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Abstract

Much of model-based reinforcement learning involves learning a model of an
agent’s world, and training an agent to leverage this model to perform a task more
efficiently. While these models are demonstrably useful for agents, every naturally
occurring model of the world of which we are aware—e.g., a brain—arose as the
byproduct of competing evolutionary pressures for survival, not minimization of a
supervised forward-predictive loss via gradient descent. That useful models can
arise out of the messy and slow optimization process of evolution suggests that
forward-predictive modeling can arise as a side-effect of optimization under the
right circumstances. Crucially, this optimization process need not explicitly be a
forward-predictive loss. In this work, we introduce a modification to traditional
reinforcement learning which we call observational dropout, whereby we limit
the agents ability to observe the real environment at each timestep. In doing so,
we can coerce an agent into learning a world model to fill in the observation gaps
during reinforcement learning. We show that the emerged world model, while
not explicitly trained to predict the future, can help the agent learn key skills
required to perform well in its environment. Videos of our results available at
https://learningtopredict.github.io/

1 Introduction

Much of the motivation of model-based reinforcement learning (RL) derives from the potential utility
of learned models for downstream tasks, like prediction [13, 15], planning [1, 35, 40, 41, 43, 64], and
counterfactual reasoning [9, 28]. Whether such models are learned from data, or created from domain
knowledge, there’s an implicit assumption that an agent’s world model [21, 52, 66] is a forward model
for predicting future states. While a perfect forward model will undoubtedly deliver great utility, they
are difficult to create, thus much of the research has been focused on either dealing with uncertainties
of forward models [11, 16, 21], or improving their prediction accuracy [22, 28]. While progress has
been made with current approaches, it is not clear that models trained explicitly to perform forward
prediction are the only possible or even desirable solution.
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Figure 1: Our agent is given only infrequent observations of its environment (e.g., frames 1, 8),
and must learn a world model to fill in the observation gaps. The colorless cart-pole represents the
predicted observations seen by the policy. Under such constraints, we show that world models can
emerge so that the policy can still perform well on a swing-up cart-pole environment.
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We hypothesize that explicit forward prediction is not required to learn useful models of the world,
and that prediction may arise as an emergent property if it is useful for an agent to perform its task.
To encourage prediction to emerge, we introduce a constraint to our agent: at each timestep, the agent
is only allowed to observe its environment with some probability p. To cope with this constraint, we
give our agent an internal model that takes as input both the previous observation and action, and it
generates a new observation as an output. Crucially, the input observation to the model will be the
ground truth only with probability p, while the input observation will be its previously generated
one with probability 1− p. The agent’s policy will act on this internal observation without knowing
whether it is real, or generated by its internal model. In this work, we investigate to what extent world
models trained with policy gradients behave like forward predictive models, by restricting the agent’s
ability to observe its environment.

By jointly learning both the policy and model to perform well on the given task, we can directly
optimize the model without ever explicitly optimizing for forward prediction. This allows the model
to focus on generating any “predictions” that are useful for the policy to perform well on the task,
even if they are not realistic. The models that emerge under our constraints capture the essence of
what the agent needs to see from the world. We conduct various experiments to show, under certain
conditions, that the models learn to behave like imperfect forward predictors. We demonstrate that
these models can be used to generate environments that do not follow the rules that govern the actual
environment, but nonetheless can be used to teach the agent important skills needed in the actual
environment. We also examine the role of inductive biases in the world model, and show that the
architecture of the model plays a role in not only in performance, but also interpretability.

