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Abstract

We investigate multiarmed bandits with delayed feedback, where the delays need
neither be identical nor bounded. We first prove that "delayed" Exp3 achieves the
O
(√

(KT +D) lnK
)

regret bound conjectured by Cesa-Bianchi et al. [2019]
in the case of variable, but bounded delays. Here, K is the number of actions
and D is the total delay over T rounds. We then introduce a new algorithm that
lifts the requirement of bounded delays by using a wrapper that skips rounds with
excessively large delays. The new algorithm maintains the same regret bound, but
similar to its predecessor requires prior knowledge of D and T . For this algorithm
we then construct a novel doubling scheme that forgoes the prior knowledge
requirement under the assumption that the delays are available at action time (rather
than at loss observation time). This assumption is satisfied in a broad range of
applications, including interaction with servers and service providers. The resulting
oracle regret bound is of order minβ

(
|Sβ |+β lnK+(KT +Dβ)/β

)
, where |Sβ |

is the number of observations with delay exceeding β, and Dβ is the total delay of
observations with delay below β. The bound relaxes toO

(√
(KT +D) lnK

)
, but

we also provide examples whereDβ � D and the oracle bound has a polynomially
better dependence on the problem parameters.

1 Introduction

Multiarmed bandits is an algorithmic paradigm for sequential decision making with a growing
range of industrial applications, including content recommendation, computational advertising,
and many more. In the multiarmed bandit framework an algorithm repeatedly takes actions (e.g.,
recommendation of content to a user) and observes outcomes of these actions (e.g., whether the
user engaged with the content), whereas the outcome of alternative actions (e.g., alternative content
that could have been recommended) remains unobserved. In many real-life situations the algorithm
experience delay between execution of an action and observation of its outcome. Within the delay
period the algorithm may be forced to make a series of other actions (e.g., interact with new users)
before observing the outcomes of all the previous actions. This setup falls outside of the classical
multiarmed bandit paradigm, where observations happen instantaneously after the actions, and
motivates the study of bandit algorithms that are provably robust in the presence of delays.
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We focus on the nonstochastic (a.k.a. oblivious adversarial) bandit setting, where the losses faced
by the algorithm are generated by an unspecified deterministic mechanism. Though it might be of
adversarial intent, the mechanism is oblivious to internal randomization of the algorithm. In the
delayed version, the loss of an action executed at time t is observed at time t+dt, where the delay dt is
also chosen deterministically and obliviously. Thus, at time step t the algorithm receives observations
from time steps s ≤ t for which s + ds = t. This delay is the independent of the action chosen.
The algorithm’s performance is evaluated by regret, which is the difference between the algorithm’s
cumulative loss and the cumulative loss of the best static action in hindsight. The regret definition is
the same as in the ordinary setting without delays. When all the delays are constant (dt = d for all t),
the optimal regret is known to scale as O

(√
(K + d)T lnK

)
, where T is the time horizon and K is

the number of actions [Cesa-Bianchi et al., 2019]. Remarkably, this bound is achieved by “delayed”
Exp3, which is a minor modification of the standard Exp3 algorithm performing updates as soon as
the losses become available.

The case of variable delays has previously been studied in the full information setting by Joulani et al.
[2016]. They prove a regret bound of order

√
(D + T ) lnK, where D =

∑T
t=1 dt is the total delay.

Their proof is based on a generic reduction from delayed full information feedback to full information
with no delay. The applicability of this technique to the bandit setting is unclear (see Appendix A).
Cesa-Bianchi et al. [2019] conjecture an upper bound of order

√
(KT +D) lnK for the bandit

setting with variable delays. Note that this bound cannot be improved in the general case because of
the lower bound Ω

(√
(K + d)T

)
, which holds for any d. In a recent paper, Li et al. [2019] study

a harder variant of bandits, where the delays dt remain unknown. As a consequence, if an action
is played at time s and then more times in between time steps s and s+ ds, the learner cannot tell
which specific round the loss observed at time s+ ds refers to. In this harder setting, for known T , D,
and dmax, Li et al. [2019] prove a regret bound of Õ

(√
dmaxK(T +D)

)
. Cesa-Bianchi et al. [2018]

further study an even harder setting of bandits with anonymous composite feedback. In this setting at
time step t the learner observes feedback, which is a composition of partial losses of the actions taken
in the last dmax rounds. In this setting Cesa-Bianchi et al. [2018] obtain an O

(√
dmaxKT lnK

)
regret bound (which is tight to within the lnK factor, and in fact tighter than the bound of Li et al.
[2019] for an easier problem).

