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Abstract

Fairness is essential for human society, contributing to stability and productivity.
Similarly, fairness is also the key for many multi-agent systems. Taking fairness
into multi-agent learning could help multi-agent systems become both efficient
and stable. However, learning efficiency and fairness simultaneously is a complex,
multi-objective, joint-policy optimization. To tackle these difficulties, we propose
FEN, a novel hierarchical reinforcement learning model. We first decompose
fairness for each agent and propose fair-efficient reward that each agent learns its
own policy to optimize. To avoid multi-objective conflict, we design a hierarchy
consisting of a controller and several sub-policies, where the controller maximizes
the fair-efficient reward by switching among the sub-policies that provides diverse
behaviors to interact with the environment. FEN can be trained in a fully decentral-
ized way, making it easy to be deployed in real-world applications. Empirically,
we show that FEN easily learns both fairness and efficiency and significantly
outperforms baselines in a variety of multi-agent scenarios.

1 Introduction

Fairness is essential for human society, contributing to stability and productivity. Similarly, fairness
is also the key for many multi-agent systems, e.g., routing [1], traffic light control [2], and cloud
computing [3]. More specifically, in routing, link bandwidth needs to be fairly allocated to packets to
achieve load balance; in traffic light control, resources provided by infrastructure needs to be fairly
shared by vehicles; in cloud computing, resource allocation of virtual machines has to be fair to
optimize profit.

Many game-theoretic methods [4, 5, 6] have been proposed for fair division in multi-agent systems,
which mainly focus on proportional fairness and envy-freeness. Most of them are in static settings,
while some [7, 8, 9] consider the dynamic environment. Recently, multi-agent reinforcement learning
(RL) has been successfully applied to multi-agent sequential decision-making, such as [10, 11, 12,
13, 14, 15, 16]. However, most of them try to maximize the reward of each individual agent or the
shared reward among agents, without taking fairness into account. Only a few methods consider
fairness, but are handcrafted for different applications [17, 18, 19], which all require domain-specific
knowledge and cannot be generalized. Some methods [20, 21, 22] aim to encourage cooperation in
social dilemmas but cannot guarantee fairness.

Taking fairness into multi-agent learning could help multi-agent systems become both efficient and
stable. However, learning efficiency (system performance) and fairness simultaneously is a complex,
multi-objective, joint-policy optimization. To tackle these difficulties, we propose a novel hierarchical
RL model, FEN, to enable agents to easily and effectively learn both efficiency and fairness. First,
we decompose fairness for each agent and propose fair-efficient reward that each agent learns its own
policy to optimize it. We prove that agents achieve Pareto efficiency and fairness is guaranteed in
infinite-horizon sequential decision-making if all agents maximize their own fair-efficient reward
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and learn the optimal policies. However, the conflicting nature between fairness and efficiency
makes it hard for a single policy to learn effectively. To overcome this, we then design a hierarchy,
which consists a controller and several sub-policies. The controller maximizes the fair-efficient
reward by switching among the sub-policies which directly interact with the environment. One of the
sub-policies is designated to maximize the environmental reward, and other sub-policies are guided
by information-theoretic reward to explore diverse possible behaviors for fairness. Additionally,
average consensus, which is included in the fair-efficient reward, coordinates the policies of agents in
fully decentralized multi-agent learning. By saying fully decentralized, we emphasize that there is no
centralized controller, agents exchange information locally, and they learn and execute based on only
local information.

We evaluate FEN in three classic scenarios, i.e., job scheduling, the Mathew effect, and manufacturing
plant. It is empirically demonstrated that FEN obtains both fairness and efficiency and significantly
outperforms existing methods. By ablation studies, we confirm the hierarchy indeed helps agents to
learn more easily. Benefited from distributed average consensus, FEN can learn and execute in a fully
decentralized way, making it easy to be deployed in real-world applications.

