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Abstract

Existing Rademacher complexity bounds for neural networks rely only on norm
control of the weight matrices and depend exponentially on depth via a product of
the matrix norms. Lower bounds show that this exponential dependence on depth is
unavoidable when no additional properties of the training data are considered. We
suspect that this conundrum comes from the fact that these bounds depend on the
training data only through the margin. In practice, many data-dependent techniques
such as Batchnorm improve the generalization performance. For feedforward
neural nets as well as RNNs, we obtain tighter Rademacher complexity bounds by
considering additional data-dependent properties of the network: the norms of the
hidden layers of the network, and the norms of the Jacobians of each layer with
respect to all previous layers. Our bounds scale polynomially in depth when these
empirical quantities are small, as is usually the case in practice. To obtain these
bounds, we develop general tools for augmenting a sequence of functions to make
their composition Lipschitz and then covering the augmented functions. Inspired
by our theory, we directly regularize the network’s Jacobians during training and
empirically demonstrate that this improves test performance.

1 Introduction

Deep networks trained in practice typically use many more parameters than training examples, and
therefore have the capacity to overfit to the training set [Zhang et al., 2016]. Fortunately, there are also
many known (and unknown) sources of regularization during training: model capacity regularization
such as simple weight decay, implicit or algorithmic regularization [Gunasekar et al., 2017, 2018b,
Soudry et al., 2018, Li et al., 2018], and finally regularization that depends on the training data such as
Batchnorm [Ioffe and Szegedy, 2015], layer normalization [Ba et al., 2016], group normalization [Wu
and He, 2018], path normalization [Neyshabur et al., 2015a], dropout [Srivastava et al., 2014, Wager
et al., 2013], and regularizing the variance of activations [Littwin and Wolf, 2018].

In many cases, it remains unclear why data-dependent regularization can improve the final test
error — for example, why Batchnorm empirically improves the generalization performance in
practice [Ioffe and Szegedy, 2015, Zhang et al., 2019]. We do not have many tools for analyzing
data-dependent regularization in the literature; with the exception of Dziugaite and Roy [2018], [Arora
et al., 2018] and [Nagarajan and Kolter, 2019] (with which we compare later in more detail), existing
bounds typically consider properties of the weights of the learned model but little about their
interactions with the training set. Formally, define a data-dependent property as any function of
the learned model and the training data. In this work, we prove tighter generalization bounds by
considering additional data-dependent properties of the network. Optimizing these bounds leads to
data-dependent regularization techniques that empirically improve performance.
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One well-understood and important data-dependent property is the training margin: Bartlett et al.
[2017] show that networks with larger normalized margins have better generalization guarantees.
However, neural nets are complex, so there remain many other data-dependent properties which
could potentially lead to better generalization. We extend the bounds and techniques of Bartlett et al.
[2017] by considering additional properties: the hidden layer norms and interlayer Jacobian norms.
Our final generalization bound (Theorem 5.1) is a polynomial in the hidden layer norms and Lipschitz
constants on the training data. We give a simplified version below for expositional purposes. Let F
denote a neural network with smooth activation φ parameterized by weight matrices {W (i)}ri=1 that
perfectly classifies the training data with margin γ > 0. Let t denote the maximum `2 norm of any
hidden layer or training datapoint, and σ the maximum operator norm of any interlayer Jacobian,
where both quantities are evaluated only on the training data.

Theorem 1.1 (Simplified version of Theorem 5.1). Suppose σ, t ≥ 1. With probability 1− δ over
the training data, we can bound the test error of F by

L0-1(F ) ≤ Õ

 (σγ + r3σ2)t
(

1 +
∑
i ‖W (i)>‖2/32,1

)3/2

+ r2σ
(

1 +
∑
i ‖W (i)‖2/31,1

)3/2

√
n

+ r

√
log( 1

δ )

n


The notation Õ hides logarithmic factors in d, r, σ, t and the matrix norms. The ‖ · ‖2,1 norm is
formally defined in Section 3.

The degree of the dependencies on σ may look unconventional — this is mostly due to the dramatic
simplification from our full Theorem 5.1, which obtains a more natural bound that considers all
interlayer Jacobian norms instead of only the maximum. Our bound is polynomial in t, σ, and network
depth, but independent of width. In practice, t and σ have been observed to be much smaller than the
product of matrix norms [Arora et al., 2018, Nagarajan and Kolter, 2019]. We remark that our bound
is not homogeneous because the smooth activations are not homogeneous and can cause a second
order effect on the network outputs.

In contrast, the bounds of Neyshabur et al. [2015b], Bartlett et al. [2017], Neyshabur et al. [2017a],
Golowich et al. [2017] all depend on a product of norms of weight matrices which scales exponentially
in the network depth, and which can be thought of as a worst case Lipschitz constant of the network.
In fact, lower bounds show that with only norm-based constraints on the hypothesis class, this product
of norms is unavoidable for Rademacher complexity-based approaches (see for example Theorem
3.4 of [Bartlett et al., 2017] and Theorem 7 of [Golowich et al., 2017]). We circumvent these lower
bounds by additionally considering the model’s Jacobian norms – empirical Lipschitz constants which
are much smaller than the product of norms because they are only computed on the training data.

The bound of Arora et al. [2018] depends on similar quantities related to noise stability but only
holds for a compressed network and not the original. The bound of Nagarajan and Kolter [2019] also
depends polynomially on the Jacobian norms rather than exponentially in depth; however these
bounds also require that the inputs to the activation layers are bounded away from 0, an assumption
that does not hold in practice [Nagarajan and Kolter, 2019]. We do not require this assumption
because we consider networks with smooth activations, whereas the bound of Nagarajan and Kolter
[2019] applies to relu nets.

In Section G, we additionally present a generalization bound for recurrent neural nets that scales
polynomially in the same quantities as our bound for standard neural nets. Prior generalization bounds
for RNNs either require parameter counting [Koiran and Sontag, 1997] or depend exponentially on
depth [Zhang et al., 2018, Chen et al., 2019].

In Figure 1, we plot the distribution over the sum of products of Jacobian and hidden layer norms
(which is the leading term of the bound in our full Theorem 5.1) for a WideResNet [Zagoruyko and
Komodakis, 2016] trained with and without Batchnorm. Figure 1 shows that this sum blows up for
networks trained without Batchnorm, indicating that the terms in our bound are empirically relevant
for explaining data-dependent regularization.

An immediate bottleneck in proving Theorem 1.1 is that standard tools require fixing the hypothesis
class before looking at training data, whereas conditioning on data-dependent properties makes the
hypothesis class a random object depending on the data. A natural attempt is to augment the loss
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Figure 1: Let h1, h2, h3 denote the 1st, 2nd, and
3rd blocks of a 16-layer WideResNet and Ji the
Jacobian of the output w.r.t layer i. In log-scale we
plot a histogram of the 100 largest values on the
training set of

∑3
i=1 ‖hi‖‖Ji‖/γ for a WideRes-

Net trained with and without Batchnorm on CI-
FAR10, where γ is the example’s margin.

with indicators on the intended data-dependent quantities {γi}, with desired bounds {κi} as follows:

laug = (lold − 1)
∏

properties γi

1(γi ≤ κi) + 1

This augmented loss upper bounds the original loss lold ∈ [0, 1], with equality when all properties hold
for the training data. The augmentation lets us reason about a hypothesis class that is independent of
the data by directly conditioning on data-dependent properties in the loss. The main challenges with
this approach are twofold: 1) designing the correct set of properties and 2) proving generalization of
the final loss laug, a complicated function of the network.

Our main tool is covering numbers: Lemma 4.1 shows that a composition of functions (i.e, a neural
network) has low covering number if the output is worst-case Lipschitz at each level of the composition
and internal layers are bounded in norm. Unfortunately, the standard neural net loss satisfies neither
of these properties (without exponential dependencies on depth). However, by augmenting with
properties γ, we can guarantee they hold. One technical challenge is that augmenting the loss makes
it harder to reason about covering, as the indicators can introduce complicated dependencies between
layers.

Our main technical contributions are: 1) We demonstrate how to augment a composition of functions
to make it Lipschitz at all layers, and thus easy to cover. Before this augmentation, the Lipschitz
constant could scale exponentially in depth (Theorem 4.4). 2) We reduce covering a complicated
sequence of operations to covering the individual operations (Theorem 4.3). 3) By combining 1
and 2, it follows cleanly that our augmented loss on neural networks has low covering number and
therefore has good generalization. Our bound scales polynomially, not exponentially, in the depth of
the network when the network has good Lipschitz constants on the training data (Theorem 5.1).

As a complement to the main theoretical results in this paper, we show empirically in Section 6 that
directly regularizing our complexity measure can result in improved test performance.

2 Related Work

Zhang et al. [2016] and Neyshabur et al. [2017b] show that generalizaton in deep learning often
disobeys conventional statistical wisdom. One of the approaches adopted torwards explaining
generalization is implicit regularization; numerous recent works have shown that the training method
prefers minimum norm or maximum margin solutions [Soudry et al., 2018, Li et al., 2018, Ji and
Telgarsky, 2018, Gunasekar et al., 2017, 2018a,b, Wei et al., 2018]. With the exception of [Wei et al.,
2018], these papers analyze simplified settings and do not apply to larger neural networks.

This paper more closely follows a line of work related to Rademacher complexity bounds for
neural networks [Neyshabur et al., 2015b, 2018, Bartlett et al., 2017, Golowich et al., 2017]. For a
comparison, see the introduction. There has also been work on deriving PAC-Bayesian bounds for
generalization [Neyshabur et al., 2017b,a, Nagarajan and Kolter, 2019]. Dziugaite and Roy [2017a]
optimize a bound to compute non-vacuous bounds for generalization error. Another line of work
analyzes neural nets via their behavior on noisy inputs. Neyshabur et al. [2017b] prove PAC-Bayesian
generalization bounds for random networks under assumptions on the network’s empirical noise
stability. Arora et al. [2018] develop a notion of noise stability that allows for compression of a
network under an appropriate noise distribution. They additionally prove that the compressed network
generalizes well. In comparison, our Lipschitzness construction also relates to noise stability, but our
bounds hold for the original network and do not rely on the particular noise distribution.

3



Nagarajan and Kolter [2019] use PAC-Bayes bounds to prove a similar result as ours for generalization
of a network with bounded hidden layer and Jacobian norms. The main difference is that their bounds
depend on the inverse relu preactivations, which are found to be large in practice [Nagarajan and
Kolter, 2019]; our bounds apply to smooth activations and avoid this dependence at the cost of an
additional factor in the Jacobian norm (shown to be empirically small). We note that the choice of
smooth activations is empirically justified [Clevert et al., 2015, Klambauer et al., 2017]. We also
work with Rademacher complexity and covering numbers instead of the PAC-Bayes framework.
It is relatively simple to adapt our techniques to relu networks to produce a similar result to that
of Nagarajan and Kolter [2019], by conditioning on large pre-activation values in our Lipschitz
augmentation step (see Section 4.2). In Section H, we provide a sketch of this argument and
obtain a bound for relu networks that is polynomial in hidden layer and Jacobian norms and inverse
preactivations. However, it is not obvious how to adapt the argument of Nagarajan and Kolter
[2019] to activation functions whose derivatives are not piecewise-constant.

Dziugaite and Roy [2018, 2017b] develop PAC-Bayes bounds for data-dependent priors obtained via
some differentially private mechanism. Their bounds are for a randomized classifier sampled from
the prior, whereas we analyze a deterministic, fixed model.

Novak et al. [2018] empirically demonstrate that the sensitivity of a neural net to input noise
correlates with generalization. Sokolić et al. [2017], Krueger and Memisevic [2015] propose stability-
based regularizers for neural nets. Hardt et al. [2015] show that models which train faster tend
to generalize better. Keskar et al. [2016], Hoffer et al. [2017] study the effect of batch size on
generalization. Brutzkus et al. [2017] analyze a neural network trained on hinge loss and linearly
separable data and show that gradient descent recovers the exact separating hyperplane.

3 Notation

Let 1(E) be the indicator function of event E. Let l0-1 denote the standard 0-1 loss. For κ ≥ 0, Let
1≤κ(·) be the softened indicator function defined as

1≤κ(t) =

{
1 if t ≤ κ
2− t/κ if κ ≤ t ≤ 2κ
0 if 2κ ≤ t

Note that 1≤κ is κ−1-Lipschitz. Define the norm ‖ · ‖p,q by ‖A‖p,q ,
(∑

j

(∑
iA

p
i,j

)q/p)1/q

. Let
Pn be a uniform distribution over n points {x1, . . . , xn} ⊂ Dx. Let f be a function that maps Dx to
some output space Df , and assume both spaces are equipped with some norms ||| · ||| (these norms can
be different but we use the same notations for them). Then the L2(Pn, ||| · |||) norm of the function f

is defined as ‖f‖L2(Pn,|||·|||) ,
(

1
n

∑
i |||f(xi)|||2

)1/2

. We use D to denote total derivative operator,
and thus Df(x) represents the Jacobian of f at x. Suppose F is a family of functions from Dx to
Df . Let C(ε,F , ρ) be the covering number of the function class F w.r.t. metric ρ with cover size ε.
In many cases, the covering number depends on the examples through the norms of the examples,
and in this paper we only work with these cases. Thus, we let N (ε,F , s) be the maximum covering
number for any possible n data points with norm not larger than s. Precisely, if we define Pn,s to
be the set of all possible uniform distributions supported on n data points with norms not larger
than s, then N (ε,F , s) , supPn∈Pn,s C(ε,F , L2(Pn, ||| · |||)). Suppose F contains functions with
m inputs that map from a tensor product m Euclidean space to Euclidean space, then we define
N (ε,F , (s1, . . . , sm)) , supP :∀(x1,...,xm)∈supp(P )

‖xi‖≤si
C(ε,F , L2(P )).

4 Overview of Main Results and Proof Techniques

In this section, we give a general overview of the main technical results and outline how to prove
them with minimal notation. We will point to later sections where many statements are formalized.

To simplify the core mathematical reasoning, we abstract feed-forward neural networks (including
residual networks) as compositions of operations. Let F1, . . . ,Fk be a sequence of families of
functions (corresponding to families of single layer neural nets in the deep learning setting) and ` be
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a Lipschitz loss function taking values in [0, 1]. We study the compositions of ` and functions in Fi’s:

L , ` ◦ Fk ◦ Fk−1 · · · ◦ F1 = {` ◦ fk ◦ fk−1 ◦ · · · ◦ f1 : ∀i, fi ∈ Fi} (1)
Textbook results [Bartlett and Mendelson, 2002] bound the generalization error by the Rademacher
complexity (formally defined in Section C) of the family of losses L, which in turn is bounded by the
covering number of L through Dudley’s entropy integral theorem [Dudley, 1967]. Modulo minor
nuances, the key remaining question is to give a tight covering number bound for the family L for
every target cover size ε in a certain range (often, considering ε ∈ [1/nO(1), 1] suffices).