Our paper is structured in the following way. We start by investigating the regret of Exp3 in the vari-
able delay setting. We prove that for known T , D, and dmax, and assuming that dmax is at most of or-
der
√

(KT +D)/(lnK), "delayed" Exp3 achieves the conjectured bound ofO
(√

(KT +D) lnK
)
.

In order to remove the restriction on dmax and eliminate the need of its knowledge we introduce a
wrapper algorithm, Skipper. Skipper prevents the wrapped bandit algorithm from making updates
using observations with delay exceeding a given threshold β. This threshold acts as a tunable upper
bound on the delays observed by the underlying algorithm, so if T and D are known we can choose
β that attains the desired O

(√
(KT +D) lnK

)
regret bound with "delayed" Exp3 wrapped within

Skipper.

To dispense of the need for knowing T and D, the first approach coming to mind is the doubling
trick. However, applying the standard doubling to D is problematic, because the event that the actual
total delay d1 + · · ·+ dt exceeds an estimate D is observed at time t+ dt rather than at time t. In
order to address this issue, we consider a setting in which the algorithm observes the delay dt at time
t rather than at time t+ dt. To distinguish between this setting and the previous one we say that "the
delay is observed at action time" if it is observed at time t and "the delay is observed at observation
time" if it is observed at time t+ dt. Observing the delay at action time is motivated by scenarios in
which a learning agent depends on feedback from a third party, for instance a server or laboratory
that processes the action in order to evaluate it. In such cases, the third party might partially control
the delay, and provide the agent with a delay estimate based on contingent and possibly private
information. In the server example the delay could depend on workload, while the laboratory might
have processing times and an order backlog. Other examples include medical imaging where the
availability of annotations depends on medical professionals work schedule. Common for these
examples is that the third party knows the delay before the action is taken.

Within the "delay at action time" setting we achieve a much stronger regret bound. We show that
Skipper wrapping delayed Exp3 and combined with a carefully designed doubling trick enjoys an
implicit regret bound of order minβ

(
|Sβ |+ β lnK + (KT +Dβ)/β

)
, where Dβ is the total delay

of observations with delay below β. This bound is attained without any assumptions on the sequence
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Table 1: Spectrum of delayed feedback settings and the corresponding regret bounds, progressing
from easier to harder settings. Results marked by (*) have matching lower bounds up to the

√
lnK

factor. If all the delays are identical, then D = dT and (**) has a lower bound following from
Cesa-Bianchi et al. [2019] and matching up to the

√
lnK factor. However, for non-identical delays

the regret can be much smaller, as we show in Example 8.

Setting Regret Bound Reference

Fixed delay O
(√

(K + d)T lnK
)

(*) Cesa-Bianchi et al. [2019]

Delay at action time O
(

minβ

(
|Sβ |+ β lnK +

KT+Dβ
β

))
This paper

Delay at observation
time with known T,D

O
(√

(KT +D) lnK
)

(**) This paper

Anonymous, composite
with known dmax

O
(√
dmaxKT lnK

)
(*) Cesa-Bianchi et al. [2018]

of delays dt and with no need for prior knowledge of T and D. The implicit bound can be relaxed to
an explicit bound ofO

(√
(KT +D) lnK

)
, however if Dβ � D it can be much tighter. We provide

an instance of such a problem in Example 8, where we get a polynomially tighter bound.

Table 1 summarizes the spectrum of delayed feedback models in the bandit case and places our results
in the context of prior work.

1.1 Additional related work

Online learning with delays was pioneered by Mesterharm [2005] — see also [Mesterharm, 2007,
Chapter 8]. More recent work in the full information setting include [Zinkevich et al., 2009, Quanrud
and Khashabi, 2015, Ghosh and Ramchandran, 2018]. The theme of large or unbounded delays in
the full information setting was also investigated by Mann et al. [2018] and Garrabrant et al. [2016].
Other related approaches are the works by Shamir and Szlak [2017], who use a semi-adversarial
model, and Chapelle [2014], who studies the role of delays in the context of onlne advertising.
Chapelle and Li [2011] perform an empirical study of the impact of delay in bandit models. This is
extended in [Mandel et al., 2015]. The analysis of Exp3 in a delayed setting was initiated by Neu
et al. [2014]. In the stochastic case, bandit learning with delayed feedback was studied in [Dudík
et al., 2011, Vernade et al., 2017]. The results were extended to the anonymous setting by Pike-Burke
et al. [2018] and by Garg and Akash [2019], and to the contextual setting by Arya and Yang [2019].