2 Related Work

Fairness. There are many existing works on fair division in multi-agent systems. Most of them
focus on static settings [4, 5, 6], where the information of entire resources and agents are known and
fixed, while some of them work on dynamic settings [7, 8, 9], where resource availability and agents
are changing. For multi-agent sequential decision-making, a regularized maximin fairness policy is
proposed [8] to maximize the worst performance of agents while considering the overall performance,
and the policy is computed by linear programming or game-theoretic approach. However, none of
these works are learning approach. Some multi-agent RL methods [17, 18, 19] have been proposed
and handcrafted for resource allocation in specific applications, such as resource allocation on multi-
core systems[17], sharing network resources among UAVs[18], and balancing various resources in
complex logistics networks[19]. However, all these methods require domain-specific knowledge
and thus cannot be generalized. Some methods [20, 21, 22] are proposed to improve cooperation
in social dilemmas. In [20], the reward is shaped for two-player Stag Hunt games, which could
be agents’ average reward in its multi-player version. In [20], one agent’s reward is set to be the
weighted average reward of two agents in two-player Stag Hunt games to induce prosociality. By
extending the inequity aversion model, a shaped reward is designed in [21] to model agent’s envy
and guilt. A reward network is proposed in [22] to generate intrinsic reward for each agent, which
is evolved based on the group’s collective reward. Although cooperation in social dilemmas helps
improve agents’ sum reward, it does not necessarily mean the fairness is guaranteed.

The Matthew effect, summarized as the rich get richer and the poor get poorer, can be witnessed in
many aspects of human society [23], as well as in multi-agent systems, such as preferential attachment
in networking [24, 25] and mining process in blockchain systems [26]. The Matthew effect causes
inequality in society and also performance bottleneck in multi-agent systems. Learning fairness could
avoid the Matthew effect and help systems become stable and efficient.

Multi-Agent RL. Many multi-agent RL models have been recently proposed, such as [10, 11, 12, 13,
14, 15, 16], but all of them only consider efficiency. CommNet [11] and ATOC [13] use continuous
communication for multi-agent cooperation. Opponent modeling [27, 28] learns to reason about
other agents’ behaviors or minds for better cooperation or competition. MADDPG [10] is designed
for mixed cooperative-competitive environments. In these models, each agent only focuses on
optimizing its own local reward. Thus, more capable agents will obtain more rewards and fairness
is not considered. VDN [14], QMIX [15], and COMA [16] are designed for the scenario where all
agents jointly maximize a shared reward. The shared reward is not directly related to fairness. Even
if the shared reward is defined as the sum of local rewards of all agents, we can easily see that higher
reward sum does not mean fairer.

Hierarchical RL. To solve more complex tasks with sparse rewards or long time horizons and to
speed up the learning process, hierarchical RL trains multiple levels of policies. The higher level
policies give goals or options to the lower level policies and only the lowest level applies actions to
the environment. So, the higher levels are able to plan over a longer time horizon or a more complex
task. Learning a decomposition of complex tasks into sub-goals are considered in [29, 30, 31], while

2



learning options are considered in [32, 33, 34]. However, none of these hierarchical RL models can
be directly applied to learning both fairness and efficiency in multi-agent systems.

3 Methods

We propose Fair-Efficient Network, FEN, to enable agents to learn both efficiency and fairness
in multi-agent systems. Unlike existing work, we decompose fairness for each agent and propose
fair-efficient reward, and each agent learns its own policy to optimize it. However, optimizing the
two conflicting objectives is hard for a single learning policy. To this end, we propose a hierarchy
specifically designed for easing this learning difficulty. The hierarchy consists a controller and several
sub-policies, where the controller learns to select sub-policies and each sub-policy learns to interact
with the environment in a different way. Average consensus, which is included in the fair-efficient
reward, coordinates agents’ policies and enables agents to learn in a fully decentralized way.