2 Related Work

One promising reason to learn models of the world is to accelerate learning of policies by training
these models. These works obtain experience from the real environment, and fit a model directly
to this data. Some of the earliest work leverage simple model parameterizations – e.g. learnable
parameters for system identification [46]. Recently, there has been large interest in using more
flexible parameterizations in the form of function approximators. The earliest work we are aware of
that uses feed forward neural networks as predictive models for tasks is Werbos [66]. To model time
dependence, recurrent neural network were introduced in [52]. Recently, as our modeling abilities
increased, there has been renewed interest in directly modeling pixels [22, 29, 45, 59]. Mathieu et al.
[37] modify the loss function used to generate more realistic predictions. Denton and Fergus [12]
propose a stochastic model which learns to predict the next frame in a sequence, whereas Finn et al.
[15] employ a different parameterization involving predicting pixel movement as opposed to directly
predicting pixels. Kumar et al. [32] employ flow based tractable density models to learn models, and
Ha and Schmidhuber [21] leverages a VAE-RNN architecture to learn an embedding of pixel data
across time. Hafner et al. [22] propose to learn a latent space, and learn forward dynamics in this
latent space. Other methods utilize probabilistic dynamics models which allow for better planning in
the face of uncertainty [11, 16]. Presaging much of this work is [57], which learns a model that can
predict environment state over multiple timescales via imagined rollouts.

As both predictive modeling and control improves there has been a large number of successes
leveraging learned predictive models in Atari [8, 28] and robotics [14]. Unlike our work, all of
these methods leverage transitions to learn an explicit dynamics model. Despite advances in forward
predictive modeling, the application of such models is limited to relatively simple domains where
models perform well.

Errors in the world model compound, and cause issues when used for control [3, 62]. Amos et al. [2],
similar to our work, directly optimizes the dynamics model against loss by differentiating through a
planning procedure, and Schmidhuber [51] proposes a similar idea of improving the internal model
using an RNN, although the RNN world model is initially trained to perform forward prediction.
In this work we structure our learning problem so a model of the world will emerge as a result of
solving a given task. This notion of emergent behavior has been explored in a number of different
areas and broadly is called “representation learning” [6]. Early work on autoencoders leverage
reconstruction based losses to learn meaningful features [26, 33]. Follow up work focuses on learning
“disentangled” representations by enforcing more structure in the learning procedure[24, 25]. Self
supervised approaches construct other learning problems, e.g. solving a jigsaw puzzle [42], or
leveraging temporal structure [44, 56]. Alternative setups, closer to our own specify a specific
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learning problem and observe that by solving these problems lead to interesting learned behavior (e.g.
grid cells) [4, 10]. In the context of learning models, Watter et al. [65] construct a locally linear latent
space where planning can then be performed.

The force driving model improvement in our work consists of black box optimization. In an effort to
emulate nature, evolutionary algorithms where proposed [18, 23, 27, 60, 67]. These algorithms are
robust and will adapt to constraints such as ours while still solving the given task [7, 34]. Recently,
reinforcement learning has emerged as a promising framework to tackle optimization leveraging
the sequential nature of the world for increased efficiency [38, 39, 53, 54, 61]. The exact type
of the optimization is of less importance to us in this work and thus we choose to use a simple
population-based optimization algorithm [68] with connections to evolution strategies [47, 50, 55].

The boundary between what is considered model-free and model-based reinforcement learning is
blurred when one can considers both the model network and controller network together as one giant
policy that can be trained end-to-end with model-free methods. [49] demonstrates this by training
both world model and policy via evolution. Earlier works [17, 36] demonstrate that agents can learn
goal-directed internal models by delaying or omitting sensory information. Instead of performance,
however, this work focus on understanding what these models learn and show there usefulness – e.g.
training a policy inside the learned models.

3 Motivation: When a random world model is good enough

A common goal when learning a world model is to learn a perfect forward predictor. In this section,
we provide intuitions for why this is not always necessary, and demonstrate how learning on random
“world models” can lead to performant policies when transferred to the real world. For simplicity, we
consider the classical control task of balance cart-pole[5]. While there are many ways of constructing
world models for cart-pole, an optimal forward predictive model will have to generate trajectories of
solutions to the simple linear differential equation describing the pole’s dynamics near the unstable
equilibrium point1. One particular coefficient matrix fully describes these dynamics, thus, for this
example, we identify this coefficient matrix as the free parameters of the world model, M .