2 Setting and notation

We consider an oblivious adversarial multiarmed bandit setting, where K sequences of losses are
generated in an arbitrary way prior to the start of the game. The losses are denoted by `at , where t
indexes the game rounds and a ∈ {1, . . . ,K} indexes the sequences. We assume that all losses are in
the [0, 1] interval. We use the notation [K] = {1, . . . ,K} for brevity. At each round of the game the
learner picks an action At and suffers the loss of that action. The loss `Att is observed by the learner
after dt rounds, where the sequence of delays d1, d2, . . . is determined in an arbitrary way before the
game starts. Thus, at round t the learner observes the losses of prior actions As for which s+ ds = t.
We assume that the losses are observed "at the end of round t", after the action At has been selected.
We consider two different settings for receiving information about the delays dt:

Delay available at observation time The delay dt is observed when the feedback `Att arrives at the
end of round t+ dt. This corresponds to the feedback being timestamped.

Delay available at action time The delay dt is observed at the beginning of round t, prior to select-
ing the action At.

The following learning protocol provides a formal description of our setting.
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Protocol for bandits with delayed feedback
For t = 1, 2, . . .

1. If delay is available at action time, then dt ≥ 0 is revealed to the learner
2. The learner picks an action At ∈ {1, . . . ,K} and suffers the loss `Att ∈ [0, 1]
3. Pairs

(
s, `Ass

)
for all s ≤ t such that s+ ds = t are observed

We measure the performance of the learner by her expected regret R̄T , which is defined as the
difference between the expected cumulative loss of the learner and the loss of the best static strategy
in hindsight:

R̄T = E

[
T∑
t=1

`Att

]
−min

a

T∑
t=1

`at .

This regret definition is the same as the one used in the standard multiarmed bandit setting without
delay.

3 Delay available at observation time: Algorithms and results

This section deals with the first of our two settings, namely when delays are observed together
with the losses. We first introduce a modified version of "delayed" Exp3, which we name Delayed
Exponential Weights (DEW) and which is capable of handling variable delays. We then introduce a
wrapper algorithm, Skipper, which filters out excessively large delays. The two algorithms also
serve as the basis for the next section, where we provide yet another wrapper for tuning the parameters
of Skipper.

3.1 Delayed Exponential Weights (DEW)

DEW is an extension of the standard exponential weights approach to handle delayed feedback. The
algorithm, laid out in Algorithm 1, performs an exponential update using every individual feedback
as it arrives, which means that between each prediction either zero, one, or multiple updates might
occur. The algorithm assumes that the delays are bounded and that an upper bound dmax ≥ maxt dt
on the delays is known.

Algorithm 1: Delayed exponential weights (DEW)
Input : Learning rate η; upper bound on the delays dmax

Truncate the learning rate: η′ = min{η, (4edmax)−1};
Initialize wa0 = 1 for all a ∈ [K];
for t = 1, 2, . . . do

Let pat =
wat−1∑
b w

b
t−1

for a ∈ [K];

Draw an action At ∈ [K] according to the distribution pt and play it;
Observe feedback (s, `Ass ) for all {s : s+ ds = t} and construct estimators ˆ̀a

s =
`as1(a=As)

pas
;

Update wat = wat−1 exp
(
−η′

∑
s:s+ds=t

ˆ̀a
s

)
;

end

The following theorem provides a regret bound for Algorithm 1. The bound is a generalization of a
similar bound in Cesa-Bianchi et al. [2019].

Theorem 1. Under the assumption that an upper bound on the delays dmax is known, the regret of
Algorithm 1 with a learning rate η against an oblivious adversary satisfies

R̄T ≤ max

{
lnK

η
, 4edmax lnK

}
+ η

(
KTe

2
+D

)
,
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where D =
∑T
t=1 dt. In particular, if T and D are known and η =

√
lnK

KTe
2 +D

≤ 1
4edmax

, we have

R̄T ≤ 2

√(
KTe

2
+D

)
lnK. (1)

The proof of Theorem 1 is based on proving the stability of the algorithm across rounds. The proof is
sketched out in Section 5. As Theorem 1 shows, Algorithm 1 performs well if dmax is small and we
also have preliminary knowledge of dmax, T , and D. However, a single delay of order T increases
dmax up to order T , which leads to a linear regret bound in Theorem 1. This is an undesired property,
which we address with the skipping scheme presented next.

3.2 Skipping scheme

We introduce a wrapper for Algorithm 1, called Skipper, which disregards feedback from rounds
with excessively large delays. The regret in the skipped rounds is trivially bounded by 1 (because the
losses are assumed to be in [0, 1]) and the rounds are taken out of the analysis of the regret of DEW.
Skipper operates with an externally provided threshold β and skips all rounds where dt ≥ β. The
advantage of skipping is that it provides a natural upper bound on the delays for the subset of rounds
processed by DEW, dmax = β. Thus, we eliminate the need of knowledge of the maximal delay
in the original problem. The cost of skipping is the number of skipped rounds, denoted by |Sβ |, as
captured in Lemma 2. Below we provide a regret bound for the combination of Skipper and DEW.