3.1 Fair-Efficient Reward

In the multi-agent system we consider, there are n agents and limited resources in the environment.
The resources are non-excludable and rivalrous (common resources), e.g., CPU, memory, and network
bandwidth. At each timestep, the environmental reward r an agent obtains is only related to its
occupied resources at that timestep. We define the utility of agent i at timestep t as uit = 1

t

∑t
j=0 r

i
j ,

which is the average reward over elapsed timesteps. We use the coefficient of variation (CV) of agents’

utilities
√

1
n−1

∑n
i=1

(ui−ū)2

ū2 to measure fairness [35], where ū is average utility of all agents. A
system is said to be fairer if and only if the CV is smaller.

In multi-agent sequential decision-making, it is difficult for an individual agent to optimize the CV
since it is not just related to the agent’s own policy, but the joint policies of all agents. However, as
the resources are limited, the upper bound of ū can be easily reached by self-interested agents. Thus,
ū is hardly affected by an individual agent and the contribution of agent i to the variance could be
approximated as (ui − ū)2/ū2. We decompose the fairness objective for each agent and propose the
fair-efficient reward

r̂it =
ūt/c

ε+
∣∣uit/ūt − 1

∣∣ ,
where c is a constant that normalizes the numerator and is set to the maximum environmental reward
the agent obtains at a timestep. In the fair-efficient reward, ūt/c can be seen as the resource utilization
of the system, encouraging the agent to improve efficiency;

∣∣uit/ūt − 1
∣∣ measures the agent’s utility

deviation from the average, and the agent will be punished no matter it is above or below the average,
which leads to low variance; ε is a small positive number to avoid zero denominator. Each agent i
learns its own policy to maximize the objective Fi = E

[∑∞
t=0 γ

tr̂it
]
, where γ is the discount factor.

The fair-efficient reward allows each agent to respond to the behaviors of other agents, which can be
summarized by ū. Therefore, ū can actually coordinate agents’ policies in decentralized multi-agent
learning.

Proposition 1. The optimal fair-efficient policy set π∗ is Pareto efficient in infinite-horizon sequential
decision-making.

Proof. We prove by contradiction. We first prove the resources must be fully occupied. Since
the decision-making is infinite-horizon, the resources could be allocated in any proportion in the
time domain. Assume the resources are not fully used, there must exist another π′, under which
each agent could occupy the remaining resources according to the ratio of ui/nū. Then, we have
|ui′/ū′ − 1| = |ui/ū− 1|, but ū′/c > ū/c. Thus, for each agent i, F ′i > Fi, which contradicts the
pre-condition that π∗ is optimal. We then prove π∗ is Pareto efficient. Assume Pareto efficiency is
not achieved, there must exist ∀i, ui′ > ui∧∃i, ui′ > ui, so

∑n
i=1 u

i′ >
∑n
i=1 u

i, which contradicts
the pre-condition that the resources are fully occupied.

Proposition 2. The optimal fair-efficient policy set π∗ achieves equal allocation when the resources
are fully occupied.

Proof. We prove by contradiction. Assume the allocation is not equal when the resources are fully
occupied, ∃i, ui 6= ū. There must exist another π′, under which agents that have ui > ū can give up
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resources to make ui = ū. Then, for the remaining resources and other agents, this is an isomorphic
subproblem. According to Proposition 1, the resources will be fully occupied by other agents. After
that, we have F ′i > Fi. This process can be repeated until ∀i, F ′i > Fi, which contradicts the
pre-condition that π∗ is optimal.

3.2 Hierarchy

A learning policy could feel ambiguous while considering both fairness and efficiency since they
might conflict in some states. For example, if different behaviors of other agents cause the change of
ū, an agent may need to perform different action at a same state to maximize its fair-efficient reward.
However, this is hard for a single learned policy.

controller

....

sub-policies

(Gossip)

Figure 1: FEN architecture.