As alluded to in the introduction, generalization error bounds obtained through this machinery only
depend on the (training) data through the margin in the loss function, and our aim is to utilize more
data-dependent properties. Towards understanding which data-dependent properties are useful to
regularize, it is helpful to revisit the data-independent covering technique of [Bartlett et al., 2017],
the skeleton of which is summarized below.

Recall that N (ε,F , s) denotes the covering number for arbitrary n data points with norm less than s.
The following lemma says that if the intermediate variable (or the hidden layer) fi ◦ · · · ◦ f1(x) is
bounded, and the composition of the rest of the functions l ◦fk ◦ · · · ◦fi+1(x) is Lipschitz, then small
covering number of local functions imply small covering number for the composition of functions.
Lemma 4.1. [abstraction of techniques in [Bartlett et al., 2017]] In the context above, assume:

1. for any x ∈ supp(Pn), |||fi ◦ · · · ◦ f1(x)||| ≤ si.

2. ` ◦ fk ◦ · · · ◦ fi+1 is κi-Lipschitz for all i.

Then, we have the following covering number bound for L (for any choice of ε1, . . . , εk > 0):
logN (

∑k
i=1 κiεi,L, s0) ≤

∑k
i=1 logN (εi,Fi, si−1).

The lemma says that the log covering number and the cover size scale linearly if the Lipschitzness
parameters and norms remain constant. However, these two quantities, in the worst case, can
easily scale exponentially in the number of layers, and they are the main sources of the dependency
of product of spectral/Frobenius norms of layers in [Golowich et al., 2017, Bartlett et al., 2017,
Neyshabur et al., 2017a, 2015b] More precisely, the worst-case Lipschitzness over all possible data
points can be exponentially bigger than the average/typical Lipschitzness for examples randomly
drawn from the training or test distribution. We aim to bridge this gap by deriving a generalization
error bound that only depends on the Lipschitzness and boundedness on the training examples.

Our general approach, partially inspired by margin theory, is to augment the loss function by soft
indicators of Lipschitzness and boundedness. Let hi be shorthand notation for fi ◦ · · · ◦ f1, the i-th
intermediate value, and let z(x) , `(hk(x)) be the original loss. Our first attempt considered:

z̃′(x) , 1 + (z(x)− 1) ·
k∏
i=1

1≤si(‖hi(x)‖) ·
k∏
i=1

1≤κi(‖∂z/∂hi‖op) (2)

Since z takes values in [0, 1], the augmented loss z̃′ is an upper bound on the original loss z with
equality when all the indicators are satisfied with value 1. The hope was that the indicators would
flatten those regions where hi is not bounded and where z is not Lipschitz in hi. However, there are
two immediate issues. First, the soft indicators functions are themselves functions of hi. It’s unclear
whether the augmented function can be Lipschitz with a small constant w.r.t hi, and thus we cannot
apply Lemma 4.1.1 Second, the augmented loss function becomes complicated and doesn’t fall into
the sequential computation form of Lemma 4.1, and therefore even if Lipschitzness is not an issue,
we need new covering techniques beyond Lemma 4.1.

We address the first issue by recursively augmenting the loss function by multiplying more soft
indicators that bound the Jacobian of the current function. The final loss z̃ reads:2

z̃(x) , 1 + (z(x)− 1) ·
k∏
i=1

1≤si(‖hi(x)‖) ·
∏

1≤i≤j≤k

1≤κj←i(‖Dfj ◦ · · · ◦ fi[hi−1]‖op) (3)

1A priori, it’s also unclear what “Lipschitz in hi” means since the z̄′ does not only depend on x through hi.
We will formalize this in later section after defining proper language about dependencies between variables.

2Unlike in equation (2), we don’t augment the Jacobian of the loss w.r.t the layers. This allows us to deal
with non-differentiable loss functions such as ramp loss.
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where κj←i’s are user-defined parameters. For our application to neural nets, we instantiate si as the
maximum norm of layer i and κj←i as the maximum norm of the Jacobian between layer j and i
across the training dataset. A polynomial in κ, s can be shown to bound the worst-case Lipschitzness
of the function w.r.t. the intermediate variables in the formula above.3 By our choice of κ, s, a) the
training loss is unaffected by the augmentation and b) the worst-case Lipschitzness of the loss is
controlled by a polynomial of the Lipschitzness on the training examples. We provide an informal
overview of our augmentation procedure in Section 4.2 and formally state definitions and guarantees
in Section B. The downside of the Lipschitz augmentation is that it further complicates the loss
function. Towards covering the loss function (assuming Lipschitz properties) efficiently, we extend
Lemma 4.1, which works for sequential compositions of functions, to general families of formulas,
or computational graphs. We informally overview this extension in Section 4.1 using a minimal set
of notations, and in Section A, we give a formal presentation of these results.

Combining the Lipschitz augmentation and graphs covering results, we obtain a covering number
bound of augmented loss. The theorem below is formally stated in Theorem B.3 of Section B.

Theorem 4.2. Let L̃ be the family of augmented losses defined in (3). For cover resolutions εi and
values κ̃i that are polynomial in the parameters si, κj←i, we obtain the following covering number
bound for L̃:

logN (
∑
i

εiκ̃i, L̃, s0) ≤
∑
i

logN (εi,Fi, si−1) +
∑
i

logN (εi, DFi, si−1)

where DFi denotes the function class obtained from applying the total derivative operator to all
functions in Fi.

Now, following the standard technique of bounding Rademacher complexity via covering numbers, we
can obtain generalization error bounds for augmented loss. For the demonstration of our technique,
suppose that the following simplification holds: logN (εi, DFi, si−1) = logN (εi,Fi, si−1) =
s2
i−1/ε

2
i . Then after minimizing the covering number bound in εi via standard techniques, we obtain

the below generalization error bound on the original loss for parameters κ̃i alluded to in Theorem 4.2
and formally defined in Theorem B.2. When the training examples satisfy the augmented indicators,
Etrain[z̃] = Etrain[z], and because z̃ bounds z from above, we have

E
test

[z]− E
train

[z] ≤ E
test

[z̃]− E
train

[z̃] ≤ Õ

((∑
i κ̃

2/3
i s

2/3
i−1

)3/2

√
n

+

√
log(1/δ)

n

)
(4)

4.1 Overview of Computational Graph Covering

To obtain the augmented z̃ defined in (3), we needed to condition on data-dependent properties
which introduced dependencies between the various layers. Because of this, Lemma 4.1 is no longer
sufficient to cover z̃. In this section, we informally overview how to extend Lemma 4.1 to cover more
general functions via the notion of computational graphs. For space constraints, this section is a
dramatically abbreviated and informal version of Section A.

A computational graph G(V, E , {RV }) is an acyclic directed graph with three components: the set of
nodes V corresponds to variables, the set of edges E describes dependencies between these variables,
and {RV } contains a list of composition rules indexed by the variables V ’s, representing the process
of computing V from its direct predecessors. For simplicity, we assume the graph contains a unique
sink, denoted by OG, and we call it the “output node”. We also overload the notation OG to denote
the function that the computational graph G finally computes. Let IG = {I1, . . . , Ip} be the subset
of nodes with no predecessors, which we call the “input nodes” of the graph.

The notion of a family of computational graphs generalizes the sequential family of function com-
positions in (1). Let G = {G(V, E , {RV })} be a family of computational graphs with shared nodes,
edges, output node, and input nodes (denoted by I). Let RV be the collection of all possible compo-
sition rules used for node V by the graphs in the family G. This family G defines a set of functions
OG , {OG : G ∈ G}.

3As mentioned in footnote 1, we will formalize the precise meaning of Lipschitzness later.
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The theorem below extends Lemma 4.1. In the computational graph interpretation, Lemma 4.1
applies to a sequential family of computational graphs with k internal nodes V1, . . . , Vk, where each
Vi computes the function fi, and the output computes the composition OG = ` ◦ fk · · · ◦ f1 = z.
However, the augmented loss z̃ no longer has this sequential structure, requiring the below theorem
for covering generic families of computational graphs. We show that covering a general family of
computational graphs can be reduced to covering all the local composition rules.

Theorem 4.3 (Informal and weaker version of Theorem A.3). Suppose that there is an ordering
(V1, . . . , Vm) of the nodes, so that after cutting out nodes V1, . . . , Vi−1, the node Vi becomes a leaf
node and the output OG is κVi-Lipschitz w.r.t to Vi for all G ∈ G. In addition, assume that for all
G ∈ G, the node V ’s value has norm at most sV . Let pr(V ) be all the predecessors of V and spr(V )

be the list of norm upper bounds of the predecessors of V .

Then, small covering numbers for all of the local composition rules of V with resolution εV would
imply small covering number for the family of computational graphs with resolution

∑
V εV κV :

logN (
∑

V ∈V\I∪{O}

κV εV + εO, OG , sI) ≤
∑

V ∈V\I

logN (εV ,RV , spr(V )) (5)

In Section A we formalize the notion of “cutting” nodes from the graph. The condition that node
V ’s value has norm at most sV is a simplification made for expositional purposes; our full Theo-
rem A.3 also applies if OG collapses to a constant whenever node V ’s value has norm greater than
sV . This allows for the softened indicators 1≤si(‖hi(x)‖) used in (3).

4.2 Lipschitz Augmentation of Computational Graphs

The covering number bound of Theorem 4.3 relies on Lipschitzness w.r.t internal nodes of the graph
under a worst-case choice of inputs. For deep networks, this can scale exponentially in depth via the
product of weight norms and easily be larger than the average Lipschitz-ness over typical inputs. In
this section, we explain a general operation to augment sequential graphs (such as neural nets) into
graphs with better worst-case Lipschitz constants, so tools such as Theorem 4.3 can be applied. This
section is heavily simplified for space constraints. Formal definitions and theorem statements are in
Section B.

The augmentation relies on introducing terms such as the soft indicators in equation (2) and (3)
which condition on data-dependent properties. As outlined in Section 4, they will translate to the
data-dependent properties in the generalization bounds. We also require the augmented function to
upper bound the original.

We will present a generic approach to augment function compositions such as z , ` ◦ fk ◦ . . . ◦ f1,
whose Lipschitz constants are potentially exponential in depth, with only properties involving the
norms of the inter-layer Jacobians. We will produce z̃, whose worst-case Lipschitzness w.r.t. internal
nodes can be polynomial in depth.

Informal explanation of Lipschitz augmentation: In the same setting of Section 4, recall that
in (2), our first unsuccessful attempt to smooth out the function was by multiplying indicators on the
norms of the derivatives of the output:

∏k
i=1 1≤κi(‖∂z/∂hi‖op). The difficulty lies in controlling

the Lipschitzness of the new terms ‖∂z/∂hi‖op that we introduce: by the chain rule, we have the
expansion ∂z

∂hi
= ∂z

∂hk
∂hk
∂hk−1

· · · ∂hi+1

∂hi
, where each hj′ is itself a function of hj for j′ > j. This

means ∂z
∂hi

is a complicated function in the intermediate variables hj for 1 ≤ j ≤ k. Bounding the
Lipschitzness of ∂z

∂hi
requires accounting for the Lipschitzness of every term in its expansion, which

is challenging and creates complicated dependencies between variables.

Our key insight is that by considering a more complicated augmentation which conditions on the
derivatives between all intermediate variables, we can still control Lipschitzness of the system,
leading to the more involved augmentation presented in (3). Our main technical contribution is
Theorem 4.4, which we informally state below.

Theorem 4.4 (Informal version of Theorem B.2). The functions z̃ (defined in (3)) can be computed
by a family of computational graphs G̃ illustrated in Figure 2. This family has internal nodes Vi and
Ji computing hi and Dfi[hi−1], respectively, and computes a modified output rule that augments the
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original with soft indicators. These soft indicators condition that the norms of the Jacobians and hi
are bounded by parameters κj←i, si.

Importantly, the output OG̃ is κ̃Vi , κ̃Ji-Lipschitz w.r.t. Vi, Ji, respectively, after cutting nodes
V1, J1, . . . , Vi−1, Ji−1, for parameters κ̃Vi , κ̃Ji that are polynomials in κj←i, si.

In addition, the augmented function z̃ will upper bound the original with equality when all the
indicators are satisfied. The crux of the proof is leveraging the chain rule to decompose ∂z

∂hi
into

a product and then applying a telescoping argument to bound the difference in the product by
differences in individual terms. In Section B we present a formal version of this result and also apply
Theorem 4.3 to produce a covering number bound for G̃.

5 Application to Neural Networks

Figure 2: Lipschitz augmentation
(informally defined).

In this section we provide our generalization bound for neural
nets, which was obtained using machinery from Section 4.1.
Define a neural network F parameterized by r weight matri-
ces {W (i)} by F (x) = W (r)φ(· · ·φ(W (1)(x)) · · · ). We use
the convention that activations and matrix multiplications are
treated as distinct layers indexed with a subscript, with odd lay-
ers applying a matrix multiplication and even layers applying
φ (see Example A.1 for a visualization). Additional notation
details and the proof are in Section C.

The below result follows from modeling the neural net loss as
a sequential computational graph and using our augmentation
procedure to make it Lipschitz in its nodes with parameters
κhidden,(i), κjacobian,(i). Then we cover the augmented loss to
bound its Rademacher complexity.
Theorem 5.1. Assume that the activation φ is 1-Lipschitz with a σ̄φ-Lipschitz derivative. Fix
reference matrices {A(i)}, {B(i)}. With probability 1− δ over the random draws of the data Pn, all
neural networks F with parameters {W (i)} and positive margin γ satisfy:

E
(x,y)∼P

[l0-1(F (x), y)] ≤ Õ


(∑

i(κ
hidden,(i)a(i)t(i−1))2/3 + (κjacobian,(i)b(i))2/3

)3/2
√
n

+ r

√
log(1/δ)

n


where κjacobian,(i) ,

∑
1≤j≤2i−1≤j′≤2r−1

σj′←2iσ2i−2←j
σj′←j

, and κhidden,(i) , ξ + σ2r−1←2i

γ +∑
i≤i′<r

σ2i′←2i

t(i′)
+
∑

1≤j≤j′≤2r−1

∑j′

j′′=max{2i,j},
j′′ even

σ̄φσj′←j′′+1σj′′−1←2iσj′′−1←j
σj′←j

.