Algorithm 2: Skipper
Input : Threshold β; Algorithm A.

for t = 1, 2, . . . do
Get prediction At from A and play it;
Observe feedback (s, `Ass ) for all {s : s+ ds = t}, and feed it to A for each s with ds < β;

end

Lemma 2. The expected regret of Skipper with base algorithm A and threshold parameter β
satisfies

R̄T ≤ |Sβ |+ R̄T\Sβ , (2)

where |Sβ | is the number of skipped rounds (those for which dt ≥ β) and R̄T\Sβ is a regret bound
for running A on the subset of rounds [T ]\Sβ (those, for which dt < β).

A proof of the lemma is found in Appendix C. When combined with the previous analysis for DEW,
Lemma 2 gives us the following regret bound.
Theorem 3. The expected regret of Skipper(β, DEW(η, β)) against an oblivious adversary satisfies

R̄T ≤ |Sβ |+ max

{
lnK

η
, 4eβ lnK

}
+ η

(
KTe

2
+Dβ

)
, (3)

where Dβ =
∑
t/∈Sβ dt is the cumulative delay experienced by DEW.

Proof. Theorem 1 holds for parameters (η, β) for DEW run under Skipper. We then apply Lemma 2.

Corollary 4. Assume that T and D are known and take

η =
1

4eβ
, β =

√
eKT/2+D

4e +D

4e lnK
.

Then the expected regret of Skipper(β, DEW(η, β)) against an oblivious adversary satisfies

R̄T ≤ 2

√(
KTe

2
+ (1 + 4e)D

)
lnK.
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Proof. Note that D ≥ β|Sβ | ⇒ |Sβ | ≤ D
β . By substituting this into (3), observing that Dβ ≤ D,

and substituting the values of η and β we obtain the result.

Note that Corollary 4 recovers the regret scaling in Theorem 1, equation (1) within constant factors
in front of D without the need of knowledge of dmax. Similar to Theorem 1, Corollary 4 is tight in
the worst case. The tuning of β still requires the knowledge of T and D. In the next section we get
rid of this requirement.

4 Delay available at action time: Oracle tuning and results

This section deals with the second setting, where the delays are observed before taking an action.
The combined algorithm introduced in the previous section relies on prior knowledge of T and D
for tuning the parameters. In this section we eliminate this requirement by leveraging the added
information about the delays at the time of action. The information is used in an implicit doubling
scheme for tuning Skipper’s threshold parameter β. Additionally, the new bound scales with the
experienced delay Dβ rather than the full delay D and is significantly tighter when Dβ � D. This
is achieved through direct optimization of the regret bound in terms of |Sβ | and Dβ , as opposed to
Corollary 4, which tunes β using the potentially loose inequality |Sβ | ≤ D/β.

4.1 Setup

Let m index the epochs of the doubling scheme. In each epoch we restart the algorithm with new
parameters and continually monitor the termination condition in equation (6). The learning rate
within epoch m is set to ηm = 1

4eβm
, where βm is the threshold parameter of the epoch. Theorem 3

provides a regret bound for epoch m denoted by

Boundm(βm) := |Smβm |+ 4eβm lnK +
σ(m)eK/2 +Dm

βm

4eβm
, (4)

where σ(m) denotes the length of epoch m and |Smβm | and Dm
βm

are, respectively, the number of
skipped rounds and the experienced delay within epoch m.

Let ωm = 2m. In epoch m we set

βm =

√
ωm

4e lnK
(5)

and we stay in epoch m as long as the following condition holds:

max

{
|Smβm |

2,

(
eKσ(m)

2
+Dm

βm

)
lnK

}
≤ ωm. (6)

Since dt is observed at the beginning of round t, we are able to evaluate condition (6) and start a
new epoch before making the selection of At. This provides the desired tuning of βm for all rounds
without the need of a separate treatment of epoch transition points.

While being more elaborate, this doubling scheme maintains the intuition of standard approaches.
First of all, the condition for doubling (6) ensures that the regret bound in each period is optimized
by explicitly balancing the contribution of each term in equation (4). Secondly, the geometric
progression of the tuning (5) —and thus of the resulting regret bounds— means that the total regret
bound summed over the epochs can be bounded in relation to the bound in the final completed epoch.

In the following we refer to the doubling scheme defined by (5) and (6) as Doubling.

