
Appendix A Additional Demonstrations of SNP

In this section, we show additional qualitative demonstrations of SNP and comparisons against NP,
GQN and the ground truth.

A.1 Uncertainty modeling and meta-transfer learning in SNP
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Figure 6: Goal of this demonstration is to show uncertainty modeling and meta-transfer learning in TGQN and
GQN in the jittery color-cube environment. We provide contexts in two phases. In the early phase (t = 0 to
4), we show one observation per time-step while avoiding revealing a particular face. In the late phase (t = 10
to 12), we reveal that face. On the left, we show true face colors of the cube with the numbers showing the
time-step at which it is first revealed. We generate two samples of rollouts of TGQN and GQN each. We make
the following observations. i) In time-steps 5 through 9, we observe that TGQN can model uncertainty when
the face colors are unseen and samples a color from the true palette. ii) In time-steps 10 through 12, we note
that the face revelation updates the color of the previously unseen face. Since the cube dynamics are jittery, we
also note that this context re-synchronises the cube position. Furthermore, we observe that TGQN transfers its
knowledge of previously seen faces and combines it with the newly revealed face, thus performing meta-transfer
learning. This new knowledge is maintained in the predictions made henceforth. iii) Overall, GQN produces
blurred generations with inconsistency in the colors of the unseen faces.
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Figure 7: Goal of this demonstration is to show tracking ability of TGQN versus GQN in the jittery multi-object
environment. We provide contexts in two phases. In the early phase (t = 0 to 4), we show one context
observation at each time-step. Then we let the model predict the next 15 time-steps so that the predictions
diverge from the true scene due to the jitter in the dataset. In the synchronisation phase (t = 20 to 22), we
show one observation per time-step. In this demonstration, we show two samples of the rollout from TGQN
and GQN each from time-steps 5 through 29. We make the following observations. i) In time-steps 5 through
19, TGQN shows that it appropriately models the transition stochasticity as different samples produce different
object positions at t = 19. ii) At t = 20, we see that the context re-synchronises the object positions with the
true positions. iii) Overall, GQN produces blurred generations and is not able to model the cylinders.
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Figure 8: Goal of this demonstration is to show tracking ability of TGQN versus GQN in the 2D color-shapes
dataset. We provide contexts in two phases. In the early phase (t = 0 to 4), we show one context observation at
each time-step. Then we let the model predict the next 5 time-steps so that the predictions diverge from the true
scene due to the random color-change in the dataset. In the synchronisation phase (t = 10 to 12), we show one
observation per time-step. In this demonstration, we show two samples of the rollout from TGQN and GQN each
from time-steps 0 through 19. We make the following observations. i) In time-steps 5 through 9, TGQN shows
that it appropriately models the transition stochasticity as different samples produce different object positions
and color-changes. ii) At t = 10, we see that the context re-synchronises the object positions and colors with the
true ones. iii) Overall, GQN produces blurred generations.
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Figure 9: 1D regression qualitative samples for task (c). Each row corresponds to one time-step. Due to space
limitations, every 5th time-step is shown here instead of every time-step up to 45.
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A.2 Prediction in SNP

In this section, we demonstrate the predictions using SNP.

Figure 10: The goal of this demonstration is to show predictions from t = 5 through 29 using the context shown
only in the early time-steps t < 5. Each row shows views from cameras positioned at angles labelled on the
right. We compare TGQN with GQN and the ground truth. We observe that TGQN makes clear predictions even
beyond the training sequence length T = 10. In contrast, GQN’s generations are blurred with susceptibility to
forgetting face colors.
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Figure 11: The goal of this demonstration is to show predictions from t = 5 through 29 using the context shown
only in the early time-steps t < 5. Each row shows views from cameras positioned at angles labelled on the
right. We compare TGQN with GQN and the ground truth. We observe that TGQN makes clear predictions
even beyond the training sequence length T = 10. In contrast, GQN’s generations are blurred and it also cannot
model the finer details like the cylinder.
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Figure 12: The goal of this demonstration is to show predictions from t = 0 through 29 using the context shown
only in the early time-steps t < 5. We compare TGQN with GQN and the ground truth. The labels on the right
show where the queried patch is located e.g., SW indicates that the query patch is located at south-west corner of
the canvas. We observe in time-steps t ≥ 5, when the context is removed, that TGQN keeps making plausible
predictions in accordance with the stochastic color change rules and motion dynamics. This continues even
beyond the training sequence length T = 20. In contrast, GQN’s predictions are blurred and cannot generalize
beyond T = 20.
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Appendix B ELBO Derivations

In this section, we derive the ELBO expressions that were introduced in the main text of the paper.