To overcome this difficulty, we design a hierarchy that
consists of a controller and several sub-policies param-
eterized respectively by θ and φ , illustrated in Figure 1.
The controller selects one of sub-policies by the sampled
index zt ∼ πθ(·|ot) based on the partial observation ot.
The controller receives the fair-efficient reward r̂ and
acts at a lower temporal resolution than the sub-policies.
Every T timesteps, the controller chooses a sub-policy
and in the next T timesteps, the chosen sub-policy out-
puts actions to interact with the environment.

To obtain efficiency, we designate one of the sub-policies
parameterized by φ1 to maximize the reward r given by
the environment. For other sub-policies, we exploit an
information-theoretic objective to guide the sub-policies
to explore diverse possible behaviors for fairness.

From the perspective of the controller, these sub-policies
should be able to be distinguished from each other and
thus the controller can have more choices. Obviously, we
can not quantify the difference of sub-policies directly.
However, the experienced observations under a sub-policy could indirectly reflect the policy. The
more differences between sub-policies, the less the uncertainty of z is, given observation o under the
policy. That is to say, the mutual information I(Z;O) should be maximized by the sub-policy and
we take it as one term of the objective. On the other hand, to explore diverse possible behaviors, the
sub-policy should act as randomly as possible, so we also maximize the entropy between the action
and observation H(A|O). In summary, the objective of the sub-policy is to maximize

J(φ) = I(Z;O) +H(A|O)

= H(Z)−H(Z|O) +H(A|O)

≈ −H(Z|O) +H(A|O)

= Ez∼πθ,o∼πφ [log p(z|o)] + Ea∼πφ [−p(a|o) log p(a|o)].

As H(Z) is only related to θ, H(Z) can be seen a constant and be neglected. The controller just
outputs the probability pθ(z|o), and thus the first term of the objective can be interpreted as that each
sub-policy tries to maximize the expected probability that it would be selected by the controller. To
maximize it, we can give sub-policies a reward r̃ = log pθ(z|o) at each timestep and use RL to train
the sub-policies. The second term can be treated as an entropy regularization, which is differentiable
and could be optimized by backpropagation.

The hierarchy reduces the difficulty of learning both efficiency and fairness. The controller focuses
on the fair-efficient reward and learns to decide when to optimize efficiency or fairness by selecting
the sub-policy, without directly interacting with the environment. Sub-policy φ1 learns to optimize
the environmental reward, i.e., efficiency. Other sub-policies learn diverse behaviors to meet the
controller’s demand of fairness. The fair-efficient reward changes slowly since it is slightly affected
by immediate environmental reward the sub-policy obtains. Thus, the controller can plan over a long
time horizon to optimize both efficiency and fairness, while the sub-policies only optimize their own
objectives within the given time interval T .
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3.3 Decentralized Training

The centralized policy has an advantage in coordinating all agents’ behaviors. However, the central-
ized policy is hard to train, facing the curse of dimensionality as the number of agents increases. FEN
is a decentralized policy in both training and execution. Although each agent only focuses on its own
fair-efficient reward, they are coordinated by the average consensus on utility.

In the decentralized training, each agent need to perceive the average utility ū to know its current
utility deviation from the average. When the number of agents is small, it is easy to collect the utility
from each agent and compute the average. When the number of agents is large, it may be costly to
collect the utility from each agent in real-world applications. To deal with this, we adopt a gossip
algorithm for distributed average consensus [36]. Each agent i maintains the average utility ūi and
iteratively updates it by

ūi(t+ 1) = ūi(t) +
∑
j∈Ni

wij × (ūj(t)− ūi(t)),

where ūi(0) = ui, Ni is the set of neighboring agents in agent i’s observation, and the weight
wij = 1/(max {di, dj}+ 1), where the degree di = |Ni|. The gossip algorithm is distributed and
requires only limited communication between neighbors to estimate the average.