In these expressions, we define σj−1←j = 1, ξ = poly(r)−1, and:

a(i) , ‖W (i)> −A(i)>‖2,1 + ξ, b(i) , ‖W (i) −B(i)‖1,1 + ξ

t(0) , max
x∈Pn

‖x‖+ ξ, t(i) , max
x∈Pn

‖F2i←1(x)‖+ ξ

σj′←j , max
x∈Pn

‖Qj′←j(x)‖op + ξ, and γ , min
(x,y)∈Pn

[F (x)]y −max
y′ 6=y

[F (x)]y′ > 0

where Qj′←j computes the Jacobian of layer j′ w.r.t. layer j. Note that the training error here is 0
because of the existence of positive margin γ.

We note that our bound has no explicit dependence on width and instead depends on the ‖·‖2,1, ‖·‖1,1
norms of the weights offset by reference matrices {A(i)}, {B(i)}. These norms can avoid scaling
with the width of the network if the difference between the weights and reference matrices is sparse.
The reference matrices {A(i)}, {B(i)} are useful if there is some prior belief before training about
what weight matrices are learned, and they also appear in the bounds of Bartlett et al. [2017]. In
Section G, we also show that our techniques can easily be extended to provide generalization bounds
for RNNs scaling polynomially in depth via the same quantities t(i), σj′←j .
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Table 1: Test error for a model trained on CIFAR10 in various settings.

Setting Normalization Jacobian Reg Test Error
Baseline BatchNorm × 4.43%

Low learning rate (0.01) BatchNorm × 5.98%
X 5.46%

No data augmentation BatchNorm × 10.44%
X 8.25%

No BatchNorm
None × 6.65%

LayerNorm [Ba et al., 2016] × 6.20%
X 5.57%

6 Experiments

Though the main purpose of the paper is to study the data-dependent generalization bounds from
a theoretical perspective, we provide preliminary experiments demonstrating that the proposed
complexity measure and generalization bounds are empirically relevant. We show that regularizing
the complexity measure leads to better test accuracy. Inspired by Theorem 5.1, we directly regularize
the Jacobian of the classification margin w.r.t outputs of normalization layers and after residual blocks.
Our reasoning is that normalization layers control the hidden layer norms, so additionally regularizing
the Jacobians results in regularization of the product, which appears in our bound. We find that this is
effective for improving test accuracy in a variety of settings. We note that Sokolić et al. [2017] show
positive experimental results for a similar regularization technique in data-limited settings.

Suppose that m(F (x), y) = [F (x)]y − maxj 6=y[t]j denotes the margin of the network for ex-
ample (x, y). Letting h(i) denote some hidden layer of the network, we define the notation
J (i) , ∂

∂h(i)m(F (x), y) and use training objective

L̂reg[F ] , E(x,y)∼Pn

[
l(x, y) + λ

(∑
i

1(‖J (i)(x)‖2F ≥ σ)‖J (i)(x)‖2F

)]
where l denotes the standard cross entropy loss, and λ, σ are hyperparameters. Note the Jacobian is
taken with respect to a scalar output and therefore is a vector, so it is easy to compute.

For a WideResNet16 [Zagoruyko and Komodakis, 2016] architecture, we train using the above
objective. The threshold on the Frobenius norm in the regularization is inspired by the truncations
in our augmented loss (in all our experiments, we choose σ = 0.1). We tune the coefficient λ as a
hyperparameter. In our experiments, we took the regularized indices i to be last layers in each residual
block as well as layers in residual blocks following a BatchNorm in the standard WideResNet16
architecture. In the LayerNorm setting, we simply replaced BatchNorm layers with LayerNorm. The
remaining hyperparameter settings are standard for WideResNet; for additional details see Section I.1.

Figure 1 shows the results for models trained and tested on CIFAR10 in low learning rate and no data
augmentation settings, which are settings where generalization typically suffers. We also experiment
with replacing BatchNorm layers with LayerNorm and additionally regularizing the Jacobian. We
observe improvements in test error for all these settings. In Section I.2, we empirically demonstrate
that our complexity measure indeed avoids the exponential scaling in depth for a WideResNet model
trained on CIFAR10.

7 Conclusion

In this paper, we tackle the question of how data-dependent properties affect generalization. We prove
tighter generalization bounds that depend polynomially on the hidden layer norms and norms of the
interlayer Jacobians. To prove these bounds, we work with the abstraction of computational graphs
and develop general tools to augment any sequential family of computational graphs into a Lipschitz
family and then cover this Lipschitz family. This augmentation and covering procedure applies to
any sequence of function compositions. An interesting direction for future work is to generalize our
techniques to arbitrary computational graph structures. Additionally, encouraged by our promising
preliminary results, we believe there is the exciting empirical direction of applying these bounds to
develop better data-dependent regularization.
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Figure 3: The computational graph corresponding to a neural network with r weight matrices.
Odd-indexed layers multiply matrices and even-indexed layers apply the activation φ.

A Covering of Computational Graphs

This section is a formal version of Section 4.1 with full definition and theorem statements. In this
section, we adapt the notion of a computational graph to our setting. In Section A.1, we formalize
the notion of a computational graph and demonstrate how neural networks fit under this framework.
In Section A.2, we define the notion of release-Lipschitzness that abstracts the sequential notion
of Lipschitzness in Lemma 4.1. We show that when this release-Lipschitzness condition and a
boundedness condition on the internal nodes hold, it is possible to cover a family of computational
graphs by simply covering the function class at each vertex.

A.1 Formalization of computational graphs

When we augment the neural network loss with data-dependent properties, we introduce dependencies
between the various layers, making it complicated to cover the augmented loss. We use the notion of
computational graphs to abstractly model these dependencies.

Computational graphs are originally introduced by Bauer [1974] to represent computational processes
and study error propagation. Recall the notation G(V, E , {RV }) introduced for a computational
graph in Section 4.1, with input nodes IG = {I1, . . . , Ip} and output node denoted by OG. (It’s
straightforward to generalize to scenarios with multiple output nodes.)

For every variable V ∈ V , let DV be the space that V resides in. If V has t direct predecessors
C1, . . . , Ct, then the associated composition rule RV is a function that maps DC1

⊗· · ·⊗DCt to DV .
If V is an input node, then the composition ruleRV is not relevant. For any node V , the computational
graph defines/induces a function that computes the variable V from inputs, or in mathematical words,
that maps the inputs space DI1 ⊗ · · · ⊗ DIp to DV . This associated function, denoted by V again
with slight abuse of notations, is defined recursively as follows: set V (x1, . . . , xp) to{

xi if V is the i-th input node Ii
RV (C1(x1, . . . , xp), . . . , Ct(x1, . . . , xp)) if V has t direct predecessors C1, . . . , Ct

More succinctly, we can write V = RV ◦ (C1 ⊗ · · · ⊗ Ct). We also overload the notation OG to
denote the function that the computational graph G finally computes (which maps DI1 ⊗ · · · ⊗ DIp
to DO). For any set S = {V1, . . . , Vt} ⊆ V , use DS to denote the space DV1 ⊗ · · · ⊗ DVt . We use
pr(G,V ) to denote the set of direct predecessors of V in graph G, or simply pr(V ) when the graph
G is clear from context.
Example A.1 (Feed-forward neural networks). For an activation function φ and parameters {W (i)}
we compute a neural net F : RdI → RdO as follows: F (x) = W (r)φ(· · ·φ(W (1)x) · · · ). Fig-
ure 3 depicts how this neural network fits into a computational graph with one input node, 2r − 1
internal nodes, and a single output. Here we treat matrix operations and activations as distinct layers,
and map each layer to a node in the computational graph.

A.2 Reducing graph covering to local function covering

In this section we introduce the notion of a family of computational graphs, generalizing the sequential
family of function compositions in (1). We define release-Lipschitzness, a condition which allows
reduce covering the entire the graph family to covering the composition rules at each node. We
formally state this reduction in Theorem A.3.

Family of computational graphs: Let G = {G(V, E , {RV }) : {RV } ∈ R} be a family of
computational graph with shared nodes and edges, where R is a collection of lists of composition
rules. This family of computational graphs defines a set of functions OG , {OG : G ∈ G}. We’d
like to cover this set of functions in OG with respect to some metric L(Pn, ||| · |||).
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For a list of composition rules {RV } ∈ R and subset S ⊆ V , we define the projection of composition
rules onto S by {RV }S = {RV : V ∈ S}. Now let RS = {{RV }S : {RV } ∈ R} denote the
marginal collection of the composition rules on node subset S.

For any computational graph G and a non-input node V ∈ V \ I, we can define the following
operation that “releases” V from its dependencies on its predecessors by cutting all the inward edges:
Let G\V be sub-graph of G where all the edges pointing towards V are removed from the graph.
Thus, by definition, V becomes a new input node of the graph G\V : IG\V = {V } ∪ IG. Moreover,
we can “recover” the dependency by plugging the right value for V in the new graph G\V : Let V (x)
be the function associated to the node V in graph G, then we have

∀x ∈ DI , OG\V (V (x), x) = OG(x) (6)

In our proofs, we will release variables in orders. Let S = (V1, . . . , Vm) be an ordering of the
intermediate variables V\(I∪{O}). We call S a forest ordering if for any i, in the original graphG, Vi
at most depends on the input nodes and V1, . . . , Vi−1. For any sequence of variables (V1, . . . , Vt), we
can define the graph obtained by releasing the variables in order: G\(V1,...,Vt) , (· · · (G\V1) · · · )\Vt .
We next define the release-Lipschitz condition, which states that the graph function remains Lipschitz
when we sequentially release vertices in a forest ordering of the graph.
Definition A.2 (Release-Lipschitzness). A graph G is release-Lipschitz with parameters {κV } w.r.t
a forest ordering of the internal nodes, denoted by (V1, . . . , Vm) if the following happens: upon
releasing V1, . . . , Vm in order from any G ∈ G, for any 0 ≤ i ≤ m, we have that the function defined
by the released graph G\(V1,...,Vi) is κVi-Lipschitz in the argument Vi, for any values of the rest of
the input nodes (={V1, . . . , Vi−1} ∪ IG.) We also say graph G is release- Lipschitz if such a forest
ordering exists.

Now we show that the release-Lipschitz condition allows us to cover any family of computational
graphs whose output collapses when internal nodes are too large. The below is a formal and complete
version of Theorem 4.3. For the augmented loss defined in (3), the function output collapses to 1
when internal computations are large. The proof is deferred to Section D.
Theorem A.3. Suppose G is a computational graph with the associated family of lists of composition
rules R, as formally defined above. Let Pn be a uniform distribution over n points in DI . Let κV , sV ,
and εV be three families of fixed parameters indexed by V\I (whose meanings are defined below).
Assume the following:

1. EveryG ∈ G is release-Lipschitz with parameters {κV } w.r.t a forest ordering of the internal
nodes (V1, . . . , Vm) (the parameter κV ’s and ordering doesn’t depend on the choice of G.)

2. For the same order as before, if (v, x) ∈ (DV1 ⊗ · · ·⊗DVi)⊗DI is an input of the released
graph satisfying |||vj ||| ≥ sVj for some j ≤ i, then OG\(V1,...,Vi)(v, x) = c for some constant
c.

Then, small covering numbers for all of the local composition rules of V with resolution εV would
imply small covering number for the family of computational graphs with resolution

∑
V εV κV :

logN (
∑

V ∈V\I∪{O}

κV εV + εO, OG , sI) ≤
∑

V ∈V\I

logN (εV ,R{V }, spr(V )) (7)

B Lipschitz Augmentation of Computational Graphs

In this section, we provide a more thorough and formal presentation of the augmentation framework
of Section 4.2.

The covering number bound for the computational graph family G in Theorem A.3 relies on the release-
Lipschitzness condition (condition 1 of Theorem A.3) and rarely holds for deep computational graphs
such as deep neural networks. The conundrum is that the worst-case Lipschitzness as required in the
release-Lipschitz condition4 is very likely to scale in the product of the worst-case Lipschitzness of

4We say the Lipschitzness required is worst case because the release-Lipschitz condition requires the
Lipschitzness of nodes for any possible choice of inputs
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each operations in the graph, which can easily be exponentially larger than the average Lipschitzness
over typical examples.

In this section, we first define a model of sequential computational graphs, which captures the class
of neural networks. Before Lipschitz augmentation, the worst-case Lipschitz constant of graphs in
this family could scale exponentially in the depth of the graph. In Definition B.1, we generalize the
operation of (3) to augment any family G of sequential graphs and produce a family G̃ satisfying the
release-Lipschitz condition. In Theorem B.3, we combine this augmentation with the framework
of A.3 to produce general covering number bounds for the augmented graphs. For the rest of this
section we will work with sequential families of computational graphs.

A sequential computational graph has nodes set V = {I, V1, . . . , Vq, O}, where I is the single input
node, and all the edges are E = {(I, V1), (V1, V2), · · · , (Vq−1, Vq)} ∪ {(V1, O), . . . , (Vq, O)}. We
often use the notation V0 to refer to the input I . Below we formally define the augmentation operation.
Definition B.1 (Lipschitz augmentation of sequential graphs). Given a differentiable sequential
computational graph G with q internal nodes V1, . . . , Vq, define its Lipschitz augmentation G̃ as
follows. We first add q nodes to the graph denoted by J1, . . . , Jq . The composition rules for original
internal nodes remain the same, and the composition rule for Ji is defined as

R̃Ji = DRVi
Here DRVi is the total derivative of the function RVi . In other words, the variable Ji is a Jacobian
for RVi , a linear operator that maps DVi−1

to DVi . (Note that if Vi’s are considered as vector
variables, then Ji’s are matrix variables.) We equip the space of Ji with operator norm, denoted by
‖ · ‖op, induced by the original norms on spaces Vi−1 and Vi. The Lipschitz-ness w.r.t variable Ji
will be measured with operator norm.

We pre-determine a family of parameters κj←i for all pairs (i, j) with i ≤ j. The final loss is
augmented by a product of soft indicators that truncates the function when any of the Jacobians is
much larger than κi←j :

R̃O(x, v1, . . . , vq, D1, . . . , Dq) , (RO(x, v1, . . . , vq)− 1)
∏
i≤j

1≤κj←i(‖Dj · · ·Di‖op) + 1

where x ∈ DI , vi ∈ DVi , and Di ∈ DJi . Note that Dj · · ·Di is the total derivative of Vj w.r.t Vi,
and thus the κj←i has the interpretation as an intended bound of the Jacobian between pairs of layers
(variables). Figure 4 depicts the augmentation.

