
Supplementary Material: A Simple Baseline for
Bayesian Uncertainty in Deep Learning

1 Asymptotic Normality of SGD

Under conditions of decaying learning rates, smoothness of gradients, and the existence of a full rank
stationary distribution, martingale based analyses of stochastic gradient descent [e.g., 1, Chapter 8]
show that SGD has a Gaussian limiting distribution. That is, in the limit as the time step goes to
infinity, t1/2(θt − θ∗) → N (0,H(θ)−1E(∇ log p(θ)∇ log p(θ)T)H(θ)−1)), where H(θ)−1 is the
inverse of the Hessian matrix of the log-likelihood and E(∇ log p(θ)∇ log p(θ)T) is the covariance
of the gradients and θ∗ is a stationary point or minima. Note that these analyses date back to Ruppert
[23] and Polyak and Juditsky [21] for Polyak-Ruppert averaging, and are still popular in the analysis
of stochastic gradient descent.

Mandt et al. [17] and Chen et al. [5] both use the same style of analyses, but for different purposes.
We will test the specific assumptions of Mandt et al. [17] in the next section. Finally, note that
the technical conditions in these analyses are essentially the same conditions as for the Bernstein
von Mises Theorem [e.g., 25, Chapter 10] which implies that the asymptotic posterior will also be
Gaussian.

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

1.000

5.000

10.000

20.000

20.000

50.000

50.000

100.000

100.000

200.000

200.000

8 6 4 2 0 2 4 6 8
8

6

4

2

0

2

4

6

8

1.000

5.000

10.000

20.000

20.000

50.000

50.000

100.000

100.000

200.000

200.000

Figure A1: Trajectory of SGD with isotropic Gaussian gradient noise on a quadratic loss function.
Left: SGD without momentum; Right: SGD with momentum.

It may be counter-intuitive that, as we show in Section 4 SWAG captures the geometry of the
objective correctly. One might even expect SWAG estimates of variance to be inverted, as gradient
descent would oscillate more in the sharp directions of the objective. To gain more intuition about
SGD dynamics we visualize SGD trajectory on a quadratic problem. More precisely, we define a
2-dimensional quadratic function f(x, y) = (x+ y)2 + 0.05 · (x− y)2 shown in Figure A1. We then
run SGD to minimize this function.

It turns out that the gradient noise plays a crucial role in forming the SGD stationary distribution. If
there is no noise in the gradients, we are in the full gradient descent regime, and optimization either
converges to the optimizer, or diverges to infinity depending on the learning rate. However, when we
add isotropic Gaussian noise to the gradients, SGD converges to the correct Gaussian distribution, as
we visualize in the left panel of Figure A1. Furthermore, adding momentum affects the scale of the

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

distribution, but not its shape, as we show in the right panel of Figure A1. These conclusions hold as
long as the learning rate in SGD is not too large.

The results we show in Figure A1 are directly predicted by theory in Mandt et al. [17]. In general,
if the gradient noise is not isotropic, the stationary distribution of SGD would be different from
the exact posterior distribution. Mandt et al. [17] provide a thorough empirical study of the SGD
trajectory for convex problems, such as linear and logistic regression, and show that SGD can often
provide a competitive baseline on these problems.

1.1 Other Related Work

Given the covariance matrix A = H(θ)−1E(∇ log p(θ)∇ log p(θ)T)H(θ)−1, Chen et al. [5] show
that a batch means estimator of the iterates (similar to what SWAG uses) themselves will converge
to A in the limit of infinite time. We tried batch means based estimators but saw no improvement;
however, it could be interesting to explore further in future work.

Intriguingly, the covariance A is the same form as sandwich estimators [see e.g. 19, for a Bayesian
analysis in the model mis-specification setting], and so A = H(θ)−1 under model well-specification
[19, 5]. We then tie the covariance matrix of the iterates back to the well known Laplace approx-
imation, which uses H(θ)−1 as its covariance as described by MacKay [16, Chapter 28], thereby
justifying SWAG theoretically as a sample based Laplace approximation.

Finally, in Chapter 4 of Berger [2] constructs an example (Example 10) of fitting a Gaussian
approximation from a MCMC chain, arguing that it empirically performs well in Bayesian decision
theoretic contexts. Berger [2] give the explanation for this as the Bernstein von Mises Theorem
providing that in the limit the posterior will itself converge to a Gaussian. However, we would
expect that even in the infinite data limit the posterior of DNNs would converge to something very
non-Gaussian - connected modes surrounded by gorges of zero posterior density [8]. One could use
this justification to justify fitting a Gaussian from the iterates of SGLD or SGHMC instead.

2 Do the assumptions of Mandt et al. [17] hold for DNNs?

In this section, we investigate the results of Mandt et al. [17] in the context of deep learning. Mandt
et al. [17] uses the following assumptions:

1. Gradient noise at each point θ is N (0, C).

2. C is independent of θ and full rank.

3. The learning rates, η, are small enough that we can approximate the dynamics of SGD by a
continuous-time dynamic described by the corresponding stochastic differential equation.

4. In the stationary distribution, the loss is approximately quadratic near the optima, i.e.
approximately (θ− θ∗)>H(θ)(θ− θ∗), whereH(θ∗) is the Hessian at the optimum; further,
the Hessian is assumed to be positive definite.

Assumption 1 is motivated by the central limit theorem, and Assumption 3 is necessary for the
analysis in Mandt et al. [17]. Assumptions 2 and 4 may or may not hold for deep neural networks (as
well as other models). Under these assumptions, Theorem 1 of Mandt et al. [17] derives the optimal
constant learning rate that minimizes the KL-divergence between the SGD stationary distribution and
the posterior1:

η∗ = 2
B

N

d

tr(C)
, (1)

where N is the size of the dataset, d is the dimension of the model, B is the minibatch size and C is
the gradient noise covariance.

We computed Equation 1 over the course of training for two neural networks in Figure A.A2a, finding
that the predicted optimal learning rate was an order of magnitude larger than what would be used in
practice to explore the loss surface in a reasonable time (about 4 compared to 0.1).