Algorithm 1 FEN training
1: Initialize ui, ūi, the controller θ and sub-policies φ
2: for episode = 1, . . . ,M do
3: The controller chooses one sub-policy φz
4: for t = 1, . . . ,max-episode-length do
5: The chosen sub-policy φz acts to the environment

and gets the reward
{

rt if z = 1,
log pθ(z|ot) else

6: if t%T = 0 then
7: Update φz using PPO
8: Update ūi (with gossip algorithm)
9: Calculate r̂i = ūi/c

ε+|ui/ūi−1|
10: The controller reselects one sub-policy
11: end if
12: end for
13: Update θ using PPO
14: end for

The training of FEN is detailed in Algo-
rithm 1. The controller and sub-policies
are trained both using PPO [37]. The con-
troller selects one sub-policy every T to in-
teract with the environment. The selected
sub-policy is updated based on the trajec-
tory during T . The controller is updated
based on the trajectory of every sub-policy
selection and its obtained fair-efficient re-
ward during each episode.

4 Experiments

For the experiments, we design three sce-
narios as abstractions of job scheduling,
the Matthew effect, and manufacturing
plant, which are illustrated in Figure 2.
We demonstrate that by each agent decen-
tralizedly optimizing the fair-efficient reward the multi-agent system could obtain a great balance
between efficiency and fairness, and that the hierarchy indeed helps to learn both fairness and ef-
ficiency more easily. In the experiments, we compare FEN against several baselines which have
different optimization objectives and are summarized as follows.

• Independent agents are fully self-interested and each agent maximizes its expected sum
of discounted environmental rewards ψi = E

[∑∞
t=0 γ

trit
]
.

• Inequity Aversion agents receive a shaped reward ri − α
N−1

∑
max(rj − ri, 0) −

β
N−1

∑
max(ri − rj , 0) to model the envy and guilt [21].

Agent Resource Pac-man Ghost Agent Gems

Figure 2: Illustration of experimental scenarios: job scheduling (left), the Matthew effect (mid),
manufacturing plant (right).

5



• Avg agents take the average reward of agents as a shared reward and maximize avgψ =∑
ψi/n [20].

• Min agents consider the worst performance of agents and maximize minψ.

• Min+αAvg agents consider both the worst performance and system performance and maxi-
mize the regularized maximin fairness [8], minψ + αavgψ.

Note that in the last three baselines, all agents share the same optimization objective. To ensure the
comparison is fair, the basic hyperparameters are all the same for FEN and the baselines, which
are summarized in Appendix. The details about the experimental setting of each scenario are also
available in Appendix. Moreover, the code of FEN is at https://github.com/PKU-AI-Edge/FEN.

4.1 Job Scheduling

In this scenario of job scheduling, we investigate whether agents can learn to fairly and efficiently
share a resource. In a 5× 5 grid world, there are 4 agents and 1 resource, illustrated in Figure 2 (left).
The resource’s location is randomly initialized in different episodes, but fixed during an episode.
Each agent has a local observation that contains a square view with 3× 3 grids centered at the agent
itself. At each timestep, each agent can move to one of four neighboring grids or stay at current grid.
If the agent occupies the resource (move to or stay at the resource’s location), it receives a reward of
1, which could be seen as the job is scheduled, otherwise the reward is 0. Two agents cannot stay at a
same grid, making sure the resource can only be occupied by one agent at a timestep. We trained all
the methods for five runs with different random seeds. All experimental results are presented with
standard deviation (also in other two scenarios). Moreover, as all agents are homogeneous in the task,
we let agents share weights for all the methods.