While this unique M perfectly describe the dynamics of the pole, if our objective is only to stabilize
the system—not achieve perfect forward prediction—it stands to reason that we may not necessarily
need to know these exact dynamics. In fact, if one solves for the linear feedback parameters that
stabilize a cart-pole system with coefficient matrix M ′ (not necessarily equal to M ), for a wide
variety of M ′, those same linear feedback parameters will also stabilize the “true” dynamics M . Thus
one successful, albeit silly strategy for solving balance cart-pole is choosing a random M ′, finding
linear feedback parameters that stabilize this M ′, and then deploying those same feedback controls to
the “real” model M . We provide the details of this procedure in the Appendix.

Note that the world model learned in this way is almost arbitrarily wrong. It does not produce useful
forward predictions, nor does it accurately estimate any of the parameters of the real world like
the length of the pole, or the mass of the cart. Nonetheless, it can be used to produce a successful
stabilizing policy. In sum, this toy problem exhibits three interesting qualities: 1. That a world model
can be learned that produces a valid policy without needing a forward predictive loss, 2. That a world
model need not itself be forward predictive (at all) to facilitate finding a valid policy, and 3. That
the inductive bias intrinsic to one’s world model almost entirely controls the ease of optimization of
the final policy. Unfortunately, most real world environments are not this simple and will not lead to
performant policies without ever observing the real world. Nonetheless, the underlying lesson that a
world model can be quite wrong, so long as it is wrong the in the right way, will be a recurring theme.

4 Emergent world models by learning to fill in gaps

In the previous section, we outlined a strategy for finding policies without even “seeing” the real
world. In this section, we relax this constraint and allow the agent to periodically switch between
real observations and simulated observations generated by a world model. We call this method
observational dropout, inspired by [58].

1In general, the full dynamics describing cart-pole is non-linear. However, in the limit of a heavy cart and
small perturbations about the vertical at low speeds, it reduces to a linear system. See the Appendix for details.
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Mechanistically, this amounts to a map between a single markov decision process (MDP) into a
different MDP with an augmented state space. Instead of only optimizing the agent in the real
environment, with some probability, at every frame, the agent uses its internal world model to produce
an observation of the world conditioned on its previous observation. When samples from the real
world are used, the state of the world model is reset to the real state— effectively resynchronizing the
agent’s model to the real world.

To show this, consider an MDP with states s ∈ S, transition distribution st+1 ∼ P (st, at), and
reward distribution R(st, a, st+1) we can create a new partially observed MDP with 2 states, s′ =
(sorig, smodel) ∈ (S,S), consisting of both the original states, and the internal state produced by the
world model. The transition function then switches between the real, and world model states with
some probability p:

P ′(at, (s′)t) =

{
(st+1

orig, s
t+1
orig), if p < r

(st+1
orig, s

t+1
model), if p ≥ r (1)

where r ∼ Uniform(0, 1), st+1
orig is the real environment transition, st+1

orig ∼ P (storig, a
t), st+1

model is
the next world model transition, st+1

model ∼M(stmodel, a
t;φ), p is the peek probability.

The observation space of this new partially observed MDP is always the second entry of the state
tuple, s′. As before, we care about performing well on the real environment thus the reward function
is the same as the original environment: R′(st, at, st+1) = R(storig, a

t, st+1
orig). Our learning task

consists of training an agent, π(s; θ), and the world model, M(s, at;φ) to maximize reward in this
augmented MDP. In our work, we parameterize our world model M , and our policy π, as neural
networks with parameters φ and θ respectively. While it’s possible to optimize this objective with any
reinforcement learning method [38, 39, 53, 54], we choose to use population based REINFORCE
[68] due to its simplicity and effectiveness at achieving high scores on various tasks [19, 20, 50]. By
restricting the observations, we make optimization harder and thus expect worse performance on the
underlying task. We can use this optimization procedure, however, to drive learning of the world
model much in the same way evolution drove our internal world models.