B.1 SNP ELBO

In this sub-section we derive the ELBO mentioned in (6). We start with the objective of maximizing
the log-likelihood of the targets given the queries and the contexts.
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which gives us the expression in (6).

B.2 Posterior Dropout ELBO

In this sub-section, we derive the ELBO with posterior dropout (8). As mentioned in Section 3.4, we
choose a subset of time-steps T so that we use the prior distribution to sample the zt and posterior
for the time-steps in T̃ . We start with the objective of maximizing the likelihood of the target images
belonging to the time-steps in T̃ and then proceed with the derivation as shown below.
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which gives us the required expression in (8).
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Appendix C Neural Networks

C.1 Sequential Neural Processes and the baseline Neural Processes for 1D regression

SNP and the NP baseline have two encoders: deterministic encoder and latent encoder. This model
does not consume actions. The deterministic encoder consists of a 6-layer MLP with ReLU (Nair &
Hinton, 2010) activation. The latent encoder consists of a 3-layer MLP with ReLU followed a 2-layer
MLP for computing sufficient statistics of the latent. This encoder acts as a prior when provided only
with the context set, but also acts as the posterior when provided with the target set. We implement
the state-space model using an LSTM with the default Tensorflow (Abadi et al., 2016) settings.

Since NP is not a temporal architecture, normalized time t′ = 0.25 + 0.5× (t/T ) is appended to the
original query x to obtain x̃ = (x, t′).

The dimension of the hidden units is 128. The learning rate and the batch size are 0.0001 and 16,
respectively.

C.2 Temporal Generative Query Networks

Here, we give the details of the implementation of the TGQN model geared towards generation of 3D
scenes. Our implementation is fully convolutional i.e., all the latent states and deterministic states are
3 dimensional tensors.

Generation Below, we outline the implementation of the generative model.
h0 ← learned parameter (Initialize deterministic state) (9)
z0 ← learned parameter (Initial latent) (10)

Ct ←
nt∑
i=1

RepNetθ(x
t
i, y

t
i) (Compute scene representation from observed context) (11)

at ← action embedding (One-hot action embedding) (12)
ht ← RNNθ(ht−1, zt−1, at−1, Ct) (Deterministic state transition) (13)
zt ∼ DRAWθ(ht, at−1, Ct) (Sample zt using DRAW) (14)

yti ← Rendererγ(xti, zt, ht) (Render the image) (15)
More details about the implementation of DRAWθ, RepNetθ and the Rendererγ are provided in
following sections.

Inference Next, we outline the inference procedure used for sampling all the latents z1:T .

Dt ←
mt∑

i=nt+1

RepNetθ(x
t
i, y

t
i) (Compute scene representation from target observations) (16)

bt ← RNNφ(bt+1, Ct, Dt, at) (Encode all observations using a backward RNN) (17)
zt ∼ DRAWφ(ht, at−1, bt) (Sample zt using DRAW.) (18)

Here, h0 is the same as in (9). Next, we compute all the ht’s and sample all the zt’s by using Dt +Ct
instead of just Ct. The ht’s for t > 0 are computed as in (13) using the generative network. All the
zt’s for t > 0 are drawn similar to (14) using DRAWφ. Note that DRAWφ has access to the internal
states of the generative DRAWθ network. This has been omitted in (18) for brevity but is described
in the following sections.

C.2.1 Basic Building Blocks

1. Representation Network: The representation network takes an image-viewpoint pair and sum-
marizes the scene as a 3D tensor. Multiple such representations are combined in an order-invariant
fashion by summing or averaging. We use the Tower Network as described in Eslami et al. (2018).

D = {(x1,y1), (x2,y2), . . . (xm,ym)}

RD =
1

m

m∑
i=1

RepNet(xi,yi)
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Here, D is a set of image-viewpoint pairs and RD is its computed representation.