Note that under these definitions, we finally get that the output function of G̃ computes

OG̃(x) = (OG(x)− 1)
∏
i≤j

1≤κj←i(‖DVj(x) · · ·DVi(x)‖op) + 1 (8)

which matches (3) for the example in Section 4. We note that the graph G̃ contains the original G as
a subgraph. Furthermore, by Claim J.1, OG̃ upper bounds OG, which is desirable when G computes
loss functions. The below theorem, which formalizes Theorem 4.4, proves release-Lipschitzness for
G̃.
Theorem B.2. [Lipschitz guarantees of augmented graphs] Let G be a family of sequential computa-
tional graphs. Suppose for any G ∈ G, the composition rule of the output node, ROG , is ci-Lipschitz
in variable Vi for all i, and it only outputs value in [0, 1]. Suppose that DRVi is κ̄i-Lipschitz for
each i.5 Let κj←i (for i ≤ j) be a set of parameters that we intend to use to control Jacobians in the
Lipschitz augmentation. With them, we apply Lipschitz augmentation as defined in Definition B.1 to
every graph in G and obtain a new family of graphs, denoted by G̃.

Then, the augmented family G̃ is release-Lipschitz (Definition A.2) with parameters κ̃V ’s below:

κ̃Vi ,
∑
i≤j≤q

3cjκj←i+1 + 18
∑

1≤j≤j′≤q

j′∑
i′=max{i+1,j}

κ̄i′κj′←i′+1κi′−1←i+1κi′−1←j

κj′←j
,

κ̃Ji ,
∑

j≤i≤j′

4κj′←i+1κi−1←j

κj′←j

where for simplicity in the above expressions, we extend the definition of κ’s to κj−1←j = 1.
5Note that DRVi maps a vector in space DVi−1 to an linear operator that maps DVi−1 to DVi .
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Figure 4: Lipschitz augmentation (for-
mally defined).

Finally, we combine Theorems A.3 and Theorems B.2 to
derive covering number bounds for any Lipschitz aug-
mentation of sequential computational graphs. The final
covering bound in (9) can be easily computed given cov-
ering number bounds for each individual function class.
In Section 5, we use this theorem to derive Rademacher
complexity bounds for neural networks. The proof is de-
ferred to Section E. In Section G, we also use these tools
to derive Rademacher complexity bounds for RNNs.
Theorem B.3. Consider any family G of sequential com-
putational graphs satisfying the conditions of Theorem B.2.
By combining the augmentation of Definition B.1 with ad-
ditional indicators on the internal node norms, we can
construct a new family G̃ of computational graphs which output

OG̃(x) = (OG(x)− 1)

q∏
i=1

1≤sVi (‖Vi(x)‖)
∏

1≤i≤j≤q

1≤κj←i(‖DVj(x) · · ·DVi(x)‖op) + 1

The family G̃ satisfies the following guarantees:

1. Each computational graph in G̃ upper bounds its counterpart in G, i.e. OG̃(x) ≥ OG(x).

2. Define κ̃′Vi , κ̃Vi +
∑
i≤j≤q s

−1
Vj
· κj←i+1 and κ̃′Ji = κ̃Ji where κ̃Vi , κ̃Ji are defined as in

Theorem B.2. Then for any node-wise errors {εV },

logN (
∑
i≥1

κ̃′ViεVi + κ̃JiεJi + εO, OG̃ , sI) (9)

≤
∑
i≥1

logN (εVi ,RVi , 2sVi−1) + logN (εJi , DRVi , 2sVi−1) + logN (εO,RO, {2sVj}
q
j=1 ∪ {I})

where DRVi denotes the family of total derivatives of functions in RVi and V0 the input
vertex.

C Missing Proofs for Section 5

We first elaborate more on the notations introduced in Section 5. First, by our indexing, matrix W (i)

will be applied in layer 2i − 1 of the network, and even layers 2i apply φ. We let Fj′←j denote
the function computed between layers j and j′ and Qj′←j = DFj′←j ◦ Fj′−1←1 denote the layer
j-to-j′ Jacobian. By our definition of Fj′←j , F2j←2j = φ, F2j−1←2j−1 = h 7→W (j)h, and Fj′←j
is recursively computed by Fj′←j′ ◦ Fj′−1←j for j′ > j. We will use the convention that Fj−1←j
computes the identity mapping for i ≤ j.
P will denote a test distribution over examples x and labels y, and Pn will denote the distribution on
training examples.

For a class of real-valued functions L and dataset Pn, define the empirical Rademacher complexity
of this function class by

Radn(L) =
1

n
E
αi

[
sup
l∈L

∑
i

αil(xi)

]
(10)

where αi are independent uniform ±1 random variables. Let m(t, y) , [t]y −maxj 6=y[t]j denote
the margin operator for label y, and lγ(t, y) , 1(m(t, y) ≤ 0) − 1(0 < m(t, y) ≤ γ) ·m(t, y)/γ
denote the standard ramp loss, which is 1/γ-Lipschitz. We will work in the neural network setting
defined in Section 5. We will first state our generalization bound for neural networks.
Theorem C.1. Assume that the activation φ is 1-Lipschitz with σ̄φ-Lipschitz derivative. Fix parame-
ters σj′←j , t(i), a(i), b(i), γ and reference matrices {A(i)}, {B(i)}. With probability 1− δ over the
random draws of the distribution Pn, all neural networks F with parameters {W (i)} satisfying the
following data-dependent conditions:
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1. Hidden layers norms are controlled: maxx∈Pn ‖F2i←1(x)‖ ≤ t(i) ∀1 ≤ i ≤ r.

2. Jacobians are balanced: maxx∈Pn ‖Qj′←j(x)‖op ≤ σj′←j ∀j < j′.

3. The margin is large: min(x,y)∈Pn [F (x)]y −maxy′ 6=y[F (x)]y′ ≥ γ > 0.

and the additional data-independent condition

‖W (i)> −A(i)>‖2,1 ≤ a(i), ‖W (i) −B(i)‖1,1 ≤ b(i), ‖W (i)‖op ≤ σ2i−1←2i−1

will have the following generalization to test data:

E
(x,y)∼D

[l0-1(F (x), y)] ≤ Õ

((∑
i(κ

hidden,(i)a(i)t(i−1))2/3 + (κjacobian,(i)b(i))2/3
)3/2

√
n

)
+

√
log(1/δ)

n

where

κjacobian,(i) ,
∑

1≤j≤2i−1≤j′≤2r−1

4σj′←2iσ2i−2←j

σj′←j
(11)

κhidden,(i) ,
σ2r−1←2i

γ
+
∑
i≤i′<r

3σ2i′←2i

t(i′)

+
∑

1≤j≤j′≤2r−1

j′∑
j′′=max{2i,j},

j′′ even

σ̄φσj′←j′′+1σj′′−1←2iσj′′−1←j

σj′←j

(12)

Here we use the convention that σj−1←j = 1 and let t(0) = maxx∈Pn ‖x‖.

This generalization bound follows straightforwardly via the below Rademacher complexity bound for
the augmented loss class:
Theorem C.2. Suppose that φ is 1-Lipschitz with σ̄φ-Lipschitz derivative. Define the following
class of neural networks with norm bounds on its weight matrices with respect to reference matrices
{A(i)}, {B(i)}:

F ,
{
x 7→ F (x) : ‖W (i)> −A(i)>‖2,1 ≤ a(i), ‖W (i) −B(i)‖1,1 ≤ b(i), ‖W (i)‖op ≤ σ(i)

}
Fix parameters t(i) and σj′←j for j′ ≥ j with σ2i←2i = 1 and σ2i−1←2i−1 = σ(i). When we apply
this theorem, we will choose σj′←j and t(i) which upper bound the layer j to j′ Jacobian norm and
i-th hidden layer norm, respectively. Define the class of augmented losses

Laug ,

(lγ − 1) ◦ F
r−1∏
i=1

1≤t(i)(‖F2i←1‖)
∏

1≤j<j′≤2r−1

1≤σj′←j (‖Qj′←j‖op) + 1 : F ∈ F


and define for 1 ≤ i ≤ r, κjacobian,(i), κhidden,(i) meant to bound the influence of the matrix W (i) on
the Jacobians and hidden variables, respectively as in (11), (12). Then we can bound the empirical
Rademacher complexity of the augmented loss class by

Radn(Laug) = Õ

((∑
i(κ

hidden,(i)a(i)t(i−1))2/3 + (κjacobian,(i)b(i))2/3
)3/2

√
n

)
where we recall that the notation Õ hides log factors in the arguments and the dimension of the
weight matrices.

Proof. We associate the un-augmented loss class on neural networks lγ ◦F with a family of sequential
computation graphs G with depth 2r − 1. The composition rules are as follows: for internal
node V2i, RV2i

= {φ}, the set with only one element: the activation φ. We also let RV2i−1
=

{h 7→ Wh : ‖W> − A(i)>‖2,1 ≤ a(i), ‖W − B(i)‖1,1 ≤ b(i), ‖W‖op ≤ σ(i)}. Finally, we
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choose RO to be the singleton class {lγ}. Our collection of computation rules is then simply
R = RV1 ⊗ · · · ⊗RV2r−1 ⊗RO. Since OG takes values in [0, 1], we can apply Theorem B.3 on this
class G using sI = maxx∈Pn ‖x‖, sV2i = t(i), sV2i−1 = ∞, κ2i←2i = 1, κ2i−1←2i−1 = σ(i), and
κj′←j = σj′←j for j′ > j. Furthermore, we note that κ̄2i = σ̄φ, and κ̄2i−1 = 0 as the Jacobian is
constant for matrix multiplications. We thus obtain the class G̃ where each augmented loss upper
bounds the corresponding loss in G. Recall that Ji denote the additional nodes in our augmented
computation graph. Note that under these choices of sV2i−1

, κi←i, we get that
1≤κ2i←2i

(‖J2i(x)‖op) = 1≤1(‖Dφ ◦ V2i−1(x)‖op) = 1 (as |φ′| ≤ 1)

1≤κ2i−1←2i−1(‖J2i−1(x)‖op) = 1≤σ(i)(‖W (i) ◦ V2i−2(x)‖op) = 1 (as W (i) ≤ σ(i))

1≤sV2i−1
(‖V2i−1(x)‖) = 1≤∞(‖V2i−1(x)‖) = 1

Furthermore, the other indicators in the augmented loss map to indicators in the outputs of our
augmented graphs OG̃, so therefore the families Laug defined in the theorem statement and G̃ are
equivalent. Thus, it suffices to bound the Rademacher complexity of G̃. To do this, we invoke
covering numbers. By Theorem B.3, we bound the covering number of OG̃ :

logN (
∑
i≥1

(κ̃Vi + κ̃Ji)εV + εO, OG̃ , sI) ≤

∑
i≥1

logN (εVi ,RVi , 2sVi−1) + logN (εJi , DRVi , 2sVi−1) + logN (εO,RO, {2sVi}i≥0)
(13)

where κ̃Vi , κ̃Ji are defined in the statement of Theorem B.3. After plugging in our values for κ̄j , sVj ,
κj′←j in our application of Theorem B.3 and noting that c2i = 1/t(i), c2i−1 = 0 for i < r and 1/γ
for i = r (as the margin loss is 1/γ-Lipschitz), we obtain that

κ̃V2i−1
= κhidden,(i), κ̃J2i−1

= κjacobian,(i)

We first note that the last term in (13) is simply 0 because there is exactly one output function in RO.
Now for the other terms of (13): by definition RV2i

, RJ2i consist of a singleton set and therefore
have log cover size 0 for any error resolution ε. Otherwise, to cover RV2i−1

it suffices to bound

logN (εV2i−1 , {h 7→Wh : ‖W> −A(i)>‖2,1 ≤ a(i)}, 2t(i−1)). Thus, we can apply Lemma C.3 to
obtain

logN (εV2i−1
,RV2i−1

, 2sV2i−2
) ≤ Õ

(
(a(i)t(i−1))2

ε2V2i−1

)
Now to cover DRV2i−1 , it suffices to cover {W : ‖W −B(i)‖1,1 ≤ b(i)}. The ε-covering number of
a d2

h-dimensional `1-ball with radius b w.r.t. `2 norm is O( b
2

ε2 log dh). Thus,

logN (εJ2i−1
, DRV2i−1

, 2sV2i−2
) ≤ Õ

(
(b(i))2

ε2J2i−1

)
Now we define

β? ,

(∑
i

(κ̃V2i−1
a(i)t(i−1))2/3 + (κ̃J2i−1

b(i))2/3

)3/2

=

(∑
i

(κhidden,(i)a(i)t(i−1))2/3 + (κjacobian,(i)b(i))2/3

)3/2

Now for a fixed error parameter ε, we set εO = 0, εV2i
= 0, εJ2i = 0 (as the log cover size

is 0 anyways), and εV2i−1
= ε

κ̃
−1/3
V2i−1

(a(i)t(i−1))2/3

(β?)2/3
, εJ2i−1

= ε
κ̃
−1/3
J2i−1

(b(i))2/3

(β?)2/3
Now it follows that∑

j εVj κ̃Vi + εJj κ̃Jj = ε. Furthermore, under these choices of εVi , εJi , we end up with∑
i≥1

logN (εVi ,RVi , 2sVi−1
) + logN (εJi , DRVi , 2sVi−1

)

≤ Õ

 1

ε2
(β?)4/3

(∑
i

(κhidden,(i)a(i)t(i−1))2/3 + (κjacobian,(i)b(i))2/3

)3/2
 = Õ(ε−2(β?)2)
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Thus, substituting terms into (13) and collecting sums, we obtain that

logN (ε, OG̃ , sI) ≤ Õ(ε−2(β?)2)

Now we apply Dudley’s entropy theorem to obtain that

Radn(G̃) = Õ

((∑
i(κ

hidden,(i)a(i)t(i−1))2/3 + (κjacobian,(i)b(i))2/3
)3/2

√
n

)

We now apply C.2 to prove Theorem C.1.

Proof of Theorem C.1. We start with Theorem C.2, which bounds the Rademacher complexity of the
augmented loss class Laug. Using laug(F, x, y) to denote the application of this augmented loss on the
network F , its weights, and data (x, y), we first note that l0-1(F (x), y) ≤ lγ(F (x), y) ≤ laug(F, x, y)
for any datapoint (x, y). We used the fact that margin loss upper bounds 0-1 loss, and laug upper
bounds margin loss by the construction in Theorem B.3. Thus, applying the standard Rademacher
generalization bound, with probability 1− δ over the training data, it holds that

E
(x,y)∼D

[l0-1(F (x), y)] ≤ E
(x,y)∼D

[laug(F, x, y)] (14)

≤ E
(x,y)∼Dn

[laug(F, x, y)] + Radn(Laug) +

√
log(1/δ)

n
(15)

= Radn(Laug) +

√
log(1/δ)

n
(by the data-dependent conditions)

Plugging in the bound on Radn(Laug) from Theorem C.2 gives the desired result.

Finally, to prove Theorems 5.1 and 1.1, we simply take a union bound over the choices of parameters
σj′←j , t

(i), a(i), b(i).