4.2 Results

The following results show that the proposed doubling scheme works as well as oracle tuning of β
when the learning rate is fixed at η = 1/4eβ. We first compare our performance to the optimal tuning
in a single epoch, where we let

β∗m = arg min
βm

Boundm(βm) (7)

be the minimizer of (4).
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Lemma 5. The regret bound (4) for any non-final epoch m, with the epochs and βm controlled by
Doubling satisfies

Boundm(βm) ≤ 3
√
ωm ≤ 3 Boundm(β∗m) + 2e2K lnK + 1. (8)

The lemma is the main machinery of the analysis of Doubling and its proof is provided in Appendix C.
Applying it to Skipper(β, DEW(η,β)) leads to the following main result.
Theorem 6. The expected regret of Skipper(β, DEW(η, β)) tuned by Doubling satisfies for any T

R̄T ≤ 15 min
β

{
|Sβ |+ 4eβ lnK +

KT +Dβ

4eβ

}
+ 10e2K lnK + 5.

The proof of Theorem 6 is based on Lemma 5 and is provided in Appendix C.
Corollary 7. The expected regret of Skipper(β, DEW(η, β)) tuned by Doubling can be relaxed for
any T to

R̄T ≤ 30

√(
KTe

2
+ (1 + 4e)D

)
lnK + 10e2K lnK + 5. (9)

Proof. The first term in the bound of Theorem 6 can be directly bounded using Corollary 4.

Note that both Theorem 6 and Corollary 7 require no knowledge of T and D.

4.3 Comparison of the oracle and explicit bounds

We finish the section with a comparison of the oracle bound in Theorem 6 and the explicit bound in
Corollary 7. Ignoring the constant and additive terms, the bounds are

explicit : O
(√

(KT +D) lnK
)
,

oracle : O
(

min
β

{
|Sβ |+ β lnK +

KT +Dβ

β

})
.

Note that the oracle bound is always as strong as the explicit bound. There are, however, cases where
it is much tighter. Consider the following example.

Example 8. For t <
√
KT/ lnK let dt = T − t and for t ≥

√
KT/ lnK let dt = 0. Take

β =
√
KT/ lnK. Then D = Θ(T

√
KT/ lnK), but Dβ = 0 (assuming that T ≥ K lnK) and

|Sβ | <
√
KT/ lnK. The corresponding regret bounds are

explicit : O
(√

KT lnK + T
√
KT

)
= O

(
T 3/4

)
,

oracle : O
(√

KT lnK
)

= O
(
T 1/2

)
.

5 Analysis of Algorithm 1

This section contains the main points of the analysis of Algorithm 1 leading to the proof of Theorem 1
which were postponed from Section 3. Full proofs are found in Appendix B.

The analysis is a generalization of the analysis of delayed Exp3 in Cesa-Bianchi et al. [2019], and
consists of a general regret analysis and two stability lemmas.

5.1 Additional notation

We letNt = |{s : s+ds ∈ [t, t+dt)}| denote the stability-span of t, which is the amount of feedback
that arrives between playing action At and observing its feedback. Note that letting N = maxtNt
we have N ≤ 2 maxt dt ≤ 2dmax, since this may include feedback from up to maxs ds rounds prior
to round t and up to dt rounds after round t.
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We introduce Z = (z1, ..., zT ) to be a permutation of [T ] = {1, ..., T} sorted in ascending order
according to the value of z + dz with ties broken randomly, and let Ψi = (z1, ..., zi) be its first
i elements. Similarly, we also introduce Z ′t = (z′1, ..., z

′
Nt

) as an enumeration of {s : s + ds ∈
[t, t+ dt)}.
For a subset the integers C, corresponding to timesteps, we also introduce

qa(C) =
exp

(
−η′

∑
s∈C

ˆ̀a
s

)
∑
b exp

(
−η′

∑
s∈C

ˆ̀b
s

) . (10)

The nominator and denominator in the above expression will also be denoted by wa(C) and W (C)
corresponding to the definition of pat .

By finally letting Ct−1 = {s : s+ ds < t} we have pat = qa(Ct−1).

5.2 Analysis of delayed exponential weights

The starting point is the following modification of the basic lemma within the Exp3 analysis that
takes care of delayed updates of the weights.

Lemma 9. Algorithm 1 satisfies

T∑
t=1

K∑
a=1

pat+dt
ˆ̀a
t − min

a∈[K]

∑
t

ˆ̀a
t ≤

lnK

η′
+
η

2

T∑
t=1

K∑
a=1

pat+dt

(
ˆ̀a
t

)2
. (11)

To make use of Lemma 9, we need to figure out the relationship between pat+dt and pat . This is
achieved by the following two lemmas, which are generalizations and refinements of Lemmas 1 and
2 in Cesa-Bianchi et al. [2019].