2. Convolutional LSTM Cell: A standard LSTM Cell where all fully-connected layers are substi-
tuted for convolutional layers.

(hi+1, ci+1)←− ConvLSTM(xi, hi, ci)

where hi is the output of the cell and ci is the recurrent state of the ConvLSTM.

C.2.2 Renderer p(y|z,h,x)

The input to the renderer is the scene information contained in the latent z and deterministic state h
along with the camera viewpoint x. The output is the generated image y. The renderer is deterministic
and iterative where each iteration updates the image canvas as follows.

e(i) ← encoder(y(i))

(d(i+1), c(i+1))← ConvLSTM(e(i),d(i), c(i),x,h, z)

y(i+1) ← y(i) + decoder(d(i+1))

Here, x(i) is the canvas at the ith iteration and the d(i) and c(i) are the hidden state and the cell state
of the convolutional LSTM, respectively. The number of iterations is a model parameter taken as 6.

Next, we describe the details of the encoder and decoder used above.

1. Encoder: Details are shown in the Figure 13.
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Figure 13: Encoder network has two convolutional layers. After each layer, ReLU non-linearity is applied.

2. Decoder: Details are shown in the Figure 14.
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Figure 14: Encoder network has one convolutional layer and two transposed convolutional layers. After each
layer except the last, ReLU non-linearity is applied.

C.2.3 Updating the deterministic state ht

For any t, the deterministic state ht summarizes all the previous latent states z<t. This deterministic
state is updated using a convolutional LSTM. The update may be described as follows.

(ht+1, ct+1)← ConvLSTM(zt,at,ht, ct)

Here, ct is the LSTM’s internal cell state and at is the action received at time t.
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C.2.4 Sampling the latent zt using p(zt|ht,at)

The sampling of latents, like CGQN (Kumar et al., 2018), is done using a DRAW-like auto-regressive
density. Assume that a) h is the deterministic state, b) a is the action provided, c) C is the context
encoding provided at the current time-step and d) D is the target encoding provided at the current
time-step.

Generation This procedure is described in the following equations.

(ĥp0, ĉ
p
0)← learned parameters (Initial RNN state for generation) (19)

(ĥpl , ĉ
p
l )← RNNθ(zl−1

t , ĥpl−1, ĉ
p
l−1,h,a, C) (Update rule for generative RNN) (20)

(µl, σl)← SufficientStatisticsθ(ĥ
p
l ) (See Fig. 15) (21)

zl ∼ N (µl, σl) (Sample the latent at current DRAW step) (22)
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Figure 15: Computing sufficient statistics from the RNN hidden state of the auto-regressive density.

Inference The inference procedure performs a similar sampling of the zl’s but while having access
to the hidden state of the generative RNN computed in (20). This procedure is described in the
following equations.

(ĥp0, ĉ
p
0)← learned parameters (Initial RNN state for generation) (23)

(ĥq0, ĉ
q
0)← learned parameters (Initial RNN state for inference) (24)

(ĥql , ĉ
q
l )← RNNθ(zl−1

t , ĥql−1, ĥ
p
l−1, ĉ

q
l−1,h,a, D) (Update rule for inference RNN) (25)

(µl, σl)← SufficientStatisticsθ(ĥ
q
l ) (See Fig. 15) (26)

zl ∼ N (µl, σl) (Sample the latent at current DRAW step)
(27)

(ĥpl , ĉ
p
l )← RNNθ(zl−1

t , ĥpl−1, ĉ
p
l−1,h,a, C) (Update rule for the generative RNN) (28)
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C.2.5 Hyper-Parameters

In this sub-section, we describe the hyper-parameters used in our training.