Proof of Theorems 5.1 and 1.1. We will apply Theorem C.1 repeatedly over a grid of parameter
choices t(i), σj′←j , a(i), b(i) (following a technique of Bartlett et al. [2017]). For a collectionM
of nonnegative integers m(i)

t , m(j′←j)
σ , m(i)

a , m(i)
b , mγ , we apply Theorem C.1 choosing t(i) =

poly(r)−12m
(i)
t , σj′←j = poly(r)−12m

(j′←j)
σ , a(i) = poly(r)−12m

(i)
a , b(i) = poly(r)−12m

(i)
b , γ =

2−mγpoly(r) maxi σ2r−1←2i and using error probability δM , δ

2
∑
m∈Mm+1 . First, we note that by

union bound, using the fact that
∑

choices ofM
δ

2
∑
m∈Mm+1 = δ whereM ranges over nonnegative

integers, we get that the generalization bound of Theorem C.1 holds for choices ofM with probability
1 - δ.

Now for the network F at hand, there would have been some choice ofM for which the bound was
applied using parameters t̂(i), σ̂j′←j , â(i), b̂(i), γ̂ and

‖W (i)> −A(i)>‖2,1 ≤ â(i) = poly(r)−12m
(i)
a ≤ poly(r)−1 + 2‖W (i)> −A(i)>‖2,1

‖W (i) −B(i)‖1,1 ≤ b̂(i) = poly(r)−12m
(i)
b ≤ poly(r)−1 + 2‖W (i) −B(i)‖1,1

max
x∈Pn

‖F2i←1(x)‖ ≤ t̂(i) = poly(r)−12m
(i)
t ≤ poly(r)−1 + 2 max

x∈Pn
‖F2i←1‖

max
x∈Pn

‖Qj′←j(x)‖op ≤ σ̂j′←j = poly(r)−12m
(j′←j)
σ ≤ poly(r)−1 + 2 max

x∈Pn
‖Qj′←j(x)‖op

Furthermore, using γ to denote the true margin of the network, we also have γ̂ ≤ γ and
σ̂2r−1←2i

γ̂ ≤ 4
maxx∈Pn ‖Q2r−1←2i(x)‖op

γ + 1
poly(r) . Furthermore, note that the cost we pay in√

log(1/δM)
n is Õ

(
r
√

log(1/δ)
n

)
, where Õ hides polylog factors in r and other parameters. Thus, the

bound of Theorem 5.1 holds.

The proof of the simpler Theorem 1.1, follows the same above argument. The only difference is that
we union bound over parameters σ, t and the matrix norms.
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Proposition C.1 (Dudley’s entropy theorem [Dudley, 1967]). Let s = maxx∈Pn ‖x‖ be an upper
bound on the largest norm of a datapoint. Then the following bound relates Rademacher complexity
to covering numbers:

Radn(L) ≤ inf
α>0

(
α+

∫ ∞
α

√
logN (ε,L, s)

n
dε

)
Lemma C.3. For reference matrix A ∈ Rd1×d2 , define the class of matrices mapping functions
U , {h 7→ Uh : U ∈ Rd1×d2 , ‖U> −A>‖2,1 ≤ a}. Then

logN (ε,U , b) ≤ 2a2b2

ε2
log(2d1d2)

Proof. By Lemma 3.2 of Bartlett et al. [2017], we can construct cover Û for the class {h 7→ (U−A)h :
U ∈ Rd1×d2 , ‖U> −A>‖2,1 ≤ a} with the given cover size (Note that in our definition of empirical
covering number, the resolution ε is scaled by factor 1

n versus theirs). To cover U with the same
cardinality set, we simply shift all functions in Û by A.

D Missing Proofs in Section A

We first state the proof of Theorem A.3.

Proof of Theorem A.3. We prove the theorem by induction on the number of non-input vertices in
the vertex set V . The statement is true if O is the only non-input node in the graph: to cover the graph
output with error εO, we simply cover RO.

Given a family of graphs G (with shared edges E and nodes V), we assume the inductive hypothesis
that “for any family of graphs with more than |I| input vertices, the theorem statement holds.” Under
this hypothesis, we will show that the theorem statement holds for the graph family G.

We take node V1 from the forest ordering (V1, . . . , Vm) assumed in the theorem. Suppose V1 depends
on C1, . . . , Ct, which are assumed to be the input nodes by the definition of forest ordering. We
release the node V1 from the graph and obtain a new family G\V1 = {G\V1 : G ∈ G} with a smaller
number of edges than that of G.

Define u(h, x) , OG\V1 (h, x) for h ∈ DV1
and x ∈ DI , and w(x) = V1(x). Then we can check

that u(w(x), x) = OG(x). Let U = {OG\V1 : G ∈ G}, and letW = RV1
. As each function in U

is κV1-Lipschitz in V1 because of condition 1, and it equals the fixed constant c if |||V1||| ≥ sV or
|||Ci||| ≥ sCi , we have U ,W satisfies the conditions of the composition lemma (see Lemma D.1).
With the lemma, we conclude:

logN (κV1εV1 + εu,G, sI) ≤ logN (εu,U , (sV1 , sI)) + logN (εV1 ,RV1 , spr(V1)) (16)

Note that by the definition of forest ordering, we have that (V2, . . . , Vm) is a forest ordering of G\V1

and by the assumption 1 of the theorem, we have that (V2, . . . , Vm) satisfies the condition 1 for the
graph family G\V1 . G\V1 has one more input node than G, so we can invoke the inductive hypothesis
on G\V1 and obtain

logN (
∑

V ∈V\({V1,O}∪I)

κV · εV + εO,U , (sV1
, sI)) ≤

∑
V ∈V\({V1}∪I)

logN (εV ,RV , spr(V )) (17)

Combining equation (16) and (17) above, we prove (7) for G, and complete the induction.

Below we provide the composition lemma necessary for Theorem A.3.
Lemma D.1. Suppose

U ⊆ {(h, x(1), . . . , x(m)) ∈ Dh ⊗D(1)
x ⊗ · · · ⊗ D(m)

x 7→ Du}
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is a family of functions with two arguments andW ⊆ {x(1), . . . , x(m) ∈ D(1)
x ⊗ · · · ⊗ D(m)

x 7→ Dh}
is another family of functions. We overload notation and refer to x(1), . . . , x(m) as x. The spaces
Dh,Dx,Du all associate with some norms ||| · ||| (the norms can potentially be different for each
space, but we use the same notation for all of them.) Assume the following:

1. All functions in U are κ-Lipschitz in the argument h for any possible choice of x: for any
u ∈ U , x ∈ Dx, and h, h′ ∈ Dh, we have |||u(h, x)− u(h′, x)||| ≤ κ|||h− h′|||.

2. Any function u ∈ U collapses on inputs with large norms: there exists a constant b such that
u(h, x) = b if |||h||| ≥ sh or |||x(i)||| ≥ s(i)

x for any i.

Then, the family of the composition of u and w, Z = {z(x) = u(w(x), x) : u ∈ U , w ∈ W}, has
covering number bound:

logN (κεw + εu,Z, sx) ≤ logN (εw,W, sx) + logN (εu,U , (sh, sx))

Proof. When it is clear from context, we let |||x||| ≤ sx denote the statement that |||x(i)||| ≤ s
(i)
x ∀i.

Suppose Pn is a uniform distribution over n data points {x1, . . . , xn} ⊂ Dx with norms not larger
than sx. Given function u ∈ U and w ∈ W , we will construct a pair of functions such that û(ŵ(x), x)
covers u(w(x), x). We will count (in a straightforward way) how many distinct pairs of functions we
have construct for all the (u,w) pairs at the end of the proof.

Let P ′ be the uniform distribution over {xi : |||xi||| ≤ sx}, and suppose Ŵ is a εw
√

n
|supp(P ′)| error

cover ofW with respect to the metric L2(P ′, ||| · |||). We note that Ŵ has size at most N (εw,W, sx).
We found ŵ ∈ W such that ŵ is εw-close to w in metric L2(P ′, ||| · |||). Let ĥi denote ŵ(xi). Let
Q′ be the uniform distribution over {(ĥi, xi) : |||ĥi||| ≤ sh, |||xi||| ≤ sx}, and let Q be the uniform
distribution over all n points, {(ĥ1, x1), . . . , (ĥn, xn)}. Now we construct a intermediate cover Û ′

(that depends on ŵ implicitly) that covers U with εu
√

n
|supp(Q′)| error with respect to the metric

L2(Q′, ||| · |||). We augment this to a cover Û that covers U with respect to metric L2(Q, ||| · |||) as
follows: for every û′ ∈ Û ′, add the function û to Û with

û(h, x) =

{
û′(h, x) if |||h||| ≤ sh, |||x||| ≤ sx
b otherwise

Note that by construction, the size of Û is at most N (εu,U , (sh, sx)). Now let û′ ∈ Û ′ be the
cover element for u w.r.t. L2(Q, ||| · |||), and û be the corresponding cover element in Û . Because
û(ĥ, x) = b = u(ĥ, x) when |||ĥ||| ≥ sh or |||x(i)||| ≥ s(i)

x for some i,

E
ĥ,x∼Q

[
|||û(ĥ, x)− u(ĥ, x)|||

2
]

=
|supp(Q′)|

n
E

ĥ,x∼Q′

[
|||û′(ĥ, x)− u(ĥ, x)|||

2
]
≤ ε2u (18)

Then we bound the difference between u(ĥ, x) and u(h, x) by Lipschitzness; since u(ĥ, x) =
u(h, x) = b when |||x||| > sx,

E
ĥ,x∼Q

[
|||u(ĥ, x)− u(h, x)|||

2
]
≤ κ2 |supp(P ′)|

n
E

ĥ,x∼P ′

[
|||ĥ− h|||

2
]
≤ κ2ε2w (19)

where in the last step we used the property of the cover G. Finally, by triangle inequality, we get that

‖û(ŵ(x), x)− u(w(x), x)‖L2(Pn,|||·|||)

≤ ‖û(ŵ(x), x)− u(ŵ(x), x)‖L2(Pn,|||·|||) + ‖u(ŵ(x), x)− u(w(x), x)‖L2(Pn,|||·|||)

≤ κεw + εu (by equation (18) and (19) and definition of hi, ĥi)

Finally we count how many (ŵ, û) we have constructed: Ŵ is of size at most N (εw,W, sx). and
for every ŵ ∈ Ŵ , we’ve constructed a family of functions Û (that depends on ŵ) of size at most
N (εu,U , (sh, sx)). Therefore, the total size of the cover is at mostN (εw,W, sx)·N (εu,U , (sh, sx)).
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E Missing Proofs in Section B

We first state the proofs of Theorem B.2 and Theorem B.3, which follow straightforwardly from the
technical tools developed in Section F.

Proof of Theorem B.2. Fix any forest ordering S of G̃. Fix G̃ ∈ G̃. Let S ′ be the prefix sequence of S
ending in Vi. Note that S ′ will not contain any Jj or Vj for j > i, as Vj and Jj will still depend on a
non-input node (namely, Vj−1). Thus, we can fit G̃\S

′
under the framework of Lemma F.1, where we

set k = q − i and identify fj with RVi+j . We set m = i, and identify Am′ with Ji · · · Jm′ (where Jj
may depend on input variables or itself be an input variable for 1 ≤ j ≤ i, but this does not matter for
our purposes). Then that to apply Lemma F.1, we set τj′←i′ = κj′+i←i′+i, τj′←1,m′ = κj′+i←m′ ,
and τ̄j = κ̄i+j . Now we can apply Lemma F.1 to conclude that G̃\S

′
is κ̃Vi-Lipschitz in Vi for any

1 ≤ i ≤ q.

Now we prove release-Lipschitzness for a prefix sequence S ′ of S that ends in node Ji. For all j 6= i,
fix Dj ∈ DJj . It suffices to show that the function Q defined by

Q(Ji) ,
∏

j≤i≤j′
1≤κj′←j (‖Dj′ · · ·Di+1JiDi−1 · · ·Dj‖op)

×
∏

j′≥i+1

1≤κj′←i+1
(‖Dj′ · · ·Di+1‖op)×

∏
j≤i−1

1≤κi−1←j (‖Di−1 · · ·Dj‖op)

is κ̃Ji-Lipschitz in the value of Ji. This is because after fixing all other inputs besides Ji, we can
write OG̃\S′ in the form Q(Ji)a+ 1, where a may depend on the other inputs but not Ji and |a| ≤ 1.
Now we simply apply Lemma F.8 to conclude that Q(Ji), and therefore OG̃\S′ , is κ̃Ji -Lipschitz.

Proof of Theorem B.3. We first construct an augmented family of graphs G′ sharing the same vertices
and edges as G. For G ∈ G, we add G′ to G′ computing

OG′(x) = (OG(x)− 1)

q∏
i=1

1≤sVi (‖Vi(x)‖) + 1

This is achieved by modifying the family of output rules as follows:

R′O(x, v1, . . . , vq) = (RO(x, v1, . . . , vq)− 1)

q∏
i=1

1≤sVi (‖vi‖) + 1

where x ∈ DI and vi ∈ DVi . We can also apply Claim J.1 to conclude that R′O outputs values in
[0, 1]. Furthermore, as the function 1≤sVi (‖vi‖) is s−1

Vi
-Lipschitz in vi, by the product property for

Lipschitzness, R′O is (ci + sVi)
−1-Lipschitz in vi. Now we apply Theorem B.2 to obtain a graph

family G̃ that is {κ̃V }-release-Lipschitz with respect to any forest ordering on (Ṽ, Ẽ) for parameters
{κ̃V } defined in the theorem statement. Furthermore, by the construction of our augmentation and
application of Claim J.1, it follows that

R̃O(x, v1, . . . , vq, D1, . . . , Dq) =

(RO(x, v1, . . . , vq)− 1)

q∏
i=1

1≤sVi (‖vi‖)
∏

1≤i≤j≤q

1≤κj←i(‖Dj · · ·Di‖op) + 1

and in particular outputs the constant value 1 when ‖vi‖ > 2sVi or ‖Di‖ > 2κi←i. As this is a
property of the output rule R̃O itself, it is clear that condition 2 of Theorem B.2 holds for any forest
ordering on (Ṽ, Ẽ). Now we can apply Theorem B.2:

logN (
∑
i≥1

(κ̃Vi + κ̃Ji)εV + εO, OG̃ , sI) ≤
∑
i≥1

logN (εVi ,RVi , 2sVi−1
)

+ logN (εJi , DRVi , 2sVi−1
) + logN (εO, R̃O, {2sVi} ∪ {I} ∪ {2sJi}i≥1)
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Now all terms match (9) except for the term logN (εO, R̃O, {2sVi} ∪ {I} ∪ {2sJi}i≥1). First, we
note that all functions in R̃O can be written in the form

R̃O(x, v1, . . . , vq, D1, . . . , Dq) = (RO(x, v1, . . . , vq)− 1)Q(v1, . . . , vq, D1, . . . , Dq) + 1

where the function Q is the same for all R̃O ∈ R̃O. It follows that to cover R̃O, we can first obtain a
cover R̂O of RO and then apply the operation r̂ 7→ (r̂ − 1)Q+ 1 to each element in R̂O. Thus, we
get the equivalence

logN (εO, R̃O, {2sVi}i≥0 ∪ {2sJi}i≥1) = logN (εO,RO, {2sVi} ∪ {I})
This allows us to conclude (9). Finally, we note that as the augmentation operations are in the form
of those considered in Claim J.1, it follows that OG̃ upper bounds OG.