1An optimal diagonal preconditioner is also derived; our empirical work applies to that setting as well. A
similar analysis with momentum holds as well, adding in only the momentum coefficient.

2

We now focus on seeing how Assumptions 2 and 4 fail for DNNs; this will give further insight into
what portions of the theory do hold, and may give insights into a corrected version of the optimal
learning rate.

2.1 Assumption 2: Gradient Covariance Noise.

In Figure A.A2b, the trace of the gradient noise covariance and thus the optimal learning rates are
nearly constant; however, the total variance is much too small to induce effective learning rates,
probably due to over-parameterization effects inducing non full rank gradient covariances as was
found in Chaudhari and Soatto [4]. We note that this experiment is not sufficient to be fully confident
that C is independent of the parameterization near the local optima, but rather that tr(C) is close to
constant; further experiments in this vein are necessary to test if the diagonals of C are constant. The
result that tr(C) is close to constant suggests that a constant learning rate could be used for sampling
in a stationary phase of training. The dimensionality parameter in Equation 1 could be modified to
use the number of effective parameters or the rank of the gradient noise to reduce the optimal learning
rate to a feasible number.

To estimate tr(C) from the gradient noise we need to divide the estimated variance by the batch size
(as V (ĝ(θ)) = BC(θ)), for a correct version of Equation 1. From Assumption 1 and Equation 6 of
Mandt et al. [17], we see that

ĝ(θ) ≈ g(θ) +
1√
B
∇g(θ),∇g(θ) ∼ N(0, C(θ)),

where B is the batch size. Thus, collecting the variance of ĝ(θ) (the variance of the stochastic
gradients) will give estimates that are upscaled by a factor of B, leading to a cancellation of the batch
size terms:

η ≈ 2

N

d

tr(V (ĝ(θ)))
.

To include momentum, we can repeat the analysis in Sections 4.1 and 4.3 of Mandt et al. [17] finding
that this also involves scaling the optimal learning rate but by a factor of µ, the momentum term.2
This gives the final optimal learning rate equation as

η ≈ 2µ

N

d

tr(V (ĝ(θ)))
. (2)

In Figure A2b, we computed tr(C) for VGG-16 and PreResNet-164 on CIFAR-100 beginning from
the start of training (referred to as from scratch), as well as the start of the SWAG procedure (referred
to in the legend as SWA). We see that tr(C) is never quite constant when trained from scratch, while
for a period of constant learning rate near the end of training, referred to as the stationary phase,
tr(C) is essentially constant throughout. This discrepancy is likely due to large gradients at the very
beginning of training, indicating that the stationary distribution has not been reached yet.

Next, in Figure A2a, we used the computed tr(C) estimate for all four models and Equation 2 to
compute the optimal learning rate under the assumptions of Mandt et al. [17], finding that these
learning rates are not constant for the estimates beginning at the start of training and that they are too
large (1-3 at the minimum compared to a standard learning rate of 0.1 or 0.01).

2.2 Assumption 4: Hessian Eigenvalues at the Optima

To test assumption 4, we used a GPU-enabled Lanczos method from GPyTorch [7] and used restarting
to compute the minimum eigenvalue of the train loss of a pre-trained PreResNet-164 on CIFAR-
100. We found that even at the end of training, the minimum eigenvalue was −272 (the maximum
eigenvalue was 3580 for comparison), indicating that the Hessian is not positive definite. This result
harmonizes with other work analyzing the spectra of the Hessian for DNN training [15, 24]. Further,
Garipov et al. [8] and Draxler et al. [6] argue that the loss surfaces of DNNs have directions along
which the loss is completely flat, suggesting that the loss is nowhere near a positive-definite quadratic
form.

2Our experiments used µ = 0.1 corresponding to ρ = 0.9 in PyTorch’s SGD implementation.

3

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

O
pt

im
al

L
ea

rn
in

g
R

at
e

×101

PreResNet110 - Scratch

PreResNet110 - SWA

VGG16 - Scratch

VGG16 - SWA

(a) Optimal learning rate.

0 50 100 150 200 250 300
Epoch

0

1

2

3

4

tr
(C

)

×103

PreResNet110 - Scratch

PreResNet110 - SWA

VGG16 - Scratch

VGG16 - SWA

(b) tr(C)
Figure A2: Gradient variance norm and computed optimal learning rates for VGG-16 and PreResNet-
164. The computed optimal learning rates are always too large by a factor of 10, while the gradient
variance stabilizes over the course of training.

3 Further Geometric Experiments

In Figure A3 we present plots analogous to those in Section 4 for PreResNet-110 and VGG-16 on
CIFAR-10 and CIFAR-100. For all dataset-architecture pairs we see that SWAG is able to capture the
geometry of the posterior in the subspace spanned by SGD trajectory.

4

−80 −60 −40 −20 0 20 40 60 80

Distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ra

in
lo

ss
Train loss

PreResNet-164 CIFAR-100

v1 v2 v5

v10 v20

SWAG 3σ region

−80 −60 −40 −20 0 20 40 60 80
v1

−80

−60

−40

−20

0

20

40

60

80

v 2

Train loss
PreResNet-164 CIFAR-100

SWA Trajectory (proj)

SWAG 3σ region

0.084

0.091

0.11

0.15

0.27

0.65

1.7

5

> 5

−40 −20 0 20 40
v3

−40

−20

0

20

40

v 4

Train loss
PreResNet-164 CIFAR-100

SWA Trajectory (proj)

SWAG 3σ region

0.1

0.12

0.14

0.19

0.34

0.75

1.9

5

> 5

−80 −60 −40 −20 0 20 40 60 80

Distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ra

in
lo

ss

Train loss
VGG-16 CIFAR-100

v1 v2 v5

v10 v20

SWAG 3σ region

−80 −60 −40 −20 0 20 40 60 80
v1

−80

−60

−40

−20

0

20

40

60

80

v 2
Train loss

VGG-16 CIFAR-100

SWA Trajectory (proj)