Lemma 10. When using Algorithm 1 the resulting probabilities fulfil for every t and a

pat+dt − p
a
t ≥ −η′

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j < i}

)
ˆ̀a
z′i
, (12)

where z′j is an enumeration of {s : s+ ds ∈ [t, t+ dt)}.

The above lemma allows us to bound pat+dt from below in terms of pat . We similarly need to be able
to upper bound the probability, which is captured in the second probability drift lemma.

Lemma 11. The probabilities defined by (10) satisfy for any i

qa(Ψi) ≤
(

1 +
1

2N − 1

)
qa(Ψi−1). (13)

5.3 Proof sketch of Theorem 1

By using Lemma 10 to bound the left hand side of (11) we have

∑
t

∑
a

pat
ˆ̀a
t −min

a

∑
t

ˆ̀a
t ≤

lnK

η′
+
η′

2

T∑
t=1

K∑
a=1

pat+dt

(
ˆ̀a
t

)2
+ η′

∑
t

∑
a

ˆ̀a
t

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j < i}

)
ˆ̀a
z′i
.

Repeated use of Lemma 11 bounds the second term on the right hand side by η′TKe/2 in expectation.
The third term on the right hand side can be bounded by D. Taking the maximum over the two
possible values of the truncated learning rate finishes the proof.
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6 Discussion

We have presented an algorithm for multiarmed bandits with variably delayed feedback, which
achieves the O

(√
(KT +D) lnK

)
regret bound conjectured by Cesa-Bianchi et al. [2019]. The

algorithm is based on a procedure for skipping rounds with excessively large delays and refined
analysis of the exponential weights algorithm with delayed observations. At the moment the skipping
procedure requires prior knowledge of T and D for tuning the skipping threshold. However, if the
delay information is available "at action time", as in the examples described in the introduction, we
provide a sophisticated doubling scheme for tuning the skipping threshold that requires no prior
knowledge of T and D. Furthermore, the refined tuning also leads to a refined regret bound of order
O
(

minβ
(
|Sβ |+ β lnK +

KT+Dβ
β

))
, which is polynomially tighter when Dβ � D. We provide

an example of such a problem in the paper.

Our work leads to a number of interesting research questions. The main one is whether the two regret
bounds are achievable when the delays are available "at observation time" without prior knowledge
of D and T . Alternatively, is it possible to derive lower bounds demonstrating the impossibility
of further relaxation of the assumptions? More generally, it would be interesting to have refined
lower bounds for problems with variably delayed feedback. Another interesting direction is a design
of anytime algorithms, which do not rely on the doubling trick. Such algorithms can be used, for
example, for achieving simultaneous optimality in stochastic and adversarial setups [Zimmert and
Seldin, 2019a]. While a variety of anytime algorithms is available for non-delayed bandits, the
extension to delayed feedback does not seem trivial. Some of these questions are addressed in a
follow-up work by Zimmert and Seldin [2019b].
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A Alternative approaches

This appendix is an addition to the discussion of relevant literature in the introduction.

The present paper follows an approach to delayed feedback based on explicitly analysing exponential
weights with delays and considering the stability of this class of algorithms. An alternative approach
in literature is instead to construct a reduction from the delayed case to the undelayed case and thus
circumventing the need for direct analysis of the underlying algorithm, since this will usually be well
established. Such a reduction is done in the full information case by Joulani et al. [2016] but with no
mention of how it might apply to the bandit case. Below we briefly sketch their reduction in the case
of OCO with linear loss functions, which specializes to bandits.

Let t index time and s index virtual rounds, meaning rounds where an update is made. In other words
in every round t the algorithm makes a prediction, while in every round s the algorithm receives
one point of feedback. Quantities indexed by virtual rounds are further denoted by a tilde. τ̃s is the
number of virtual rounds (equivalently updates) between when the action giving rise to loss ˜̀

s is
played and the loss is received. Let the function ρ map a virtual round s where ˜̀

s is observed to the
round t = ρ(s) where it is played. As such `ρ(s) = ˜̀

s, but pρ(s) = p̃s−τ̃s .

Deterministic case: In the full information case for deterministic losses, the actions (probability
distributions) played by the algorithm does not depend on any randomness, since the feedback is not
dependent on the action played. The expected regret can thus be regarded as deterministic, and the
following reduction can be carried out:

RT =
∑
t

[∑
a

`at p
a
t − `?t

]

=
∑
s

[∑
a

`aρ(s)p
a
ρ(s) − `

?
ρ(s)

]

=
∑
s

[∑
a

˜̀a
s p̃
a
s−τ̃s − ˜̀?

s

]

=
∑
s

∑
a

˜̀a
s

(
p̃as−τ̃s − p̃

a
s

)
+
∑
s

[∑
a

˜̀a
s p̃
a
s − ˜̀?

s

]
,

where we let ? denote the optimal action in hindsight. The point of this calculation is that the final
term above is the regret of the undelayed base algorithm, while the first term is an additive drift term,
similar to what we are considering in Lemma 10.