F Technical Tools for Lipschitz Augmentation

In this section, we develop the technical tools needed for proving Theorem B.2. The main result in
this section is our Lemma F.1, which essentially states that augmenting the loss with a product of
Jacobians (plus additional matrices meant to model previous Jacobian nodes already released from
the computational graph) will make the loss Lipschitz.

For this section, we say a function J taking input x ∈ D and outputting an operator mapping D
to D′ is κ-Lipschitz if ‖J(x) − J(x′)‖op ≤ κ‖x − x′‖ for any x, x′ in its input domain. We will
consider functions f1, . . . , fk, where fi : Di−1 → Di and D0 is a compact subset of some normed
space. For ease of notation, we use ‖ · ‖ to denote the (possibly distinct) norms on D0, . . . ,Dk. For
1 ≤ i ≤ j ≤ k, Let fj←i : Di−1 → Dj denote the composition

fj←i , fj ◦ · · · ◦ fi
For convenience in indexing, for (i, j) with i > j, we will set fj←i : Di−1 → Di−1 to be the identity
function.

Finally consider a real-valued function g : D0 ⊗ · · · ⊗ Dk → [0, 1] and define the composition
z : D0 7→ [0, 1] by

z(x) = g(x, f1←1(x), . . . , fk←1(x))

We will construct a “Lipschitz-fication” for the function z.

LetA1, . . . , Am denote a collection of linear operators that map to the spaceD0. We will furthermore
use Jj←i,m′ to denote the i-to-j Jacobian, i.e.

Jj←i,m′ , Dfj←i ◦ fi−1←1

When i = 1 and 0 ≤ j ≤ k, we will also consider products between 1-to-j Jacobians and the matrices
Am′ : define

Jj←1,m′ , (Dfj←1)Am′

Note in particular that J0←1,m′ = Am′ .
Lemma F.1. [Lipschitz-fication] Following the notation in this section, suppose that g is ck′ -Lipschitz
in its (k′ + 1)-th argument for 0 ≤ k′ ≤ k. Suppose that Dfj←j is τ̄j-Lipschitz for all 1 ≤ j ≤ k.
For any (i, j) with 1 ≤ i ≤ j ≤ k, let τj←i be parameters that intend to be a tight bound on
‖Jj←i‖op, and also define τj←1,m′ which will bound ‖Jj←1,m′‖op. Define the augmented function
z̄ : D0 7→ [0, 1] by

z̃(x) = (z(x)− 1)
∏

2≤i≤j

1≤τj←i(‖Jj←i(x)‖op)
∏

0≤j≤k,m′
1≤τj←1,m′ (‖Jj←1,m′‖op) + 1

Define τ?, a Lipschitz parameter for z̃, by

τ? ,
∑

0≤j≤k

3cjτj←1

+ 18
∑

1≤i≤j≤k

∑j
i′=i τ̄i′τj←i′+1τi′−1←1τi′−1←i

τj←i

+ 18
∑

1≤j≤k,m′

∑j
i′=1 τ̄i′τj←i′+1τi′−1←1τi′−1←1,m′

τj←1,m′

where for convenience we let τj←i = 1 when j < i. Then z̃ is τ?-Lipschitz in x.
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Proof. For ease of notation, we will first define for any (i, j) with 1 ≤ i ≤ j ≤ k, Qj←i ,
1≤τj←i(‖Jj←i‖op) and for (j,m′) with 0 ≤ j ≤ k, Qj←1,m′ , 1≤τj←1,m′ (‖Jj←1,m′‖op). Note in
particular that Q0←1,m′ is always a constant function. We will also let Q denote the collection of
functions

Q = {Qi←j}1≤i≤j≤k ∪ {Qj←1,m′}0≤j≤k,1≤m′≤m

We define the following order �Q on this collection of functions:

Q0←1,m �Q · · · �Q Q0←1,1

�Q Q1←1 �Q Q1←1,m �Q · · · �Q Q1←1,1

�Q Q2←2 �Q Q2←1 �Q Q2←1,m �Q · · · �Q Q2←1,1

...
�Q Qk←k �Q · · · �Q Qk←1 �Q Qk←1,m′ �Q · · · �Q Qk←1,1

We will first show that ∃C > 0 such that ∀x and ∀ν with ‖ν‖ < C, |z̃(x)− z̃(x+ ν)| ≤ τ?‖ν‖. To
use this statement to conclude that z̃ is τ?-Lipschitz, we note that for arbitrary x and ν, we can divide
the segment between x and x+ ν into segments of length at most C, and apply the above statement
on each segment. First, define for 0 ≤ j ≤ k

γj(x, ν) ,g(f0←1(x), . . . , fj−1←1(x), fj←1(x), fj+1←1(x+ ν), . . . , fk←1(x+ ν))

−g(f0←1(x), . . . , fj−1←1(x), fj←1(x+ ν), fj+1←1(x+ ν), . . . , fk←1(x+ ν))

Next, define the telescoping differences

δj(x, ν) ,γj(x, ν)
∏

Q�QQj←1,1

Q(x)
∏

Qj←1,1�QQ
Q(x+ ν) ∀0 ≤ j ≤ k (20)

∆j←i(x, ν) ,(Qj←i(x)−Qj←i(x+ ν))
∏

Q�QQj←i

Q(x)
∏

Qj←i�QQ
Q(x+ ν) ∀1 ≤ i ≤ j ≤ k

(21)

∆j←1,m′(x, ν) ,(Qj←1,m′(x)−Qj←1,m′(x+ ν))·∏
Q�QQj←1,m′

Q(x)
∏

Qj←1,m′�QQ
Q(x+ ν) ∀0 ≤ j ≤ k (22)

Now note that by Claim F.7, we have the bound

|z̃(x)− z̃(x+ ν)| ≤
∑

0≤j≤k

|δj(x, ν)|+
∑

1≤i≤j≤k

|∆j←i(x, ν)|+
∑

0≤j≤k,m′
|∆j←1,m′(x, ν)|

Define τ̄ to be the Lipschitz constant of Jj←i on D0 for all 1 ≤ i ≤ j ≤ k guaranteed by Claim F.6.
First, note that ∆0←1,m′ = 0 for all m′. Thus, by Claims F.4 and F.5, it follows that

|z̃(x)− z̃(x+ ν)| ≤
∑

0≤j≤k

cj(2τj→1 +
τ̄

2
‖ν‖)‖ν‖

+
∑

1≤i≤j≤k

‖ν‖
∑j
i′=i(2τj←i′+1 + τ̄‖ν‖)τ̄i′(2τi′−1←1 + τ̄

2‖ν‖)2τi′−1←i

τj←i

+
∑

1≤j≤k,1≤m′≤m

‖ν‖
∑j
i′=1(2τj←i′+1 + τ̄‖ν‖)τ̄i′(2τi′−1←1 + τ̄

2‖ν‖)2τi′−1←1,m′

τj←1,m′

(23)
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Now note that if ‖ν‖ ≤ 2 mini≤j τj←i
τ̄ , then it follows that 2τj←i+

τ̄
2‖ν‖ ≤ 3τj←i∀i ≤ j. Substituting

into (23), we get that ∀x, ‖ν‖ ≤ 2 mini≤j τj←i
τ̄ ,

|z̃(x)− z̃(x+ ν)| ≤‖ν‖
∑

0≤j≤k

3cjτj←1

+ ‖ν‖18
∑

1≤i≤j≤k

∑j
i′=i τ̄i′τj←i′+1τi′−1←1τi′−1←i

τj←i

+ ‖ν‖18
∑

1≤j≤k,m′

∑j
i′=1 τ̄i′τj←i′+1τi′−1←1τi′−1←1,m′

τj←1,m′

=τ?‖ν‖

It follows that z̃ is τ?-Lipschitz.

Claim F.2. In the setting of Lemma F.1, for 1 ≤ i ≤ j ≤ k, we can expand the error Jj←i(x) −
Jj←i(x+ ν) as follows:

Jj←i(x)− Jj←i(x+ ν) =

j∑
i′=i

Jj←i′+1(x+ ν)(Ji′←i′(x)− Ji′←i′(x+ ν))Ji′−1←i(x) (24)

Furthermore, for 1 ≤ j ≤ k,m′, we can expand the error Jj←1,m′(x)− Jj←1,m′(x+ ν) as follows:

Jj←1,m′(x)− Jj←1,m′(x+ ν) =

j∑
i′=1

Jj←i′+1(x+ ν)(Ji′←i′(x)− Ji′←i′(x+ ν))Ji′−1←1,m′(x)

(25)

Proof. We will first show (24) by inducting on j − i. The base case j = i follows by definition, as
we can reduce Ji←i+1 and Ji−1←i to constant-valued functions that output the identity matrix.

For the inductive step, we use Claim J.2 to expand

Jj←i(x)− Jj←i(x+ ν) =Jj←i+1(x)Ji←i(x)− Jj←i+1(x+ ν)Ji←i(x+ ν)

=(Jj←i+1(x)− Jj←i+1(x+ ν))Ji←i(x)

+ Jj←i+1(x+ ν)(Ji←i(x)− Ji←i(x+ ν))

=

j∑
i′=i+1

Jj←i′+1(x+ ν)(Ji′←i′(x)− Ji′←i′(x+ ν))Ji′−1←i+1(x)Ji←i(x)

(by the inductive hypothesis)
+ Jj←i+1(x+ ν)(Ji←i(x)− Ji←i(x+ ν))

=

j∑
i′=i+1

Jj←i′+1(x+ ν)(Ji′←i′(x)− Ji′←i′(x+ ν))Ji′−1←i(x)

(by Claim J.2)
+ Jj←i+1(x+ ν)(Ji←i(x)− Ji←i(x+ ν))

=

j∑
i′=i

Jj←i′+1(x+ ν)(Ji′←i′(x)− Ji′←i′(x+ ν))Ji′−1←i(x)

as desired.
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To prove (25), we first note that by definition, Jj←1,m′(x) = Jj←1(x)J0←1,m′ , so
Jj←1,m′(x)− Jj←1,m′(x+ ν) (26)
= (Jj←1(x)− Jj←1(x+ ν))J0←1,m′

=

j∑
i′=1

Jj←i′+1(x+ ν)(Ji′←i′(x)− Ji′←i′(x+ ν))Ji′−1←1(x)J0←1,m′ (by (24))

=

j∑
i′=1

Jj←i′+1(x+ ν)(Ji′←i′(x)− Ji′←i′(x+ ν))Ji′−1←1,m′(x)

(since Ji′−1←1(x)J0←1,m′ = Ji′−1←1,m′(x))

Claim F.3. In the setting of Lemma F.1, suppose that Jj←i is τ̄ -Lipschitz for all 1 ≤ i ≤ j ≤ k.
Then we can bound the operator norm error in the Jacobian by

‖Jj←i(x)− Jj←i(x+ ν)‖op ≤

‖ν‖
j∑

i′=i

(‖Jj←i′+1(x)‖op + τ̄‖ν‖)τ̄i′(‖Ji′−1←1(x)‖op +
τ̄

2
‖ν‖)‖Ji′−1←i(x)‖op

(27)

Likewise, we can bound the operator norm error in the product between Jacobian and auxiliary
matrices by

‖Jj←1,m′(x)− Jj←1,m′(x+ ν)‖op ≤

‖ν‖
j∑

i′=1

(‖Jj←i′+1(x)‖op + τ̄‖ν‖)τ̄i′(‖Ji′−1←1(x)‖op +
τ̄

2
‖ν‖)‖Ji′−1←1,m′(x)‖op

(28)

Proof. We will first prove (27), as the proof of (28) is nearly identical. Starting from (24) of Claim F.2,
we have

Jj←i(x)− Jj←i(x+ ν) =

j∑
i′=i

Jj←i′+1(x+ ν)(Ji′←i′(x)− Ji′←i′(x+ ν))Ji′−1←i(x)

By triangle inequality and the fact that Jj′←i′ is τ̄ -Lipschitz ∀i′ ≤ j′, it follows that
‖Jj←i(x)− Jj←i(x+ ν)‖op (29)

≤
j∑

i′=i

‖Jj←i′+1(x+ ν)‖op‖Ji′←i′(x)− Ji′←i′(x+ ν)‖op‖Ji′−1←i(x)‖op

≤
j∑

i′=i

(‖Jj←i′+1(x)‖op + τ̄‖ν‖)‖Ji′←i′(x)− Ji′←i′(x+ ν)‖op‖Ji′−1←i(x)‖op (30)

Next, we note that
‖Ji′←i′(x)− Ji′←i′(x+ ν)‖op = ‖Dfi′←i′ [fi′−1←1(x)]−Dfi′←i′ [fi′−1←1(x+ ν)]‖op

≤ τ̄i′‖fi′−1←1(x)− fi′−1←1(x+ ν)‖

≤ τ̄i′(‖Ji′−1←1(x)‖op +
τ̄

2
‖ν‖)‖ν‖ (applying Claim J.4)

Plugging the above into (30), we get (27). To prove (28), we start from (25) and follow the same
steps as above.