SWAG 3σ region

0.0072

0.015

0.029

0.072

0.2

0.58

1.7

5

> 5

−30 −20 −10 0 10 20 30
v3

−30

−20

−10

0

10

20

30

v 4

Train loss
VGG-16 CIFAR-100

SWA Trajectory (proj)

SWAG 3σ region

0.011

0.023

0.043

0.097

0.25

0.67

1.8

5

> 5

−30 −20 −10 0 10 20 30

Distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ra

in
lo

ss

Train loss
PreResNet-164 CIFAR-10

v1 v2 v5

v10 v20

SWAG 3σ region

−20 −10 0 10 20
v1

−20

−10

0

10

20

v 2

Train loss
PreResNet-164 CIFAR-10

SWA Trajectory (proj)

SWAG 3σ region

0.0013

0.0081

0.02

0.053

0.14

0.4

1.1

3

> 3

−10 −5 0 5 10
v3

−10

−5

0

5

10

v 4

Train loss
PreResNet-164 CIFAR-10

SWA Trajectory (proj)

SWAG 3σ region

0.0013

0.012

0.031

0.08

0.21

0.57

1.5

4.1

> 4.1

−40 −30 −20 −10 0 10 20 30 40

Distance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ra

in
lo

ss

Train loss
VGG-16 CIFAR-10

v1 v2 v5

v10 v20

SWAG 3σ region

−30 −20 −10 0 10 20 30
v1

−30

−20

−10

0

10

20

30

v 2

Train loss
VGG-16 CIFAR-10

SWA Trajectory (proj)

SWAG 3σ region

0.0017

0.0085

0.021

0.054

0.14

0.4

1.1

3

> 3

−15 −10 −5 0 5 10 15
v3

−15

−10

−5

0

5

10

15

v 4

Train loss
VGG-16 CIFAR-10

SWA Trajectory (proj)

SWAG 3σ region

0.0017

0.013

0.031

0.08

0.21

0.56

1.5

4

> 4

Figure A3: Left: Posterior-density cross-sections along the rays corresponding to different eigen-
vectors of the SWAG covariance matrix. Middle: Posterior-density surface in the plane spanned by
eigenvectors of SWAG covariance matrix corresponding to the first and second largest eigenvalues
and (Right:) the third and fourth largest eigenvalues. Each row in the figure corresponds to an
architecture-dataset pair indicated in the title of each panel.

5

175 200 225 250 275 300 325

Epoch

0.750

0.755

0.760

0.765

0.770

A
cc

ur
ac

y

PreResNet56 CIFAR100

Ensemble of SGD Iterates - SWA

Ensemble of SGD Iterates - SGD

SWAG - 30 Samples

SWAG (rank 20) - 30 Samples

SWA

Rank 140

(a)

0 20 40 60 80 100

Number of Samples

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

M
ea

n
N

L
L

WideResNet28x10 CIFAR100

SWAG

SWAG-Diag

SWA

(b)

0 20 40 60 80 100

Number of Samples

0.810

0.812

0.814

0.816

0.818

0.820

0.822

0.824

A
cc

ur
ac

y

WideResNet28x10 CIFAR100

SWAG

SWAG-Diag

SWA

(c)

0 20 40 60 80 100

Number of Samples

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
N

L
L

WideResNet28x10 CIFAR100

Scale

1.25

1

1/sqrt(2)

0.5

0.25

0 (SWA)

(d)

Figure A4: (a) 30 samples of SWAG with a rank 20 covariance matches the SWA result over the
course of training for PreResNet56 on CIFAR-100. SWAG with a rank of 140, SWAG with a rank of
20, and SWA all outperform ensembles of SGD iterates from the SWA procedure and from a standard
SGD training path. (b) NLL and (c) accuracy by number of samples for WideResNet on CIFAR-100
for SWAG, SWAG-Diag, and SWA. 30 samples is adequate for stable accuracies and NLLs. (d) NLL
by number of samples for different scales for WideResNet on CIFAR-100 for SWAG, SWAG-Diag,
and SWA. Scales beneath 1 perform better, with 0.5 and 0.25 best.

4 Hyper-Parameters and Limitations

In this section, we discuss the hyper-parameters in SWAG, as well as some current theoretical
limitations.

4.1 Rank of Covariance Matrix

We now evaluate the effect of the covariance matrix rank on the SWAG approximation. To do so,
we trained a PreResNet56 on CIFAR-100 with SWAG beginning from epoch 161, and evaluated 30
sample Bayesian model averages obtained at different epochs; the accuracy plot from this experiment
is shown in Figure A4 (a). The rank of each model after epoch 161 is simply min(epoch−161, 140),
and 30 samples from even a low rank approximation reach the same predictive accuracy as the SWA
model. Interestingly, both SWAG and SWA outperform ensembles of a SGD run and ensembles of
the SGD models in the SWA run.

4.2 Number of Samples in the Forwards Pass

In most situations where SWAG will be used, no closed form expression for the integral∫
f(y)q(θ|y)dθ, will exist. Thus, Monte Carlo approximations will be used; Monte Carlo inte-

gration converges at a rate of 1/
√
K, where K is the number of samples used, but practically good

results may be found with very few samples (e.g. Chapter 29 of MacKay [16]).

To test how many samples are needed for good predictive accuracy in a Bayesian model averaging
task, we used a rank 20 approximation for SWAG and then tested the NLL on the test set as a function
of the number of samples for WideResNet28x10 [28] on CIFAR-100.

The results from this experiment are shown in Figure A4 (b, c), where it is possible to see that about
3 samples will match the SWA result for NLL, with about 30 samples necessary for stable accuracy
(about the same as SWA for this network). In most of our experiments, we used 30 samples for
consistency. In practice, we suggest tuning this number by looking at a validation set as well as the
computational resources available and comparing to the free SWA predictions that come with SWAG.