One might worry that a policy with sufficient capacity could extract useful data from a world model,
even if that world model’s features weren’t easily interpretable. In this limit, our procedure starts
looking like a strange sort of recurrent network, where the world model “learns” to extract difficult-
to-interpret features (like, e.g., the hidden state of an RNN) from the world state, and then the policy
is powerful enough to learn to use these features to make decisions about how to act. While this is
indeed a possibility, in practice, we usually constrain the capacity of the policies we studied to be
small enough that this did not occur. For a counter-example, see the fully connected world model for
the grid world tasks in Section 4.2.

4.1 What policies can be learned from world models emerged from observation dropout?

As the balance cart-pole task discussed earlier can be trivially solved with a wide range of parameters
for a simple linear policy, we conduct experiments where we apply observational dropout on the
more difficult swing up cart-pole—a task that cannot be solved with a linear policy, as it requires
the agent to learn two distinct subtasks: (1) to add energy to the system when it needs to swing up
the pole, and (2) to remove energy to balance the pole once the pole is close to the unstable, upright
equilibrium [63]. Our setup is closely based on the environment described in [16, 69], where the
ground truth dynamics of the environment is described as [ẍ, θ̈] = F (x, θ, ẋ, θ̇). F is a system of
non-linear equations, and the agent is rewarded for getting x close to zero and cos(θ) close to one.
For more details, see the Appendix.2

The setup of the cart-pole experiment augmented with observational dropout is visualized in Figure 1.
We report the performance of our agent trained in environments with various peek probabilities, p, in
Figure 2 (left). A result higher than ∼ 500 means that the agent is able to swing up and balance the
cart-pole most of the time. Interestingly, the agent is still able to solve the task even when on looking
at a tenth of the frames (p = 10%), and even at a lower p = 5%, it solves the task half of the time.

To understand the extent to which the policy, π relies on the learned world model, M , and to probe the
dynamics learned world model, we trained a new policy entirely within learned world model and then

2Released code to facilitate reproduction of experiments at https://learningtopredict.github.io/
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Figure 2: Left: Performance of cart-pole swing up under various observational dropout probabilities,
p. Here, both the policy and world model are learned. Right: Performance of deploying policies
trained from scratch inside of the environment generated by the world model, in the actual environ-
ment. For each p, the experiment is run 10 times independently (orange). Performance is measured
by averaging cumulative scores over 100 rollouts. Model-based baseline performances learned via
a forward-predictive loss are indicated in red, blue. Note how world models learned when trained
under approximately 3-5% observational dropout can be used to train performant policies.

deployed these policies back to the original environment. Results in Figure 2 (right). Qualitatively,
the agent learns to swing up the pole, and balance it for a short period of time when it achieves a mean
reward above ∼ 300. Below this threshold the agent typically swings the pole around continuously,
or navigates off the screen. We observe that at low peek probabilities, a higher percentage of learned
world models can be used to train policies that behave correctly under the actual dynamics, despite
failing to completely solve the task. At higher peek probabilities, the learned dynamics model is not
needed to solve the task thus is never learned.

We have compared our approach to baseline model-based approach where we explicitly train our
model to predict the next observation on a dataset collected from training a model-free agent from
scratch to solving the task. To our surprise, we find it interesting that our approach can produce
models that outperform an explicitly learned model with the same architecture size (120 units) for
cart-pole transfer task. This advantage goes away, however, if we scale up the forward predictive
model width by 10x.

(a) Policy learned in environment generated using world model.

(b) Deploying policy learned in (a) into real environment.

Figure 3: a. In the generated environment, the cart-pole stabilizes at an angle that is not perfectly
perpendicular, due to its imperfect nature. b. This policy is still able to swing up the cart-pole in the
actual environment, although it remains balanced only for some time before falling down. The world
model is jointly trained with an observational dropout probability of p = 5%.