Table 1 shows the performance of FEN and the baselines in terms of resource utilization (sum of
utility), coefficient of variation (CV) of utility (fairness), min utility, and max utility. Independent
has the highest resource utilization, but also the worst CV. Self-interested Independent agents
would not give up the resource for fairness, which is also witnessed by that min utility is 0 and max
utility is 0.88, close to resource utilization. FEN has the lowest CV and the highest min utility. As
only one agent can use the resource at a time, fairly sharing the resource among agents inevitably
incurs the reduction of resource utilization. However, FEN can obtain much better fairness at a
subtle cost of resource utilization, and its resource utilization is slightly less than Independent.
Maximizing avgψ causes high CV since the average is not directly related to fairness. Its resource
utilization is also lower, because avgψ is determined by all the agents, making it hard for individual
agents to optimize by decentralized training. For the same reason, minψ is hard to be maximized by
individual agents. The regularized maximin fairness reward minψ + αavgψ is designed to obtain
a balance between fairness and resource utilization. However, due to the limitations of these two
objective terms, Min+αAvg is much worse than FEN. The CV of Inequity Aversion is better than
Independent but still worse than FEN, and the resource utilization is much lower, showing modeling
envy and guilt is not effective in fairness problems. Moreover, the hyperparameters α and β might
greatly affect the performance.

Table 1: Job scheduling

resource utilization CV min utility max utility

Independent 96% ±11% 1.57 ±0.26 0 0.88 ±0.17

Inequity Aversion 72% ±9% 0.69 ±0.17 0.04 ±0.01 0.35 ±0.12

Min 47% ±8% 0.30 ±0.07 0.07 ±0.02 0.16 ±0.05

Avg 84% ±7% 0.75 ±0.13 0.05 ±0.03 0.46 ±0.17

Min+αAvg 63% ±5% 0.39 ±0.03 0.09 ±0.03 0.24 ±0.06

FEN 90% ±5% 0.17 ±0.05 0.18±0.03 0.28 ±0.07

FEN w/o Hierarchy 57% ±13% 0.22 ±0.06 0.10 ±0.03 0.18 ±0.11

centralized policy
Min 12% ±4% 0.82 ±0.11 0 0.06 ±0.03

Avg 61% ±5% 1.46 ±0.14 0 0.53 ±0.06

Min+αAvg 19% ±5% 0.57 ±0.05 0.02 ±0.01 0.09 ±0.03

w/ Hierarchy
Min 62% ±9% 0.31 ±0.11 0.09 ±0.02 0.21 ±0.05

Avg 84% ±6% 0.61 ±0.14 0.08 ±0.03 0.41 ±0.07

Min+αAvg 71% ±8% 0.28 ±0.09 0.11 ±0.04 0.26 ±0.06
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Figure 3: Learning curves of FEN and FEN
w/o Hierarchy in job scheduling.

Figure 4: Probability of selecting different
sub-policies in terms of (ui − ū)/ū.

Since minψ, avgψ, and minψ + αavgψ do not depend on individual agents, but all agents, we adopt
a centralized policy, which takes all observations and outputs actions for all agents, to optimize each
objective. As shown in Table 1, the centralized policies for Min, Avg, and Min+αAvg are even worse
than their decentralized versions. Although the centralized policy could coordinate agents’ behaviors,
it is hard to train because of the curse of dimensionality. We also tried the centralized policy in the
Matthew effect and manufacturing plant, but it did not work and thus is omitted.

Does the hierarchy indeed help the learning of FEN? To verify the effect of the hierarchy, we trained a
single policy to maximize the fair-efficient reward directly without the hierarchy. Figure 3 illustrates
the learning curves of FEN and FEN w/o Hierarchy, where we can see that FEN converges to a
much higher mean fair-efficient reward than FEN w/o Hierarchy. As shown in Table 1, although
FEN w/o Hierarchy is fairer than other baselines, the resource utilization is mediocre. This is
because it is hard for a single policy to learn efficiency from the fair-efficient reward. However, in
FEN, one of the sub-policies explicitly optimizes the environmental reward to improve the efficiency,
other sub-policies learn diverse fairness behaviors, and the controller optimizes fair-efficient reward
by long time horizon planing. The hierarchy successfully decomposes the complex objective and
reduce the learning difficulty.

To further verify the effectiveness of the hierarchy, we use the hierarchy with other baselines. The
controller maximizes each own objective and the sub-policies are the same as FEN. Table 1 shows
their performance has a certain degree of improvement, especially the resource utilizations of Min
and Min+αAvg raise greatly and the CV of Min+αAvg reduces significantly. That demonstrates the
hierarchy we proposed could reduce learning difficulty in many general cases with both global and
local objectives. However, these baselines with the hierarchy are still worse than FEN in both resource
utilization and CV, verifying the effectiveness of the fair-efficient reward.