4.3 Dependence on Learning Rate

First, we note that the covariance, Σ, estimated using SWAG, is a function of the learning rate (and
momentum) for SGD. While the theoretical work of Mandt et al. [17] suggests that it is possible to
optimally set the learning rate, our experiments in Appendix 2 show that currently the assumptions
of the theory do not match the empirical reality in deep learning. In practice the learning rate can
be chosen to maximize negative log-likelihood on a validation set. In the linear setting as in Mandt
et al. [17], the learning rate controls the scale of the asymptotic covariance matrix. If the optimal

6

learning rate (Equation 1) is used in this setting, the covariance matches the true posterior. To attempt
to disassociate the learning rate from the covariance in practice, we rescale the covariance matrix
when sampling by a constant factor for a WideResNet on CIFAR-100 shown in Figure A4 (d).

Over several replications, we found that a scale of 0.5 worked best, which is expected because the
low rank plus diagonal covariance incorporates the variance twice (once for the diagonal and once
from the low rank component).

4.4 Necessity of Batch Norm Updates

One possible slowdown of SWAG at inference time is in the usage of updated batch norm parameters.
Following Izmailov et al. [11], we found that in order for the averaging and sampling to work well, it
was necessary to update the batch norm parameters of networks after sampling a new model. This is
shown in Figure A5 for a WideResNet on CIFAR-100 for two independently trained models.

0 5 10 15 20 25 30
Number of Samples

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

M
ea

n
N

L
L

WideResNet28x10 CIFAR100

No Batch Norm

Batch Norm

Figure A5: NLL by number of samples for SWAG with and without batch norm updates after
sampling. Updating the batch norm parameters after sampling results in a significant improvement in
NLL.

4.5 Usage in Practice

From our experimental findings, we see that given an equal amount of training time, SWAG typically
outperforms other methods for uncertainty calibration. SWAG additionally does not require a valida-
tion set like temperature scaling and Platt scaling (e.g. Guo et al. [9], Kuleshov et al. [13]). SWAG
also appears to have a distinct advantage over temperature scaling, and other popular alternatives,
when the target data are from a different distribution than the training data, as shown by our transfer
learning experiments.

Deep ensembles [14] require several times longer training for equal calibration, but often perform
somewhat better due to incorporating several independent training runs. Thus SWAG will be
particularly valuable when training time is limited, but inference time may not be. One possible
application is thus in medical applications when image sizes (for semantic segmentation) are large,
but predictions can be parallelized and may not have to be instantaneous.

5 Further Classification Uncertainty Results

5.1 Reliability Diagrams

We provide the additional reliability diagrams for all methods and datasets in Figure A6. SWAG
consistently improves calibration over SWA, and performs on par or better than temperature scaling.
In transfer learning temperature scaling fails to achieve good calibration, while SWAG still provides
a significant improvement over SWA.

7

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

-0.10

0.00

0.10

0.20

0.30

0.40

C
on

fid
en

ce
-

A
cc

ur
ac

y

VGG-16 CIFAR-100

KFAC-Laplace

SGD

SWA-Drop

SWA-Temp

SWAG

SWAG-Diag

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

C
on

fid
en

ce
-

A
cc

ur
ac

y

PreResNet-164 CIFAR-100

KFAC-Laplace

SGD

SWA-Temp

SWAG

SWAG-Diag

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

C
on

fid
en

ce
-

A
cc

ur
ac

y

WideResNet28x10 CIFAR-100

KFAC-Laplace

SGD

SWA-Drop

SWA-Temp

SWAG

SWAG-Diag

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
on

fid
en

ce
-

A
cc

ur
ac

y

VGG-16 CIFAR-10

KFAC-Laplace

SGD

SWA-Drop

SWA-Temp

SWAG

SWAG-Diag

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

C
on

fid
en

ce
-

A
cc

ur
ac

y

PreResNet-164 CIFAR-10

KFAC-Laplace

SGD

SWA-Temp

SWAG

SWAG-Diag

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

-0.05

-0.03

0.00

0.02

0.05

0.08

0.10

0.12

C
on

fid
en

ce
-

A
cc

ur
ac

y

WideResNet28x10 CIFAR-10

KFAC-Laplace

SGD

SWA-Drop

SWA-Temp

SWAG

SWAG-Diag

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

0.00

0.10

0.20

0.30

0.40

0.50

C
on

fid
en

ce
-

A
cc

ur
ac

y

VGG-16 CIFAR-10 → STL-10

SGD

SWA-Drop

SWA-Temp

SWAG

SWAG-Diag

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

0.00

0.10

0.20

0.30

0.40

C
on

fid
en

ce
-

A
cc

ur
ac

y

PreResNet-164 CIFAR-10 → STL-10

SGD

SWA-Temp

SWAG

SWAG-Diag

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
on

fid
en

ce
-

A
cc

ur
ac

y

WideResNet28x10 CIFAR-10 → STL-10

SGD

SWA-Drop

SWA-Temp

SWAG

SWAG-Diag

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

-0.05

-0.03

0.00

0.02

0.05

0.08

0.10

C
on

fid
en

ce
-

A
cc

ur
ac

y

DenseNet-161 ImageNet

SGD

SWA-Temp

SWAG

SWAG-Diag

0.200 0.759 0.927 0.978 0.993 0.998

Confidence (max prob)

-0.08

-0.05

-0.02

0.00

0.02

0.05

0.08

0.10

0.12

C
on

fid
en

ce
-

A
cc

ur
ac

y

ResNet-152 ImageNet

SGD

SWA-Temp

SWAG

SWAG-Diag

Figure A6: Reliability diagrams (see Section 5.1) for all models and datasets. The dataset and
architecture are listed in the title of each panel.

10010−110−310−510−7

Entropy

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

D
en

si
ty

SWAG

In Class

Out of Class

10010−110−310−510−7

Entropy

0.0

0.2

0.4

0.6

0.8

1.0

SWAG-Diag

10010−110−310−510−7

Entropy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

SWA

10010−110−310−510−7

Entropy

0.0

0.2

0.4

0.6

0.8

SGD

10010−110−310−510−7

Entropy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Dropout

10010−110−310−510−7

Entropy

0.0

0.2

0.4

0.6

0.8

1.0

Temperature Scaling

Figure A7: In and out of sample entropy distributions for WideResNet28x10 on CIFAR5 + 5.

