in NeurIPS,
2016, pp. 2172–2180.

[8] A. Mahendran and A. Vedaldi, “Understanding deep image representations by inverting them,”
in CVPR, 2015, pp. 5188–5196.

[9] P. Upchurch, J. R. Gardner, G. Pleiss, R. Pless, N. Snavely, K. Bala, and K. Q. Weinberger, “Deep
feature interpolation for image content changes,” in CVPR, 2017, pp. 6090–6099.

4


	Implementation Details of ISDA. 
	Training Details
	Reversing Convolutional Networks
	Extra Experimental Results