Figure 3 depicts a trajectory of a policy trained entirely within a learned world model deployed
on the actual environment. It is interesting to note that the dynamics in the world model, M , are
not perfect–for instance, the optimal policy inside the world model can only swing up and balance
the pole at an angle that is not perpendicular to the ground. We notice in other world models, the
optimal policy learns to swing up the pole and only balance it for a short period of time, even in the
self-contained world model. It should not surprise us then, that the most successful policies when
deployed back to the actual environment can swing up and only balance the pole for a short while,
before the pole falls down.

As noted earlier, the task of stabilizing the pole once it is near its target state (when x, θ, ẋ, θ̇ is near
zero) is trivial, hence a policy, π, jointly trained with world model, M , will not require accurate
predictions to keep the pole balanced. For this subtask, π needs only to occasionally observe the
actual world and realign its internal observation with reality. Conversely, the subtask of swinging
the pole upwards and then lowering the velocities is much more challenging, hence π will rely on
the world model to captures the essence of the dynamics for it to accomplish the subtask. The world
model M only learns the difficult part of the real world, as that is all that is required of it to facilitate
the policy performing well on the task.
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4.2 Examining world models’ inductive biases in a grid world

To illustrate the generality of our method to more varied domains, and to further emphasize the
role played by inductive bias in our models, we consider an additional problem: a classic search /
avoidance task in a grid world. In this problem, an agent navigates a grid environment with randomly
placed apples and fires. Apples provide reward, and fires provide negative reward. The agent is
allowed to move in the four cardinal directions, or to perform a no-op. For more details, please refer
to the Appendix.

Figure 4: A cartoon demonstrating the shift of the receptive field of the world model as it moves to
the right. The greyed out column indicates the column of forgotten data, and the light blue column
indicates the “new” information gleaned from moving to the right. An optimal predictor would learn
the distribution function p and sample from it to populate this rightmost column, and would match the
ground truth everywhere else. The rightmost heatmap illustrates how predictions of a convolutional
model correlate with the ground truth (more orange = more predictive) when moving to the right,
averaged over 1000 randomized right-moving steps. See the Appendix for more details. Crucially,
this heat map is most predictive for the cells the agent can actually see, and is less predictive for the
cells right outside its field of view (the rightmost column) as expected.

For simplicity, we considered only stateless policies and world models. While this necessarily limits
the expressive capacity of our world models, the optimal forward predictive model within this class of
networks is straightforward to consider: movement of the agent essentially corresponds to a bit-shift
map on the world model’s observation vectors. For example, for an optimal forward predictor, if an
agent moves rightwards, every apple and fire within its receptive field should shift to the left. The
leftmost column of observations shifts out of sight, and is forgotten—as the model is stateless—and
the rightmost column of observations should be populated according to some distribution which
depends on the locations of apples and fires visible to the agent, as well as the particular scheme used
to populate the world with apples and fires. Figure 4 illustrates the receptive field of the world model.

0% 20% 40% 60% 80% 100%

Peek Probability 

0.0
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fc

Figure 5: Performance, R of the two architectures, empirically averaged over hundred policies and a
thousand rollouts as a function of peek probability, p. The convolutional architecture reliably out
performs the fully connected architecture. Error bars indicate standard error. Intuitively, a score near 0
amounts to random motion on the lattice—encountering apples as often as fires, and 2 approximately
corresponds to encountering apples two to three times more often than fires. A baseline that is
trained on a version of the environment without any fires—i.e., a proxy baseline for an agent that can
perfectly avoid fires—reliably achieves a score of 3. Agents were trained for 4000 generations.

This partial observability of the world immediately handicaps the ability of the world model to
perform long imagined trajectories in comparison with the previous continuous, fully observed
cart-pole tasks. Nonetheless, there remains sufficient information in the world to train world models
via observational dropout that are predictive.
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For our numerical experiments we compared two different world model architectures: a fully
connected model and a convolutional model. See the Appendix for more details. Naively, these
models are listed in increasing order of inductive bias, but decreasing order of overall capacity
(10650 parameters for the fully connected model, 1201 learnable parameters for the convolutional
model)—i.e., the fully connected architecture has the highest capacity and the least bias, whereas the
convolutional model has the most bias but the least capacity. The performance of these models on the
task as a function of peek probability is provided in Figure 5. As in the cart-pole tasks, we trained the
agent’s policy and world model jointly, where with some probability p the agent sees the ground truth
observation instead of predictions from its world model.