In order to analyze the behavior of the controller, in Figure 4 we visualize the probability of selecting
sub-policy φ1 and other sub-policies in terms of the utility deviation from average, (ui − ū)/ū. It
shows when the agent’s utility is below average, the controller is more likely to select φ1 to occupy
the resources, and when the agent’s utility is above average, the controller tends to select other
sub-policies to improve fairness. The controller learns the sensible strategy based on the fair-efficient
reward.

4.2 The Matthew Effect

In this scenario of the Matthew effect, we investigate whether agents can learn to mitigate/avoid the
Matthew effect. In the scenario, there are 10 pac-men (agents) initialized with different positions,
sizes, and speeds and also 3 stationary ghosts initialized at random locations, illustrated in Figure 2
(mid). Each pac-man can observe the nearest three other pac-men and the nearest one ghost. It could
move to one of four directions or stay at current position. Once the distance between the pac-men
and a ghost is less than the agent’s size, the ghost is consumed and the agent gets a reward 1. Then, a
new ghost will be generated at a random location. When the agent gets a reward, its size and speed
will increase correspondingly until the upper bounds are reached. In this scenario, the pac-man who
consumes more ghosts becomes larger and faster, making consume ghosts easier. So, there exists
inherent inequality in the setting. We trained all the models for five runs with different random seeds.
As pac-men are homogeneous, we let pac-men share weights for all the methods.
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Figure 5: The Matthew effect

Figure 5 shows the performance of FEN and the baselines in terms of social welfare (total ghosts
consumed by all the pac-men), CV, and min and max income (consumed ghosts) among pac-men,
episodes to converge. The detailed results are available in Appendix. Random pac-men take random
actions and their CV shows the inherent unfairness of this scenario. Min pac-men cannot learn
reasonable policies, because minψ is always closed to 0. Min+αAvg is only a little fairer than Avg
since the effect of minψ is very weak. Independent causes the Matthew effect as indicated by the
min (close to 0) and max (more than 200) income, where pac-man with initial larger size becomes
larger and larger and ghosts are mostly consumed by these larger pac-men. Inequity Aversion is
slightly fairer than Independent but lower social welfare.

Although Independent has the largest pac-man which consumes ghosts faster than others, this does
not necessarily mean they together consume ghosts fast. FEN is not only fairer than the baselines
but also has the highest social welfare, even higher than Independent. FEN pac-men have similar
sizes and consume more ghosts than the baselines. This demonstrates FEN is capable of tackling the
Matthew effect and helps social welfare increase. FEN w/o Hierarchy focuses more on fairness,
neglecting the efficiency as in the scenario of job scheduling. Moreover, learning without hierarchy is
much slower than FEN in this scenario, as illustrated in Figure 6. FEN w/o Hierarchy takes about
6000 episodes, while FEN takes only about 300 episodes, confirming that the hierarchy indeed speeds
up the training.

Figure 6: Learning curves of FEN, FEN w/
Gossip, and FEN w/o Hierarchy in the
Matthew effect.

Does distributed average consensus affect the perfor-
mance of FEN? Instead of using the centrally computed
average utility, we employ the gossip algorithm to es-
timate the average utility, where each agent only ex-
changes information with the agents in its observation.
As shown in Figure 5, FEN w/ Gossip performs equiv-
alently to FEN with only slight variation on each perfor-
mance metric. The learning curve of FEN w/ Gossip
is also similar to FEN, as illustrated in Figure 6. These
confirm that FEN can be trained in a fully decentralized
way.