Table 1: Symmetrized, discretized KL divergence between the distributions of predictive entropies for
data from the first and last five classes of CIFAR-10 for models trained only on the first five classes.
The entropy distributions for SWAG are more different than the baseline models.

Method JS-Distance

SWAG 3.31
SWAG-Diag 2.27
MC Dropout 3.04
SWA 1.68
SGD (Baseline) 3.14
SGD + Temp. Scaling 2.98

5.2 Out-of-Domain Image Detection

Next, we evaluate the SWAG variants along with the baselines on out-of-domain data detection.
To do so we train a WideResNet as described in Section 8 on the data from five classes of the
CIFAR-10 dataset, and then analyze their predictions on the full test set. We expect the outputted
class probabilities on objects that belong to classes that were not present in the training data to have
high-entropy reflecting the model’s high uncertainty in its predictions, and considerably lower entropy
on the images that are similar to those on which the network was trained.

8

Table 2: ECE for various versions of SWAG, temperature scaling, and MC Dropout on CIFAR-10
and CIFAR-100.

CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-100 CIFAR-100

Model VGG-16 PreResNet-164 WideResNet28x10 VGG-16 PreResNet-164 WideResNet28x10

SGD 0.0483± 0.0022 0.0255± 0.0009 0.0166± 0.0007 0.1870± 0.0014 0.1012± 0.0009 0.0479± 0.0010
SWA 0.0408± 0.0019 0.0203± 0.0010 0.0087± 0.0002 0.1514± 0.0032 0.0700± 0.0056 0.0684± 0.0022
SWAG-Diag 0.0267± 0.0025 0.0082± 0.0008 0.0047± 0.0013 0.0819± 0.0021 0.0239± 0.0047 0.0322± 0.0018
SWAG 0.0158± 0.0030 0.0053± 0.0004 0.0088± 0.0006 0.0395± 0.0061 0.0587± 0.0048 0.0113± 0.0020
KFAC-Laplace 0.0094± 0.0005 0.0092± 0.0018 0.0060± 0.0003 0.0778± 0.0054 0.0158± 0.0014 0.0379± 0.0047
SWA-Dropout 0.0284± 0.0036 0.0162± 0.0000 0.0094± 0.0014 0.1108± 0.0181 * 0.0574± 0.0028
SWA-Temp 0.0366± 0.0063 0.0172± 0.0010 0.0080± 0.0007 0.0291± 0.0097 0.0175± 0.0037 0.0220± 0.0007
SGLD 0.0082± 0.0012 0.0251± 0.0012 0.0192± 0.0007 0.0424± 0.0029 0.0363± 0.0008 0.0296± 0.0008

Table 3: ECE on ImageNet.

Model DenseNet-161 ResNet-152

SGD 0.0545± 0.0000 0.0478± 0.0000
SWA 0.0509± 0.0000 0.0605± 0.0000
SWAG-Diag 0.0459± 0.0000 0.0566± 0.0000
SWAG 0.0204± 0.0000 0.0279± 0.0000
SWA-Temp 0.0190± 0.0000 0.0183± 0.0000

To make this comparison quantitative, we computed the symmetrized KL divergence between the
binned in and out of sample distributions in Table 1, finding that SWAG and Dropout perform best
on this measure. We plot the histograms of predictive entropies on the in-domain (classes that were
trained on) and out-of-domain (classes that were not trained on) in Figure A.A7 for a qualitative
comparison.

Table 1 shows the computed symmetrized, discretized KL distance between in and out of sample
distributions for the CIFAR5 out of sample image detection class. We used the same bins as in
Figure A7 to discretize the entropy distributions, then smoothed these bins by a factor of 1e-7 before
calculating KL(IN||OUT) + KL(OUT||IN) using the scipy.stats.entropy function. We can
see even qualitatively that the distributions are more distinct for SWAG and SWAG-Diagonal than for
the other methods, particularly temperature scaling.

5.3 Tables of ECE, NLL, and Accuracy.

We provide test accuracies (Tables 8,9,10) and negative log-likelihoods (NLL) (Tables 5,6,7) all
methods and datasets. We observe that SWAG is competitive with SWA, SWA with temperature
scaling and SWA-Dropout in terms of test accuracy, and typically outperforms all the baselines in
terms of NLL. SWAG-Diagonal is generally inferior to SWAG for log-likelihood, but outperforms
SWA.

In Tables 2,3,4 we additionally report expected calibration error [ECE, 20], a metric of calibration of
the predictive uncertainties. To compute ECE for a given model we split the test points into 20 bins
based on the confidence of the model, and we compute the absolute value of the difference of the
average confidence and accuracy within each bin, and average the obtained values over all bins. Please
refer to [20, 9] for more details. We observe that SWAG is competitive with temperature scaling for
ECE. Again, SWAG-Diagonal achieves better calibration than SWA, but using the low-rank plus
diagonal covariance approximation in SWAG leads to substantially improved performance.

6 Language Modeling

We evaluate SWAG using standard Penn Treebank and WikiText-2 benchmark language modeling
datasets. Following [18] we use a 3-layer LSTM model with 1150 units in the hidden layer and an
embedding of size 400; we apply dropout, weight-tying, activation regularization (AR) and temporal
activation regularization (TAR) techniques. We follow [18] for specific hyper-parameter settings such
as dropout rates for different types of layers. We train all models for language modeling tasks and
evaluate validation and test perplexity. For SWA and SWAG we pre-train the models using standard

9

Table 4: ECE on CIFAR10 to STL 10.

Model VGG-16 PreResNet-164 WideResNet28x10

SGD 0.2149± 0.0027 0.1758± 0.0000 0.1561± 0.0000
SWA 0.2082± 0.0056 0.1739± 0.0000 0.1413± 0.0000
SWAG-Diag 0.1719± 0.0075 0.1312± 0.0000 0.1241± 0.0000
SWAG 0.1463± 0.0075 0.1110± 0.0000 0.1017± 0.0000
SWA-Dropout 0.1803± 0.0024 0.1421± 0.0000
SWA-Temp 0.2089± 0.0055 0.1646± 0.0000 0.1371± 0.0000

Table 5: NLL on CIFAR10 and CIFAR100.