Curiously, even though the fully connected architecture has the highest overall capacity, and is capable
of learning a transition map closer to the “optimal” forward predictive function for this task if taught
to do so via supervised learning of a forward-predictive loss, it reliably performs worse than the
convolutional architectures on the search and avoidance task. This is not entirely surprising: the
convolutional architectures induce a considerably better prior over the space of world models than
the fully connected architecture via their translational invariance. It is comparatively much easier for
the convolutional architectures to randomly discover the right sort of transition maps.

↓ ↑ → ← no-op
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Empirically averaged correlation matrices between a world model’s output and the ground
truth. Averages were calculated using 1000 random transitions for each direction of a typical
convolutional p = 75% world model. Higher correlation (yellow-white) translates to a world model
that is closer to a next frame predictor. Note that a predictive map is not learned for every direction.
The row and column, respectively of dark pixels for ↓ and→ correspond exactly to the newly-seen
pixels for those directions which are indicated in light-blue in Figure 4.

Because the world model is not being explicitly optimized to achieve forward prediction, it doesn’t
often learn a predictive function for every direction. We selected a typical convolutional world model
and plot its empirically averaged correlation with the ground truth next-frames in Figure 6. Here, the
world model clearly only learns reliable transition maps for moving down and to the right, which is
sufficient. Qualitatively, we found that the convolutional world models learned with peek-probability
close to p = 50% were “best” in that they were more likely to result in accurate transition maps—
similar to the cart-pole results indicated in Figure 2 (right). Fully connected world models reliably
learned completely uninterpretable transition maps (e.g., see the additional correlation plots in the
Appendix). That policies could almost achieve the same performance with fully connected world
models as with convolutional world model is reminiscent of a recurrent architecture that uses the
(generally not-easily-interpretable) hidden state as a feature.

4.3 Car Racing: Keep your eyes off the road
In more challenging environments, observations are often expressed as high dimensional pixel images
rather than state vectors. In this experiment, we apply observation dropout to learn a world model of
a car racing game from pixel observations. We would like to know to what extent the world model
can facilitate the policy at driving if the agent is only allowed to see the road only only a fraction of
the time. We are also interested in the representations the model learns to facilitate driving, and in
measuring the usefulness of its internal representation for this task.

In Car Racing [31], the agent’s goal is to drive around the tracks, which are randomly generated
for each trial, and drive over as many tiles as possibles in the shortest time. At each timestep, the
environment provides the agent with a high dimensional pixel image observation, and the agent
outputs 3 continuous action parameters that control the car’s steering, acceleration, and brakes.

To reduce the dimensionality of the pixel observations, we follow the procedure in [21] and train
a Variational Autoencoder (VAE) [30, 48] using on rollouts collected from a random policy, to
compress a pixel observation into a small dimensional latent vector z. Our agent will use z instead
as its observation. Examples of pixel observations, and reconstructions from their compressed
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Actual frames from rollout (a)

(1) (2) 

(3)

Actual frames from rollout (b)

time ⟶

time ⟶

VAE reconstructions of actual frames

VAE reconstructions of actual frames

VAE decoded images of predicted latent vectors

VAE decoded images of predicted latent vectors

Figure 7: Two examples of action-conditioned predictions from a world model trained at p = 10%
(bottom rows). Red boxes indicate actual observations from the environment the agent is allowed
to see. While the agent is devoid of sight, the world model predicts (1) small movements of the car
relative to the track and (2) upcoming turns. Without access to actual observations for many timesteps,
it incorrectly predicts a turn in (3) until an actual observation realigns the world model with reality.

representations are shown in the first 2 rows of Figure 7. Our policy, a feed forward network, will act
on actual observations with probability p, otherwise on observations produced by the world model.