Parameter 3D Tasks 2D Tasks

Image Width/Height 64 64
Image Channels 3 3
Latent Width/Height 16 16
Renderer Image Encoding Depth 128 128
ConvLSTM Hidden State Depth 128 128
Context Representation Depth 256 256
SSM Transition State Depth 108 108
Training Batch-Size 4 4
Latent Depth per DRAW step 4 4
Action Input Embedding One-hot N/A
Number of DRAW steps 6 6
Learning Rate 10−5 10−5

Viewpoint Size 3 2
RGB Distribution Gaussian Gaussian
RGB σ2 2.0 2.0
Maximum context per time-step 4 4

Posterior Dropout requires that we randomly choose between using Pθ or Qφ. The choice was
made using a Bernoulli coin-toss with probability 0.3 (for Qφ) at every time-step of each episode for
each training iteration. Furthermore, the training of any task was first initiated without the posterior
dropout ELBO i.e. with α = 0. The posterior dropout ELBO was turned on, i.e. setting α = 1,
after the reconstruction loss using the SNP ELBO had saturated. This is done to avoid conflict in the
training of the encoder network due to two competing reconstruction losses from the two ELBOs in
the initial stages of the training.

C.3 GQN Baseline

Here, we provide some salient details of our implementation the GQN baseline. a) In environments
with actions, the query is a concatenation of the camera viewpoint and the RNN encoding of the
action sequence up to that time-step. This RNN encoding has size 32. In action-less environments,
t as a normalized scalar concatenated to the camera viewpoint. b) We encode contexts (or targets)
from multiple time-steps using sum-pooling as in original GQN. c) During generation, TGQN cannot
observe contexts from future time-steps. So for fair comparison at generation time, we also provide
GQN with an encoding of contexts only up to the time-step that we are interested in querying.

Appendix D Dataset Additional Details

D.1 Gaussian Processes Dataset

In each episode of task (a) and (b), the hyper-parameters of length-scale l ∈ [0.7, 1.2] and kernel-
scale σ ∈ [1.0, 1.6] are randomly drawn at t = 0. In the task (c), l and σ are drawn from ranges
[1.2, 1.9] and [1.6, 3.1], respectively. Similarly, the linear dynamics ∆l ∈ [−0.03, 0.03] and ∆σ ∈
[−0.05, 0.05] are also drawn randomly at t = 0. To perform transitions, we execute l + ∆l and
σ + ∆σ and add a small Gaussian noise at each time-step.

For task (a) and (b), the number of context and target are drawn randomly from n ∈ [5, 50] and
m ∈ [0, 50− n] whenever a non-empty context is being provided else n = 0 and m ∈ [0, 50]. For
task (c), n is 1 and m is in [0, 10− n] whenever a non-empty context is being provided else n = 0
and m ∈ [0, 10].
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D.2 2D Color Shapes Dataset

The canvas and object sizes are 130 × 130 and 38 × 38, respectively. Speed of each object is 13
pixels per time-step and the initial direction is randomly chosen. The bouncing behaviour is modeled
the same way as in the moving MNIST dataset (Srivastava et al., 2015). Shapes can be triangles,
squares or circles and their colors can be red, magenta, blue, cyan, green or yellow. Here, we provide
the fixed rule that we use to decide which object covers the other in case of an overlap.

• Green or yellow cover red and magenta.
• Red or magenta cover blue and cyan.
• Magenta covers red.
• Cyan covers blue.
• Yellow covers green.

In this task, we pick the patch location (viewpoint) uniformly on the canvas. In the prediction regime,
in each of the first 5 time-steps, we randomly decide the context set size n uniformly in range [1, 5]
and the target size m is then taken as the number of remaining observations 20− n. In the tracking
regime, n at each time-step is chosen in the range [0, 2] the remaining observations are used as the
target.

D.3 3D Environment Details

We used the MuJoCo framework and the OpenAI Gym toolkit (Mordatch et al.; Brockman et al.,
2016) to generate the 3D datasets. For training, we created 50,000 episodes where each episode
contains 10 time-steps and each time-step contains 20 images. Therefore, the training is performed on
10 million images. For testing and evaluation, datasets containing 10,000 episodes with 30 time-steps
each were separately generated.

Actions at each time-step are uniformly randomly picked. If an action leads the object outside the
arena, the action is re-picked until it doesn’t. At each time t, we take 20 random camera angles in
[0, 2π) and we use a part of it as context and leave the remaining as target. In the prediction regime,
in each of the first 5 time-steps, we randomly decide the context set sizes uniformly in range [1, 5]. In
the tracking regime, n at each time-step is chosen in the range [0, 2] the remaining observations are
used as the target.
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