Conditional case: To extend this to bandits, we need to consider the case where the actions
(probability distributions) of the algorithm depends on the internal randomness. The expected regret
then requires taking expectation over this randomness:

R̄T = E
A1,...,AT

[∑
t

[∑
a

`at p
a
t − `?t

]]

= E
A1,...,AT

[∑
s

∑
a

˜̀a
s

(
p̃as−τ̃s − p̃

a
s

)]
+ E
A1,...,AT

[∑
s

[∑
a

˜̀a
s p̃
a
s − ˜̀?

s

]]
.

Now however the final term is no longer the expected regret of the underlying algorithm without
delays, since the conditional expectations taken here are not the same as they would be for the
undelayed algorithm. In particular the order of the conditional expectations might be different since
the delays are not the same, so the reduction is not directly applicable.

B Full proof of Theorem 1

This appendix contains the full analysis of Algorithm 1, i.e., proofs of the lemmas in Section 5 and
the full proof of Theorem 1.
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B.1 Proof of Lemma 9

We consider the quantity

Wt

Wt−1
=

∑
a w

a
t−1
∏
s:s+ds=t

exp
(
−η′ ˆ̀as

)
Wt−1

=
∑
a

pat
∏

s:s+ds=t

exp
(
−η′ ˆ̀as

)
≤
∑
a

pat
∑

s:s+ds=t

exp
(
−η′ ˆ̀as

)
≤
∑
a

pat
∑

s:s+ds=t

(
1− η′ ˆ̀as +

η′2

2

(
ˆ̀a
s

)2)

=
∑

s:s+ds=t

(
1− η′

∑
a

pat
ˆ̀a
s +

η′2

2

∑
a

pat

(
ˆ̀a
s

)2)

= 1 + |{s : s+ ds = t}| − 1− η′
∑

s:s+ds=t

∑
a

pat
ˆ̀a
s +

η′2

2

∑
s:s+ds=t

∑
a

pat

(
ˆ̀a
s

)2
≤ exp

(
|{s : s+ ds = t}| − 1− η′

∑
s:s+ds=t

∑
a

pat
ˆ̀a
s +

η′2

2

∑
s:s+ds=t

∑
a

pat

(
ˆ̀a
s

)2)
,

where the first inequality uses that each exp
(
−η′ ˆ̀as

)
is in (0, 1], the second inequality uses ex ≤

1 + x+ x2/2 for x ≤ 0, and the final inequality uses ex ≥ 1 + x for all x.

By a telescoping sum and the above we get

WT

W0
≤ exp

(
−η′

∑
t

∑
s:s+ds=t

∑
a

pat
ˆ̀a
s +

η′2

2

∑
t

∑
s:s+ds=t

∑
a

pat

(
ˆ̀a
s

)2)
, (14)

using that
∑T
t=1 |{s : s+ ds = t}| ≤ T . We also lower bound this fraction as

WT

W0
≥

maxa exp
(
−η′

∑
s:s+ds≤T

ˆ̀a
s

)
K

≥
maxa exp

(
−η′

∑T
s=1

ˆ̀a
s

)
K

≥
exp

(
−η′mina

∑T
s=1

ˆ̀a
s

)
K

. (15)

The proof is completed by combining (14) and (15), taking logarithms and rearranging, and noting
that the sums of the form

∑
t

∑
s:s+ds=t

only include each value of s once, and thus are equivalent
to summing over s and identifying t = s+ ds.

B.2 Proof of Lemma 10

Note for any set of integers C containing a value x, we have

W (C) =
∑
a

e−η
′ ˆ̀a
xe−η

′∑
s∈C\{x}

ˆ̀a
s ≤

∑
a

e−η
′∑

s∈C\{x}
ˆ̀a
s = W (C\{x}),

which means

qa(C) =
wa(C)

W (C)
≥ wa(C)

W (C\{x})
= e−η

′ ˆ̀a
x
wa(C\{x})
W (C\{x})

= e−η
′ ˆ̀a
xqa(C\{x}).
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This in turn implies

qa(C)− qa(C\{x}) ≥
(
e−η

′ ˆ̀a
x − 1

)
qa(C\{x}) ≥ −η′ ˆ̀axqa(C\{x}).