Our world model, M , a small feed forward network with a hidden layer, outputs the change of the
mean latent vector z, conditioned on the previous observation (actual or predicted) and action taken
(i.e ∆z = M(z, a)). We can use the VAE’s decoder to visualize the latent vectors produced by M ,
and compare them with the actual observations that the agent is not able to see (Figure 7). We observe
that our world model, while not explicitly trained to predict future frames, are still able to make
meaningful action-conditioned predictions. The model also learns to predict local changes in the car’s
position relative to the road given the action taken, and also attempts to predict upcoming curves.
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Ha and Schmidhuber (2018): 906 ± 21

Risi and Stanley (2019): 903 ± 72

chamption solution: 873 ± 71

Figure 8: Left: Mean performance of Car Racing under various p over 100 trials. Right: Mean
performance achieved by training a linear policy using only the outputs of the hidden layer of a world
model learned at peek probability p. We run 5 independent seeds for each p (orange). Model-based
baseline performances learned via a forward-predictive loss are indicated in red, blue. We note
that in this constrained linear policy setup, our best solution out of a population of trials achieves a
performance slightly below reported state-of-the-art results (i.e. [21, 49]). As in the swingup cartpole
experiments, the best world models for training policies occur at a characteristic peek probability
that roughly coincides with the peek probability at which performance begins to degrade for jointly
trained models (i.e., the bend in the left pane occurs near the peak of the right pane).
Our policy π is jointly trained with world model M in the car racing environment augmented with
a peek probability p. The agent’s performance is reported in Figure 8 (left). Qualitatively, a score
above ∼ 800 means that the agent can navigate around the track, making the occasional driving error.
We see that the agent is still able to perform the task when 70% of the actual observation frames are
dropped out, and the world model is relied upon to fill in the observation gaps for the policy.
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If the world model produces useful predictions for the policy, then its hidden representation used
to produce the predictions should also be useful features to facilitate the task at hand. We can test
whether the hidden units of the world model are directly useful for the task, by first freezing the
weights of the world model, and then training from scratch a linear policy using only the outputs of
the intermediate hidden layer of the world model as the only inputs. This feature vector extracted the
hidden layer will be mapped directly to the 3 outputs controlling the car, and we can measure the
performance of a linear policy using features of world models trained at various peek probabilities.

The results reported in Figure 8 (right) show that world models trained at lower peek probabilities
have a higher chance of learning features that are useful enough for a linear controller to achieve an
average score of 800. The average performance of the linear controller peaks when using models
trained with p around 40%. This suggests that a world model will learn more useful representation
when the policy needs to rely more on its predictions as the agent’s ability to observe the environment
decreases. However, a peek probability too close to zero will hinder the agent’s ability to perform its
task, especially in non-deterministic environments such as this one, and thus also affect the usefulness
of its world model for the real world, as the agent is almost completely disconnected from reality.

5 Discussion

In this work, we explore world models that emerge when training with observational dropout for
several reinforcement learning tasks. In particular, we’ve demonstrated how effective world models
can emerge from the optimization of total reward. Even on these simple environments, the emerged
world models do not perfectly model the world, but they facilitate policy learning well enough to
solve the studied tasks.

The deficiencies of the world models learned in this way have a consistency: the cart-pole world
models learned to swing up the pole, but did not have a perfect notion of equilibrium—the grid world
world models could perform reliable bit-shift maps, but only in certain directions—the car racing
world model tended to ignore the forward motion of the car, unless a turn was visible to the agent
(or imagined). Crucially, none of these deficiencies were catastrophic enough to cripple the agent’s
performance. In fact, these deficiencies were, in some cases, irrelevant to the performance of the
policy. We speculate that the complexity of world models could be greatly reduced if they could fully
leverage this idea: that a complete model of the world is actually unnecessary for most tasks—that by
identifying the important part of the world, policies could be trained significantly more quickly, or
more sample efficiently.

We hope this work stimulates further exploration of both model based and model free reinforcement
learning, particularly in areas where learning a perfect world model is intractable.
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