Dataset CIFAR-10 CIFAR-100

Model VGG-16 PreResNet-164 WideResNet28x10 VGG-16 PreResNet-164 WideResNet28x10

SGD 0.3285± 0.0139 0.1814± 0.0025 0.1294± 0.0022 1.7308± 0.0137 0.9465± 0.0191 0.7958± 0.0089
SWA 0.2621± 0.0104 0.1450± 0.0042 0.1075± 0.0004 1.2780± 0.0051 0.7370± 0.0265 0.6684± 0.0034
SWAG-Diag 0.2200± 0.0078 0.1251± 0.0029 0.1077± 0.0009 1.0163± 0.0032 0.6837± 0.0186 0.6150± 0.0029
SWAG 0.2016± 0.0031 0.1232± 0.0022 0.1122± 0.0009 0.9480± 0.0038 0.6595± 0.0019 0.6078± 0.0006
KFAC-Laplace 0.2252± 0.0032 0.1471± 0.0012 0.1210± 0.0020 1.1915± 0.0199 0.7881± 0.0025 0.7692± 0.0092
SWA-Dropout 0.2328± 0.0049 0.1270± 0.0000 0.1094± 0.0021 1.1872± 0.0524 0.6500± 0.0049
SWA-Temp 0.2481± 0.0245 0.1347± 0.0038 0.1064± 0.0004 1.0386± 0.0126 0.6770± 0.0191 0.6134± 0.0023
SGLD 0.2001± 0.0059 0.1418± 0.0005 0.1289± 0.0009 0.9699± 0.0057 0.6981± 0.0052 0.678± 0.0022
SGD-Ens 0.1881± 0.002 0.1312± 0.0023 0.1855± 0.0014 0.8979± 0.0065 0.7839± 0.0046 0.7655± 0.0026

Table 6: NLL on ImageNet.

Model DenseNet-161 ResNet-152

SGD 0.9094± 0.0000 0.8716± 0.0000
SWA 0.8655± 0.0000 0.8682± 0.0000
SWAG-Diag 0.8559± 0.0000 0.8584± 0.0000
SWAG 0.8303± 0.0000 0.8205± 0.0000
SWA-Temp 0.8359± 0.0000 0.8226± 0.0000

Table 7: NLL when transferring from CIFAR10 to STL10.

Model VGG-16 PreResNet-164 WideResNet28x10

SGD 1.6528± 0.0390 1.4790± 0.0000 1.1308± 0.0000
SWA 1.3993± 0.0502 1.3552± 0.0000 1.0047± 0.0000
SWAG-Diag 1.2258± 0.0446 1.0700± 0.0000 0.9340± 0.0000
SWAG 1.1402± 0.0342 0.9706± 0.0000 0.8710± 0.0000
SWA-Dropout 1.3133± 0.0000 0.9914± 0.0000
SWA-Temp 1.4082± 0.0506 1.2228± 0.0000 0.9706± 0.0000

Table 8: Accuracy on CIFAR-10 and CIFAR-100.

Dataset CIFAR-10 CIFAR-100

Model VGG-16 PreResNet-164 WideResNet28x10 VGG-16 PreResNet-164 WideResNet28x10

SGD 93.17± 0.14 95.49± 0.06 96.41± 0.10 73.15± 0.11 78.50± 0.32 80.76± 0.29
SWA 93.61± 0.11 96.09± 0.08 96.46± 0.04 74.30± 0.22 80.19± 0.52 82.40± 0.16
SWAG-Diag 93.66± 0.15 96.03± 0.10 96.41± 0.05 74.68± 0.22 80.18± 0.50 82.40± 0.09
SWAG 93.60± 0.10 96.03± 0.02 96.32± 0.08 74.77± 0.09 79.90± 0.50 82.23± 0.19
KFAC-Laplace 92.65± 0.20 95.49± 0.06 96.17± 0.00 72.38± 0.23 78.51± 0.05 80.94± 0.41
SWA-Dropout 93.23± 0.36 96.18± 0.00 96.39± 0.09 72.50± 0.54 82.30± 0.19
SWA-Temp 93.61± 0.11 96.09± 0.08 96.46± 0.04 74.30± 0.22 80.19± 0.52 82.40± 0.16
SGLD 93.55± 0.15 95.55± 0.04 95.89± 0.02 74.02± 0.30 80.09± 0.05 80.94± 0.17

SGD for 500 epochs, and then run the model for 100 more epochs to estimate the mean θSWA and
covariance Σ in SWAG. For this experiment we introduce a small change to SWA and SWAG: to
estimate the mean θSWA we average weights after each mini-batch of data rather than once per epoch,
as we found more frequent averaging to greatly improve performance. After SWAG distribution

10

Table 9: Accuracy on ImageNet.

Model DenseNet-161 ResNet-152

SGD 77.79± 0.00 78.39± 0.00
SWA 78.60± 0.00 78.92± 0.00
SWAG-Diag 78.59± 0.00 78.96± 0.00
SWAG 78.59± 0.00 79.08± 0.00
SWA-Temp 78.60± 0.00 78.92± 0.00

Table 10: Accuracy when transferring from CIFAR-10 to STL-10.