Do sub-policies really learn something useful? To an-
swer this question, after the training of FEN, we keep the
learned weights θ and φ1 and replace other sub-policies
with a random sub-policy. Once the controller chooses
other sub-policies instead of φ1, the agent will perform
random actions. In this FEN w/ random sub-policy, the min income become lower than FEN and
CV becomes higher, because the random sub-policy cannot provide fairness behavior the controller
requests. To investigate the difference of learned sub-policies and random sub-policy, we fix the three
ghosts as a triangle at the center of the field and visualize the distribution of an agent’s positions
under each sub-policy, as illustrated in Figure 7. It is clear that the learned sub-policies keep away
from the three ghosts for fairness and their distributions are distinct, concentrated at different corners,
verifying the effect of the information-theoretic reward.

4.3 Manufacturing Plant

In this scenario of manufacturing plant, we investigate whether agents with different needs can learn
to share different types of resources and increase the production in a manufacturing plant. In a 8× 8
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Figure 7: Visualization of learned sub-policies (left three) and random sub-policy (right) in the
Matthew effect.

grid world, there are 5 agents and 8 gems, as illustrated in Figure 2 (right). The gems belong to
three types (y, g, b). Each agent has a local observation that contains a square view with 5× 5 grids
centered at the agent itself, and could move to one of four neighboring grids or stay. When an agent
moves to the grid of one gem, the agent collects the gem and gets a reward of 0.01, and then a new
gem with random type and random location is generated. The total number of gems is limited, and
when all the gems are collected by the agents, the game ends. Each agent has a unique requirement of
numbers for the three types of gems to manufacture a unique part of the product and receive a reward
1. Each product is assembled by the five unique parts manufactured by the five agents, respectively.
So, the number of manufactured products is determined by the least part production among the agents.
Due to the heterogeneity, we let each agent learn its own weights for FEN and the baselines.

Table 2 shows the performance of FEN and the baselines in terms of resource utilization (the ratio
of the number of gems consumed to manufacture the products over the total number of gems), CV,
number of products (minimum number of manufactured parts among agents), and max number of
manufactured parts among agents. In this scenario, agents need to learn to collect the right gems and
then to balance the parts manufactured by each agent (i.e., manufacturing similar large number of
parts), because the unused collected gems and redundant parts will be wasted. FEN manufactures
the most products, more than two times than the baselines. The more products are assembled, the
higher the resource utilization is. Thus, FEN also has the highest resource utilization. Moreover, FEN
is also the fairest one. Although FEN w/o Hierarchy agents are fairer than other baselines, they all
manufacture less parts and hence eventually less products. Avg agents assemble the least products,
though one agent manufactures the largest number of parts, resulting in serious waste.

Table 2: Manufacturing plant

resource utilization CV no. products max parts

Independent 28% ±5% 0.38 ±0.08 19 ±3 58 ±8

Inequity Aversion 27% ±6% 0.27 ±0.06 19 ±4 42 ±7

Min 29% ±6% 0.26 ±0.01 20 ±4 41 ±7

Avg 13% ±3% 0.63 ±0.07 9 ±2 71 ±9

Min+αAvg 34% ±6% 0.28 ±0.01 23 ±4 45 ±7

FEN 82% ±5% 0.10 ±0.03 48 ±3 63 ±3

FEN w/o Hierarchy 22% ±3% 0.18 ±0.07 15 ±1 24 ±4

5 Conclusion

We have proposed FEN, a novel hierarchical reinforcement learning model to learn both fairness and
efficiency, driven by fair-efficient reward, in multi-agent systems. FEN consists of one controller and
several sub-policies, where the controller learns to optimize the fair-efficient reward, one sub-policy
learns to optimize the environmental reward, and other sub-policies learn to provide diverse fairness
behaviors guided by the derived information-theoretic reward. FEN can learn and execute in a fully
decentralized way, coordinated by average consensus. It is empirically demonstrated that FEN easily
learns both fairness and efficiency and significantly outperforms baselines in a variety of multi-agent
scenarios including job scheduling, the Matthew effect, and manufacturing plant.
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