Claim F.4. In the setting of Lemma F.1, suppose that Jj←i is τ̄ -Lipschitz for all 1 ≤ i ≤ j ≤ k.
Then we can upper bound the error terms corresponding to the indicators by

|∆j←i(x, ν)| ≤ ‖ν‖
∑j
i′=i(2τj←i′+1 + τ̄‖ν‖)τ̄i′(2τi′−1←1 + τ̄

2‖ν‖)2τi′−1←i

τj←i
(31)

Likewise, the following upper bound holds for all (j,m′) with 1 ≤ j ≤ k, 1 ≤ m′ ≤ m:

|∆j←1,m′(x, ν)| ≤ ‖ν‖
∑j
i′=1(2τj←i′+1 + τ̄‖ν‖)τ̄i′(2τi′−1←1 + τ̄

2‖ν‖)2τi′−1←1,m′

τj←1,m′
(32)
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Proof. We will prove (31) as the proof of (32) is analogous. Note that as 1≤τj←i is 1
τj←i

-Lipschitz
in its argument, we have

|Qj←i(x)−Qj←i(x+ ν)| = |1≤τj←i(‖Jj←i(x)‖op)− 1≤τj←i(‖Jj←i(x+ ν)‖op)|

≤ 1

τj←i
|‖Jj←i(x)‖op − ‖Jj←i(x+ ν)‖op|

≤ 1

τj←i
‖Jj←i(x)− Jj←i(x+ ν)‖op

Plugging this into our definition for ∆j←i (21), it follows that

|∆j←i(x, ν)| ≤ 1

τj←i
‖Jj←i(x)− Jj←i(x+ ν)‖op

∏
Q�QQj←i

Q(x)
∏

Qj←i�QQ
Q(x+ ν) (33)

Now we define the set E by

E = ∩i≤i′≤j{x : ‖Jj←i′+1(x)‖op ≤ 2τj←i′+1, ‖Ji′−1←1(x)‖op ≤ 2τi′−1←1,

and ‖Ji′−1←i(x)‖op ≤ 2τi′−1←i}

Note that if x /∈ E , then ∃i′ < j′ such that Qj′←i′(x) = 0 and Qj′←i′ �Q Qj←i by definition of the
order �Q. It follows that if x /∈ E ,

∏
h�QQj←i h(x) = 0, so |∆j←i(x, ν)| = 0. Otherwise, if x ∈ E ,

by Claim F.3 we have

‖Jj←i(x)− Jj←i(x+ ν)‖op ≤ ‖ν‖
j∑

i′=i

(2τj←i′+1 + τ̄‖ν‖)τ̄i′(2τi′−1←1 +
τ̄

2
‖ν‖)2τi′−1←i

where we recall that τi−1←i = 1. Plugging this into (33) and using the fact that all functions h ∈ Q
are bounded by 1 gives the desired statement.

To prove (32), we simply apply the above argument with (28).

Claim F.5. In the setting of Lemma F.1, fix index j with 0 ≤ j ≤ k and suppose that Jj←1 is
τ̄ -Lipschitz. Then we can bound the error due to function composition by

|δj(x, ν)| ≤ cj(2τj→1 +
τ̄

2
‖ν‖)‖ν‖

Proof. Starting from (20), we can first express δi(x, ν) by

δj(x, ν) = γj(x, ν)Qj←1(x)
∏

Q�QQj←1,1,Q6=Qj←1

Q(x)
∏

Qj←1,1�QQ
Q(x+ ν)

as Qj←1 �Q Qj←1,1. First we note that by definition, |γj(x, ν)| ≤ cj‖fj←1(x)− fj←1(x+ ν)‖, as
the function g is cj-Lipschitz in its j-th argument. Thus, since all functions Q ∈ Q are bounded by 1,
it follows that

|δj(x, ν)| ≤ |γj(x, ν)|Qj←1(x)

≤ cj‖fj←1(x)− fj←1(x+ ν)‖1≤τj←1
(‖Jj←1(x)‖op)

≤ cj(2τj→1 +
τ̄

2
‖ν‖)‖ν‖ (by Claim J.4)

Claim F.6. In the setting of Lemma F.1, ∃τ̄ such that ∀i ≤ j, Jj←i is τ̄ -Lipschitz on a compact
domain D0.

Proof. We first show inductively that fi←1 is Lipschitz for all i. The base case f1←1 follows by
definition, as f1←1 is continuously differentiable and D0 is a compact set.

Now we show the inductive step: first write fi←1 = fi ◦ fi−1←1. By continuity, {fi−1←1(x) : x ∈
D0} is compact. Furthermore, fi is continuously differentiable under the assumptions of Lemma F.1.
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Thus, fi is Lipschitz on domain {fi−1←1(x) : x ∈ D0}. As fi←1 = fi ◦ fi−1←1 is the composition
of Lipschitz functions by the inductive hypothesis, fi←1 is itself Lipschitz.

Now it follows that ∀i, Ji←i is Lipschitz on D0, as it is the composition of Dfi←i and fi−1←1, both
of which are Lipschitz. Finally, by the chain rule (Claim J.2), we have that Jj←i = Jj←j · · · Ji←i is
the product of Lipschitz functions, and therefore Lipschitz for all i < j. We simply take τ̄ to be the
maximum Lipschitz constant of Jj←i over all i ≤ j.

Claim F.7. In the setting of Lemma F.1,

|z̃(x)− z̃(x+ ν)| ≤
∑

0≤j≤k

|δj(x, ν)|+
∑

1≤i≤j≤k

|∆j←i(x, ν)|+
∑

0≤j≤k,m′
|∆j←1,m′(x, ν)|

Proof. For 0 ≤ j ≤ k + 1, define zj(x, ν) by

zj(x, ν) , g(f0←1(x), . . . , fj−1←1(x), fj←1(x+ ν), fj+1←1(x+ ν), . . . , fk←1(x+ ν))

Thus, zj(x, ν) denotes g ◦ (f0←1 ⊗ . . . ⊗ fk←1) with the last k + 1 − j inputs to g depending on
x+ ν instead of x. Now we claim that by a telescoping argument (Claim J.3),

z̃(x)− z̃(x+ ν) =∑
0≤j≤k

δj(x, ν) +
∑

1≤i≤j≤k

(zk(j, ν)− 1)∆j←i +
∑

0≤j≤k,m′
(zj(x, ν)− 1)∆j←1,m′

(34)

To see this, compute the sum in the order the following sequence of terms, which corresponds to a
traversal of Q in least-to-greatest order:

δk, (zk(x, ν)− 1)∆k←1,1, . . . , (zk(x, ν)− 1)∆k←1,m′ , (zk(x, ν)− 1)∆k←1, . . . , (zk(x, ν)− 1)∆k←k

...
δ1, (z1(x, ν)− 1)∆1←1,1, . . . , (z1(x, ν)− 1)∆1←1,m′ , (z1(x, ν)− 1)∆1←1

δ0, (z0(x, ν)− 1)∆0←1,1, . . . , (z0(x, ν)− 1)∆0←1,m′

Now we simply apply triangle inequality on (34) and use the fact that zj(x, ν)− 1 ∈ [−1, 0] ∀0 ≤
j ≤ k + 1 to obtain the desired statement.

Lemma F.8. In the setting of Theorem B.2, fix 1 ≤ i ≤ p and define

Q(Ji) ,
∏

j≤i≤j′
1≤κj′←j (‖Dj′ · · ·Di+1JiDi−1 · · ·Dj‖op)

×
∏

j′≥i+1

1≤κj′←i+1
(‖Dj′ · · ·Di+1‖op)×

∏
j≤i−1

1≤κi−1←j (‖Di−1 · · ·Dj‖op)

Then Q is κ̃Ji -Lipschitz in Ji, where

κ̃Ji ,
∑

j≤i≤j′

4κj′←i+1κi−1←j

κj′←j

Here for convenience we use the convention that κi−1←i = 1.

Proof. There are two cases: the condition ‖Dj′ · · ·Di+1‖op ≤ 2κj′←i+1 and ‖Di−1 · · ·Dj‖op ≤
2κi−1←j for all j′ ≥ i+ 1, j ≤ i− 1 either holds or does not hold. In the case that it does not hold,
Q is the constant function at 0, and is certainly κ̃Ji-Lipschitz. In the case that the condition does
hold, 1≤κj′←j (‖Dj′ · · ·Di+1JiDi−1 · · ·Dj‖op) is κj′←i+1κi−1←j

κj′←j
-Lipschitz for all j′ ≤ i ≤ j, and

therefore their product is κ̃Ji-Lipschitz. As the remaining indicators that do not depend on Ji are
constants in [0, 1], it follows that Q is κ̃Ji -Lipschitz.
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G Application to Recurrent Neural Networks

In this section, we will apply our techniques to recurrent neural networks. Suppose that we are in a
classification setting. For simplicity, we will assume that the hidden layer and input dimensions are d.
We will define a recurrent neural network with r − 1 activation layers as follows using parameters
W,U, Y , activation φ and input sequence x = (x(0), . . . , x(r−2)):

F (x) = Y h(2r−2)(x)

h(2i)(x) = φ(h(2i−1)(x) + u(i−1)(x))

h(2i−1)(x) = Wh(2i−2)(x)

u(i−1)(x) = Ux(i−1)

where h(0) is set to be 0. Now following the convention of Section 5, we will define the interlayer
Jacobians. For odd indices 2i − 1, i ≤ r − 1, we simply set Q2i−1←2i−1 to the constant function
x 7→ W . For even indices 2i, i ≤ r − 1, we set Q2i←2i(x) , Dφ[h2i−1(x) + u(i−1)(x)], the
Jacobian of the activation applied to the input of h(2i)(x). Finally, we set Q2r−1←2r−1 to be the
constant function x 7→ Y . Now for i′ > i, we set Qi′←i(x) = Qi′←i′(x) · · ·Qi←i(x). If i′ < i, we
set Qi′←i to the identity matrix.

With this notation in place, we can state our generalization bound for RNN’s:
Theorem G.1. Assume that the activation φ is 1-Lipschitz with a σ̄φ-Lipschitz derivative. With
probability 1− δ over the random draws of Pn, all RNNs F will satisfy the following generalization
guarantee:

E
(x,y)∼P

[l0-1(F (x), y)] ≤

Õ


(

(κrnn-hidden,(r)aY t
(r−1))2/3 +

∑r−1
i=1 κ

rnn-hidden,(i)2/3((aW t
(i−1))2/3 + (aU t

data)2/3) +
∑r
i=1(κrnn-jacobian,(i)b)2/3

)3/2

√
n


+Õ

r
√

log(1/δ)

n


where κjacobian,(i) ,

∑
1≤j≤2i−1≤j′≤2r−1

σj′←2iσ2i−2←j
σj′←j

, and

κ
hidden,(i) ,

1

poly(r)
+
σ2r−1←2i

γ
+

∑
i≤i′<r

σ2i′←2i

t(i′)
+

∑
1≤j≤j′≤2r−1

j′∑
j′′=max{2i,j},

j′′ even

σ̄φσj′←j′′+1σj′′−1←2iσj′′−1←j

σj′←j

In these expressions, we define σj−1←j = 1, and:

aW , poly(r)−1 + ‖W>‖2,1, aU , poly(r)−1 + ‖U>‖2,1

aY , poly(r)−1 + ‖Y >‖2,1, b , poly(r)−1 + ‖W‖1,1

t(0) = 0, tdata , max
x∈Pn

max
i
‖x(i)‖, t(i) , poly(r)−1 + max

x∈Pn
‖h(2i)(x)‖

σj′←j , poly(r)−1 + max
x∈Pn

‖Qj′←j(x)‖op, and γ , min
(x,y)∈Pn

[F (x)]y −max
y′ 6=y

[F (x)]y′ > 0

Note that the training error here is 0 because of the existence of positive margin γ.

Our proof follows the template of Theorem 5.1: we bound the Rademacher complexity of some
augmented RNN loss. We then argue for generalization of the augmented loss and perform a union
bound over all the choices of parameters. As the latter steps are identical to those in the proof of
Theorem 5.1, we omit these and focus on bounding the Rademacher complexity of an augmented
RNN loss.
Theorem G.2. Suppose that φ is 1-Lipschitz with σ̄φ-Lipschitz derivative. Define the following class
of RNNs with bounded weight matrices:

F ,
{
x 7→ F (x) : ‖W>‖2,1 ≤ aY , ‖U>‖2,1 ≤ aU , ‖Y >‖2,1 ≤ aY , ‖W‖1,1 ≤ b, ‖W‖op ≤ σW , ‖Y ‖op ≤ σY

}
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and let σj′←j be parameters that will bound the j to j′ layerwise Jacobian for j′ ≥ j, where we set
σ2i←2i = 1 and σ2i−1←2i−1 = σW for i ≤ r− 1, σ2r−1←2r−1 = σY . Let t(i) be parameters bound-
ing the layer norm after applying the i-th activation, and let t(0) = 0, tdata = maxx∈Pn maxi ‖x(i)‖.
Define the class of augmented losses

Lrnn-aug ,

(lγ − 1) ◦ F
r−1∏
i=1

1≤t(i)(‖h(2i)‖)
∏

1≤j<j′≤2r−1

1≤σj′←j (‖Qj′←j‖op) + 1 : F ∈ F


and define for 1 ≤ i ≤ r, κjacobian,(i), κhidden,(i) meant to bound the influence of the matrix W (i) on
the Jacobians and hidden variables, respectively as in (11), (12). Then we can bound the empirical
Rademacher complexity of the augmented loss class by

Radn(Lrnn-aug) =

Õ


(

(κrnn-hidden,(r)aY t
(r−1))2/3 +

∑r−1
i=1 κ

rnn-hidden,(i)2/3((aW t
(i−1))2/3 + (aU t

data)2/3) +
∑r
i=1(κrnn-jacobian,(i)b)2/3

)3/2

√
n


where κrnn-hidden,(i), κrnn-jacobian,(i) are defined in Theorem G.1.

Proof. We will associate the family of losses Lrnn-aug with a computational graph structure on internal
nodes H1, H2, . . . ,H2r−1, J1, . . . , J2r−1, K0, . . . ,Kr−2, input nodes H0, I0, . . . , Ir−2, and output
node O with the following edges:

1. Nodes Hi, Ji will point towards the output O.

2. Node Hi will point towards nodes Hi+1 and Ji+1.

3. Node Ki−1 will point towards node H2i and node J2i.

4. Node Ii will point towards node Ki.

We now define the composition rules at each node:

RH2i
= {(h, k) 7→ φ(h+ k)}

RH2i−1
= {h 7→Wh : ‖W>‖2,1 ≤ aW , ‖W‖op ≤ σ} for 2 ≤ i ≤ r − 1

RH2r−1 = {h 7→ Y h : ‖Y >‖2,1 ≤ aY , ‖Y ‖op ≤ σY }
RJ2i = {(h, k) 7→ Dφ[h+ k]}
RKi = {x 7→ Ux : ‖U>‖2,1 ≤ aU}

Finally, nodes J2i−1 will have composition rule RJ2i−1
= DRH2i−1

. Finally, the output node O will
have composition rule

RO(x, h1, . . . , h2r−1, D1, . . . , D2r−1) ,

(lγ(h2r−1)− 1)

r−1∏
i=1

1≤t(i)(‖h2i‖)
∏

1≤j<j′≤2r−1

1≤σj′←j (‖Dj′ · · ·Dj‖op) + 1

Note that the family of functions computed by this computation graph family is a strict superset of
Lrnn-aug (as we technically allow RH2i−1

, RH2i′−1
to use different matrices W ). We will refer to this

resulting family as G̃.

First, we claim that G̃ satisfies the release-Lipschitz condition, with Lipschitz constants κrnn-hidden,(i)

for nodesH2i−1 andKi−1, and κrnn-jacobian,(i) for nodes J2i−1. (As we will see later, the Lipschitzness
of nodes V2i, J2i will not matter because the composition rules are function classes with log covering
number 0.)