Model VGG-16 PreResNet-164 WideResNet28x10

SGD 72.42± 0.07 75.56± 0.00 76.75± 0.00
SWA 71.92± 0.01 76.02± 0.00 77.50± 0.00
SWAG-Diag 72.09± 0.04 75.95± 0.00 77.26± 0.00
SWAG 72.19± 0.06 75.88± 0.00 77.09± 0.00
SWA-Dropout 71.45± 0.11 76.91± 0.00
SWA-Temp 71.92± 0.01 76.02± 0.00 77.50± 0.00

Table 11: Unnormalized test log-likelihoods on small UCI datasets for proposed methods, as well
as direct comparisons to the numbers reported in deterministic variational inference (DVI, Wu et al.
[27]) and Deep Gaussian Processes with expectation propagation (DGP1-50, Bui et al. [3]), and
variational inference (VI) with the re-parameterization trick [12]. * denotes reproduction from [27].
Note that SWAG wins on two of the six datasets, and that SGD serves as a strong baseline throughout.

dataset N D SGD SWAG DVI* DGP1-50* VI* SGLD* PBP*

boston 506 13 -2.536 ± 0.240 -2.469 ± 0.183 -2.41 ± 0.02 -2.33 ± 0.06 -2.43 ±0.03 -2.40 ± 0.05 -2.57 ± 0.09
concrete 1030 8 -3.02 ± 0.126 -3.05 ± 0.1 -3.06 ± 0.01 -3.13 ± 0.03 -3.04 ±0.02 -3.08 ± 0.03 -3.16 ± 0.02
energy 768 8 -1.736 ± 1.613 -1.679 ± 1.488 -1.01 ± 0.06 -1.32 ± 0.03 -2.38 ±0.02 -2.39 ± 0.01 -2.04 ± 0.02
naval 11934 16 6.567 ± 0.185 6.708 ± 0.105 6.29 ± 0.04 3.60 ± 0.33 5.87 ±0.29 3.33 ± 0.01 3.73 ± 0.01
yacht 308 6 -0.418 ± 0.426 -0.404 ± 0.418 -0.47 ± 0.03 -1.39 ± 0.14 -1.68 ±0.04 -2.90 ± 0.01 -1.63 ± 0.02
power 9568 4 -2.772 ± 0.04 -2.775 ± 0.038 -2.80 ± 0.00 -2.81 ± 0.01 -2.66 ± 0.01 -2.67 ± 0.00 -2.84 ± 0.01

is constructed we sample and ensemble 30 models from this distribution. We use rank-10 for the
low-rank part of the covariance matrix of SWAG distribution.

7 Regression

For the small UCI regression datasets, we use the architecture from Wu et al. [27] with one hidden
layer with 50 units, training for 50 epochs (starting SWAG at epoch 25) and using 20 repetitions of
90/10 train test splits. We fixed a single seed for tuning before using 20 different seeds for the results
in the paper.

We use SGD3, manually tune learning rate and weight decay, and use batch size of N/10 where
N is the dataset size. All models predict heteroscedastic uncertainty (i.e. output a variance). In
Table 11, we compare subspace inference methods to deterministic VI (DVI, Wu et al. [27]) and deep
Gaussian processes with expectation propagation (DGP1-50 Bui et al. [3]). SWAG outperforms DVI
and the other methods on three of the six datasets and is competitive on the other three despite its
vastly reduced computational time (the same as SGD whereas DVI is known to be 300x slower).
Additionally, we note the strong performance of well-tuned SGD as a baseline against the other
approximate inference methods, as it consistently performs nearly as well as both SWAG and DVI.

Finally, in Table 11, we compare the calibration (coverage of the 95% credible sets of SWAG and 95%
confidence regions of SGD) of both SWAG and SGD. Note that neither is ever too over-confident (far
beneath 95% coverage) and that SWAG is considerably better calibrated on four of the six datasets.

3Except for concrete where we use Adam due to convergence issues.

11

Table 12: Calibration on small-scale UCI datasets. Bolded numbers are those closest to 0.95 %the
predicted coverage).

N D SGD SWAG

boston 506 13 0.913 ± 0.039 0.936 ± 0.036
concrete 1030 8 0.909 ± 0.032 0.930 ± 0.023
energy 768 8 0.947 ± 0.026 0.951 ± 0.027
naval 11934 16 0.948 ± 0.051 0.967 ± 0.008
yacht 308 6 0.895 ± 0.069 0.898 ± 0.067
power 9568 4 0.956 ± 0.006 0.957 ± 0.005

8 Classification Experimental Details and Parameters

In this section we describe all of the architectures and hyper-parameters we use in Sections 5.1, 5.2.

On ImageNet we use architecture implementations and pre-trained weights from https://github.
com/pytorch/vision/tree/master/torchvision. For the experiments on CIFAR datasets we
adapted the following implementations:

• VGG-16: https://github.com/pytorch/vision/blob/master/torchvision/models/
vgg.py

• Preactivation-ResNet-164: https://github.com/bearpaw/pytorch-classification/
blob/master/models/cifar/preresnet.py

• WideResNet28x10: https://github.com/meliketoy/wide-resnet.pytorch/blob/
master/networks/wide_resnet.py

For all datasets and architectures we use the same piecewise constant learning rate schedule and
weight decay as in Izmailov et al. [11], except we train Pre-ResNet for 300 epochs and start averaging
after epoch 160 in SWAG and SWA. For all of the methods we are using our own implementations in
PyTorch. We describe the hyper-parameters for all experiments for each model:

SWA We use the same hyper-parameters as Izmailov et al. [11] on CIFAR datasets. On ImageNet
we used a constant learning rate of 10−3 instead of the cyclical schedule, and averaged 4 models per
epoch. We adapt the code from https://github.com/timgaripov/swa for our implementation of
SWA.

SWAG In all experiments we use rank K = 20 and use 30 weight samples for Bayesian model
averaging. We re-use all the other hyper-parameters from SWA.

KFAC-Laplace For our implementation we adapt the code for KFAC Fisher approximation from
https://github.com/Thrandis/EKFAC-pytorch and implement our own code for sampling. Follow-
ing [22] we tune the scale of the approximation on validation set for every model and dataset.

MC-Dropout In order to implement MC-dropout we add dropout layers before each weight layer
and sample 30 different dropout masks for Bayesian model averaging at inference time. To choose
the dropout rate, we ran the models with dropout rates in the set {0.1, 0.05, 0.01} and chose the one
that performed best on validation data. For both VGG-16 and WideResNet28x10 we found that
dropout rate of 0.05 worked best and used it in all experiments. On PreResNet-164 we couldn’t
achieve reasonable performance with any of the three dropout rates, which has been reported from
the work of He et al. [10]. We report the results for MC-Dropout in combination with both SWA
(SWA-Drop) and SGD (SGD-Drop) training.

Temperature Scaling For SWA and SGD solutions we picked the optimal temperature by min-
imizing negative log-likelihood on validation data, adapting the code from https://github.com/
gpleiss/temperature_scaling.

12

SGLD We initialize SGLD from checkpoints pre-trained with SGD. We run SGLD for 100 epochs
on WideResNet and for 150 epochs on PreResNet-156. We use the learning rate schedule of [26]:

ηt =
η0

(η1 + t)0.55
.

We tune constants a, b on validation. For WideResNet we use a = 38.0348, b = 13928.7 and for
PreResNet we use a = 40.304, b = 15476.4; these values are selected so that the initial learning
rate is 0.2 and final learning rate is 0.1. We also had to rescale the noise in the gradients by a factor
of 5 · 10−4 compared to [26]. Without this rescaling we found that even with learning rates on the
scale of 10−7 SGD diverged. We note that noise rescaling is commonly used with stochastic gradient
MCMC methods (see e.g. the implementation of [29]).

On CIFAR datasets for tuning hyper-parameters we used the last 5000 training data points as a
validation set. On ImageNet we used 5000 of test data points for validation. On the transfer task for
CIFAR10 to STL10, we report accuracy on all 10 STL10 classes even though frogs are not a part of
the STL10 test set (and monkeys are not a part of the CIFAR10 training set).

References
[1] Asmussen, S. and Glynn, P. W. (2007). Stochastic simulation: algorithms and analysis.

Number 57 in Stochastic modelling and applied probability. Springer, New York. OCLC:
ocn123113652.

[2] Berger, J. O. (2013). Statistical decision theory and Bayesian analysis. Springer Science &
Business Media.

[3] Bui, T., Hernández-Lobato, D., Hernandez-Lobato, J., Li, Y., and Turner, R. (2016). Deep
gaussian processes for regression using approximate expectation propagation. In International
Conference on Machine Learning, pages 1472–1481.

[4] Chaudhari, P. and Soatto, S. (2018). Stochastic gradient descent performs variational infer-
ence, converges to limit cycles for deep networks. In International Conference on Learning
Representations. arXiv: 1710.11029.

[5] Chen, X., Lee, J. D., Tong, X. T., and Zhang, Y. (2016). Statistical Inference for Model Parameters
in Stochastic Gradient Descent. arXiv: 1610.08637.

[6] Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht, F. A. (2018). Essentially No Barriers
in Neural Network Energy Landscape. In International Conference on Machine Learning, page 10.

[7] Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel, D., and Wilson, A. G. (2018). Gpytorch:
Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances in Neural
Information Processing Systems, pages 7587–7597.

[8] Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and Wilson, A. G. (2018). Loss surfaces,
mode connectivity, and fast ensembling of dnns. In Advances in Neural Information Processing
Systems, pages 8789–8798.

[9] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On Calibration of Modern Neural
Networks. In International Conference on Machine Learning. arXiv: 1706.04599.

[10] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition.
In CVPR. arXiv: 1512.03385.

[11] Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson, A. G. (2018). Averaging
weights leads to wider optima and better generalization. Uncertainty in Artificial Intelligence
(UAI).

[12] Kingma, D. P., Salimans, T., and Welling, M. (2015). Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems, pages 2575–
2583.

[13] Kuleshov, V., Fenner, N., and Ermon, S. (2018). Accurate Uncertainties for Deep Learning
Using Calibrated Regression. In International Conference on Machine Learning, page 9.

13

[14] Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. In Advances in Neural Information Processing
Systems.

[15] Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the Loss Landscape
of Neural Nets. In Advances in Neural Information Processing Systems. arXiv: 1712.09913.

[16] MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms. Cambridge
University Press, Cambridge, UK ; New York.

[17] Mandt, S., Hoffman, M. D., and Blei, D. M. (2017). Stochastic Gradient Descent as Approximate
Bayesian Inference. JMLR, 18:1–35.

[18] Merity, S., Keskar, N. S., and Socher, R. (2017). Regularizing and optimizing lstm language
models. arXiv preprint arXiv:1708.02182.

[19] Müller, U. K. (2013). Risk of bayesian inference in misspecified models, and the sandwich
covariance matrix. Econometrica, 81(5):1805–1849.

[20] Naeini, M. P., Cooper, G. F., and Hauskrecht, M. (2015). Obtaining well calibrated probabilities
using bayesian binning. In AAAI, pages 2901–2907.

[21] Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of Stochastic Approximation by Averag-
ing. SIAM Journal on Control and Optimization, 30(4):838–855.

[22] Ritter, H., Botev, A., and Barber, D. (2018). A Scalable Laplace Approximation for Neural
Networks. In International Conference on Learning Representations.

[23] Ruppert, D. (1988). Efficient Estimators from a Slowly Convergent Robbins-Munro Process.
Technical Report 781, Cornell University, School of Operations Report and Industrial Engineering.

[24] Sagun, L., Evci, U., Guney, V. U., Dauphin, Y., and Bottou, L. (2018). Empirical Analysis of
the Hessian of Over-Parametrized Neural Networks. In International Conference on Learning
Representations Workshop Track. arXiv: 1706.04454.

[25] Vaart, A. W. v. d. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, Cambridge.

[26] Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688.

[27] Wu, A., Nowozin, S., Meeds, E., Turner, R. E., Hernández-Lobato, J. M., and Gaunt, A. L.
(2019). Fixing variational bayes: Deterministic variational inference for bayesian neural networks.
In Inernational Conference on Learning Representations. arXiv preprint arXiv:1810.03958.

[28] Zagoruyko, S. and Komodakis, N. (2016). Wide Residual Networks. In BMVC. arXiv:
1605.07146.

[29] Zhang, R., Li, C., Zhang, J., Chen, C., and Wilson, A. G. (2019). Cyclical stochastic gradient
mcmc for bayesian deep learning. arXiv preprint arXiv:1902.03932.

14