To see this, we note that if we release K0, . . . ,Kr−2 from the graph and set them to fixed values, the
resulting induced graph family is simply the Lipschitz augmentation of Section B for the sequen-
tial graph family on nodes H0, . . . ,H2r−1 and an un-augmented output. Thus, the machinery of
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Theorem B.2 applies here, and we can conclude that this reduced graph family is κrnn-hidden,(i)-release-
Lispchitz for nodes H2i−1 and κrnn-jacobian,(i)-release-Lipschitz for nodes J2i−1. Since this holds for
any choice of K0, . . . ,Kr−2, we can draw the same conclusion about G̃, the augmented family that
is not reduced. However, by nature of the composition rules in G̃, the Lipschitzness of H2i−1 and
Ki−1 must be identical (as f(x+ y) must have the same worst-case Lipschitz constant in x and y for
any function f ). Thus, we get that G̃ satisfies release-Lipschitzness with constants κrnn-hidden,(i) for
nodes H2i−1, Ki−1, and κrnn-jacobian,(i) for nodes J2i−1.

With this condition established, we can complete the proof via the same covering number argument
as in Theorem C.2.

Now as in the proof of Theorem 5.1, we first observe that the augmented loss upper bounds the 0-1
classification loss, giving us a 0-1 test error bound. We then apply the same union bound technique
over parameters γ, t(i), σj′←j , aW , aU , aY , as in the proof of Theorem 5.1.

H ReLU Networks

In this section, we apply our augmentation technique to relu networks to produce a generalization
bound similar to that of Nagarajan and Kolter [2019], which is polynomial in the Jacobian norms,
hidden layer norms, and inverse pre-activations.

Recall the definition of neural nets in Example A.1: the neural net with parameters {W (i)} and
activation φ is defined by

F (x) = W (r)φ(· · ·φ(W (1)x) · · · )

For this section, we will set φ to be the relu activation. We also use the same notation for layers and
indexing as Section 5. We first state our generalization bound for relu networks:

Theorem H.1. Fix reference matrices {A(i)}, {B(i)}. With probability 1− δ over the random draws
of the data Pn, all neural networks F with relu activations parameterized by {W (i)} will have the
following generalization guarantee

E
(x,y)∼P

[l0-1(F (x), y)] ≤ Õ


(∑

i(κ
relu-hidden,(i)a(i)t(i−1))2/3 + (κrelu-jacobian,(i)b(i))2/3

)3/2

√
n

+ r

√
log(1/δ)

n


where

κrelu-jacobian,(i) ,
∑

1≤j≤2i−1≤j′≤2r−1

σj′←2iσ2i−2←j

σj′←j

κrelu-hidden,(i) ,
1

poly(r)
+
σ2r−1←2i

γ
+
∑
i≤i′<r

σ2i′←2i

t(i′)
+
σ2i′−1←2i

γ(i′)

(35)

In these expressions, we define σj−1←j = 1, γ(i) to be the minimum pre-activation after the i-th
weight matrix over all coordinates in the i-th layer and all datapoints:

γ(i) , min
x∈Pn

min
j
|[F2i−1←1(x)]j |

where [F2i−1←1(x)]j indexes the j-th coordinate of F2i−1←1(x), and additionally use

a(i) , poly(r)−1 + ‖W (i)> −A(i)>‖2,1, b(i) , poly(r)−1 + ‖W (i) −B(i)‖1,1

t(0) , poly(r)−1 + max
x∈Pn

‖x‖, t(i) , poly(r)−1 + max
x∈Pn

‖F2i←1(x)‖

σj′←j , poly(r)−1 + max
x∈Pn

‖Qj′←j(x)‖op, and γ , min
(x,y)∈Pn

[F (x)]y −max
y′ 6=y

[F (x)]y′ > 0

Note that we assume the existence of a positive margin, so the training error here is 0.

31



We note that compared to Theorem 5.1, κrelu-jacobian,(i) = κjacobian,(i), but κrelu-hidden,(i) now has a
dependence on the preactivations γ(i), as in Nagarajan and Kolter [2019].

We provide a proof sketch of Theorem H.1 here. We first bound the Rademacher complexity some
family of augmented losses, specified precisely in Theorem H.2. The rest of the argument then
follows the same way as the proof of Theorem 5.1: using Rademacher complexity to argue that the
augmented losses generalize, applying the fact that the augmented losses upper-bound the 0-1 loss,
and then union bounding over all choices of parameters.
Theorem H.2. Following the definitions in Theorem C.2, let F denote the class of neural networks,
σj′←j be parameters intended to bound the spectral norm of the j to j′ layerwise Jacobian, and t(i)

be parameters bounding the layer norm after applying the i-th activation. Define γ(i) as parameters
intended to lower bound the minimum preactivations after the i-th linear layer. Define the class of
augmented losses

Lrelu-aug ,

(lγ − 1) ◦ F
r−1∏
i=1

1≤t(i) (‖F2i←1‖)1≥γ(i) (min
j
|[F2i−1←1]j |)

∏
1≤j<j′≤2r−1

1≤σ
j′←j

(‖Qj′←j‖op) + 1 : F ∈ F


where 1≥γ(i) , 1− 1≤γ(i)/2. Define for 1 ≤ i ≤ r, κrelu-jacobian,(i), κrelu-hidden,(i) meant to bound the
influence of the matrix W (i) on the Jacobians and hidden variables, respectively, as in (35). Then the
augmented loss class Lrelu-aug has empirical Rademacher complexity upper bound

Radn(Lrelu-aug) = Õ

((∑
i(κ

relu-hidden,(i)a(i)t(i−1))2/3 + (κrelu-jacobian,(i)b(i))2/3
)3/2

√
n

)

Note the differences with Theorem C.2: the augmented loss class Lrelu-aug now includes the additional
indicators 1≥γ(i)(minj |[F2i−1←1]j |), and we use the Lipschitz constants κrelu-hidden,(i), κrelu-jacobian,(i)

defined in Theorem H.1.

Proof sketch. As in the proof of Theorem C.2, associate the loss class Lrelu-aug with a family G̃ of
computation graphs on internal nodes V1, . . . , V2r−1, J1, . . . , J2r−1 as follows: define the graph
structure to be identical to the Lipschitz augmentation of a sequential computation graph family
(Figure 3) and define the composition rules

RV2i
= {φ}

RV2i−1
= {h 7→Wh : ‖W> −A(i)>‖2,1 ≤ a(i), ‖W −B(i)‖1,1 ≤ b(i), ‖W‖op ≤ σ(i)}

Assign to the Ji nodes composition rule RJi = DRVi , and finally, assign to the output node O the
composition rule

RO(x, v1, . . . , v2r−1, D1, . . . , D2r−1) ,

(lγ(v2r−1)− 1)

r−1∏
i=1

1≤t(i)(‖v2i‖)1≥γ(i)(min
j
|[v2i−1]j |)

∏
1≤j≤j′≤2r−1

1≤σj′←j (‖Dj′ · · ·Dj‖op) + 1

The resulting family of computation graphs will compute Lrelu-aug. Now we claim that G̃ is
κrelu-hidden,(i)-release-Lipschitz in nodes V2i−1 and κrelu-jacobian,(i)-release-Lipschitz in nodes J2i−1.
(Note that the Lipschitzness of nodes V2i, J2i will not matter because the associated function classes
and singletons and therefore have a log covering number of 0 anyways).

The argument for the κrelu-jacobian,(i)-release-Lipschitzness of J2i−1 follows analogously to the argu-
ment of Lemma F.8 and Theorem C.2.

To see the κrelu-hidden,(i)-release-Lipschitzness of V2i−1, we first note that we can account for
the instantaneous change in the graph output given a change to V2i−1 as a sum of the follow-
ing: 1) the change in lγ(V2r−1) − 1 multiplied by the other indicators, 2) the change in the
term 1≤t(i′)(‖V2i‖)1≥γ(i)(minj |[V2i−1]j |) multiplied by the other indicators, and 3) the change
in 1≤σj′←j (‖Jj′ · · · Jj‖op) multiplied by the other indicators. The term 1) can be computed as
σ2r−1←2i

γ , term 2) can be accounted for by σ2i′←2i

t(i′)
+

σ2i′−1←2i

γ(i′) , and finally the term 3) is 0 because as
relu is piecewise-linear, the instantaneous change in the Jacobian is 0 if all preactivations are bounded
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away from 0, and in the case that the preactivations are not bounded away from 0, the indicator
1≥γ(i)(minj |[V2i−1]j |) takes value 0. The same steps as Lemma F.1 can be used to formalize this
argument.

Finally, to conclude the desired Rademacher complexity bounds given the release-Lipschitzness, we
apply the same reasoning as in Theorem C.2.

I Additional Experimental Details

I.1 Implementation Details for Jacobian Regularizer

For all settings, we train for 200 epochs with learning rate decay by a factor of 0.2 at epochs 60, 120,
and 150. We additionally tuned the value of λ from values {0.1, 0.05, 0.01} for each setting: for the
experiments displayed in Figure 1, we used the following values:

1. Low learning rate: λ = 0.1

2. No data augmentation: λ = 0.1

3. No BatchNorm: λ = 0.05

For all other hyperparameters, we use the defaults in the PyTorch WideResNet implementation:
https://github.com/xternalz/WideResNet-pytorch, and we base our code off of this imple-
mentation. We report results from a single run as the improvement with Jacobian regularization is
statistically significant. We train on a single NVIDIA TitanXp GPU.

I.2 Empirical Scaling of our Complexity Measure with Depth

In this section, we empirically demonstrate that the leading term of our bounds can exhibit better
scaling in depth than prior work.

Figure 5: Log leading terms for spectral vs. our bound on WideResNet trained on CIFAR10 using
different depths.

We compute leading terms of our bound:
∑
i maxx∈Pn ‖h

(i)(x)‖2 maxx∈Pn ‖J
(i)(x)‖‖op

γ , where i ranges
over the layers, h(i), J (i) denote the i-th hidden layer and Jacobian of the output with respect to the
i-th hidden layer, respectively, and γ denotes the smallest positive margin on the training dataset. We
compare this quantity with that of the bound of [Bartlett et al., 2017]:

∏
i ‖W (i)‖op/γ. In Figure 5,

we plot this comparison for WideResNet6 models of depths 10, 16, 22, 28 trained on CIFAR10. For
all models, we remove data augmentation to ensure that our models fit the training data perfectly.
We train each model for 50 epochs, which is sufficient for perfectly fitting the training data, and
start from an initial learning rate of 0.1 which we decrease by a factor of 10 at epoch 30. All
other parameters are set to the same as their defaults in the PyTorch WideResNet implementation:
https://github.com/xternalz/WideResNet-pytorch. We plot the final complexity measures
computed on a single model. We note that our models are trained with Batchnorm. At test time,

6Our bound as stated in the paper technically does not apply to ResNet because the skip connections
complicate the Lipschitz augmentation step. This can be remedied with a slight modification to our augmentation
step, which we omit for simplicity.
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these Batchnorm layers compute affine transformations, so we compute the bound by merging these
transformations with the adjacent linear layer.

Figure 5 demonstrates that our complexity measure can be much lower than the spectral complexity.
Furthermore, in Figure 5, our complexity measure appears to scale well with depth for WideResNet
models.

J Toolbox

Claim J.1. Consider the function u : [0, 1] × [0, 1] 7→ R defined as follows: u(x1, x2) = (x1 −
1)x2 + 1. Then the following statements hold:

1. The function u outputs values in [0, 1].

2. u(x1, x2) ≥ x1.

3. u(u(x1, x2), x3) = u(x1, x2x3).

Proof. First, we note that u(x1, x2) = x1x2 + 1−x2 ≤ x2 + 1−x2 = 1. Furthermore, u(x1, x2) ≥
x1x2+x1(1−x2) = x1, which completes the proof of statements 1 and 2. To prove the third statement,
we note that u(u(x1, x2), x3) = (x1x2+1−x2)x3+1−x3 = x1x2x3+1−x2x3 = u(x1, x2x3).

Claim J.2 (Chain rule Wikipedia contributors [2019]). The Jacobian of a composition of a sequence
of functions f1, . . . , fk satisfies

Dfk←1(x) = Dfk(f(k−1)←1(x)) ·Dfk−1(f(k−2)←1(x)) · · ·Df2(f1(x)) ·Df1(x) (36)

where the · notations are standard matrix multiplication. For simplicity, we also write in the function
form:

Dfk←1 = (Dfk ◦ f(k−1)←1) · (Dfk−1 ◦ f(k−2)←1) · · · (Df2 ◦ f1) ·Df1 (37)

Claim J.3 (Telescoping sum). Let p1, . . . , pm and q1 . . . qm be two sequence of functions from Rd to
R. Then,
p1p2 · pm − q1q2 · qm = (p1 − q1)p2 · · · pm + q1(p2 − q2)p3 · · · pm + · · ·+ q1 · · · qm−1(pm − qm) (38)

Claim J.4 (Bounding function differences). Let f : D → D′, and consider the total derivative Df
operator mapping D to a linear operator between normed spaces D to D′. Suppose that Df [x] is
κ-Lipschitz in x, in the sense that ‖Df [x] −Df [x + ν]‖op ≤ κ‖ν‖, where ‖ · ‖op is the operator
norm induced by D and D′. Then

‖f(x)− f(x+ ν)‖ ≤ (‖Df [x]‖op +
κ

2
‖ν‖)‖ν‖ (39)

Furthermore,

‖f(x)− f(x+ ν)‖1≤τf (‖Df [x]‖op) ≤ (2τf +
τ̄

2
‖ν‖)‖ν‖ (40)

Proof. We write f(x+ ν)− f(x) =
(∫ 1

t=0
Df [x+ tν]dt

)
ν. Now we note that

‖
∫ 1

t=0

Df [x+ tν]dt‖op ≤
∫ 1

t=0

‖Df [x+ tν]‖opdt (by triangle inequality)

≤
∫ 1

t=0

(‖Df [x]‖op + tκ‖ν‖)dt (by Lipschitzness of Df )

≤ ‖Df [x]‖op +
κ

2
‖ν‖ (41)

Thus,

‖f(x+ ν)− f(x)‖ ≤ ‖
∫ 1

t=0

Df [x+ tν]dt‖op‖ν‖

≤
(
‖Df [x]‖op +

κ

2
‖ν‖
)
‖ν‖ (by (41))
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which proves (39).

To prove (40), we consider two cases.first, if ‖Df [x]‖op > 2τf , then 1≤τf (‖Df [x]‖op) = 0 so (40)
immediately holds. Otherwise, if ‖Df [x]‖op ≤ 2τf , we can plug this into (39) to obtain (40), as
desired.
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