Telescoping this over the individual observations z′1, ..., z
′
Nt

we get

pat+dt − p
a
t = qa(Ct+dt−1)− qa(Ct−1)

=

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j ≤ i}

)
− qa

(
Ct−1 ∪ {z′j : j < i}

)
≥ −η′

Nt∑
i=1

ˆ̀a
z′i
qa
(
Ct−1 ∪ {z′j : j < i}

)
B.3 Proof of Lemma 11

We prove the lemma by induction. For the base case, consider i = 1, where Ψ0 = ∅, and thus
qa(Ψi−1) = qa(Ψ0) = 1/K. The maximal increase of qa by making a single observation will be if
another arm is chosen and receives a loss of 1, making the loss estimator equal to K. This means

qa(Ψi) ≤
1

K−1 + e−η′K
≤ 1

K − η′K
≤ 1/K

1− 1
e2N

≤ 1/K

1− 1
2N

=
1

K

(
1 +

1

2N−1

)
,

where first use ex ≥ 1 + x for all x and secondly use the upper bound on η′. since 1/K = qa(Ψ0)
the base case is shown.

For the general case, assume that the lemma holds for i− 1. We first show that

qa(Ψi−1) ≥ e−η
′ ˆ̀a
zi qa(Ψi−1)

=
wa(Ψi)

W (Ψi−1)

=
qa(Ψi)W (Ψi)

W (Ψi−1)

= qa(Ψi)
∑
b

e−η
′ ˆ̀b
ziwb(Ψi−1)

W (Ψi−1)

= qa(Ψi)
∑
b

e−η
′ ˆ̀b
zi qb(Ψi−1)

≥ qa(Ψi)

(
1− η′

∑
b

ˆ̀b
ziq

b(Ψi−1)

)
. (16)

By expanding the loss estimator we get∑
b

ˆ̀b
ziq

b(Ψi−1) = ˆ̀Azi
zi qAzi (Ψi−1) ≤ qAzi (Ψi−1)

qAzi (Czi−1)
=
qAzi (Ψi−1)

qAzi (Ψl(i))
, (17)

by using `bzi1(Azi = b) ≤ 1 for b = Azi and the loss estimator is identically zero for all other b.
We here define l(i) as the index in Z of the last observation before round zi. We now consider the
difference in these indices, namely (i− 1)− l(i).

Note that the loss from zi is observed at time zi + dzi , but the losses from rounds zi−1, zi−2, ...
could potentially also be observed at this point. This means that all observations of losses from
rounds Ψi−1\Ψl(i) are found in [zi, zi + dzi ]. As maximally N observations can be made both in
[zi, zi + dzi) and in [zi + dzi , zi + dzi ] by assumption, and these 2N observations must include the
observation of the loss from round zi, we have a bound of

(i− 1)− l(i) ≤ 2N − 1. (18)
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Telescoping the probability ratio and using the inductive assumption, we thus have

qAzi (Ψi−1)

qAzi (Ψl(i))
=

i−1∏
j=l(i)+1

qAzi (Ψj)

qAzi (Ψj−1)

≤
i−1∏

j=l(i)+1

(
1 +

1

2N − 1

)

=

(
1 +

1

2N − 1

)2N−1

≤ e. (19)
Inserting this into (16) and using the upper bound on the learning rate gives us

qa(Ψi−1) ≥ qa(Ψi)(1− η′e)

≥ qa(Ψi)

(
1− 1

2N

)
,

which rearranges to the lemma statement. This concludes the inductive step .

B.4 Full proof of Theorem 1

We start by combining Lemmas 9, 10 and 11 in the following way. By using Lemma 10 to bound the
left hand side of (11) we have∑

t

∑
a

pt+dt
ˆ̀a
t ≥

∑
t

∑
a

pat
ˆ̀a
t − η′

∑
t

∑
a

ˆ̀a
t

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j < i}

)
ˆ̀a
z′i
, (20)

subtracting the final term gives us:∑
t

∑
a

pat
ˆ̀a
t −min

a

∑
t

ˆ̀a
t ≤

lnK

η′
+
η′

2

T∑
t=1

K∑
a=1

pat+dt

(
ˆ̀a
t

)2
+ η′

∑
t

∑
a

ˆ̀a
t

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j < i}

)
ˆ̀a
z′i
. (21)

Where we note that the left hand side becomes the expected regret when taking expectations over the
choice of At.

The second term on the right hand side of (21) can be bounded by repeated use of Lemma 11:∑
t

∑
a

pat+dt

(
ˆ̀a
t

)2
=
∑
t

∑
a

pat
pat+dt
pat

(
ˆ̀a
t

)2
=
∑
t

∑
a

pat

(
ˆ̀a
t

)2 Nt∏
i=1

qa(Ct−1 ∪ {z′j : j ≤ i})
qa(Ct−1 ∪ {z′j : j < i})

≤
∑
t

∑
a

pat

(
ˆ̀a
t

)2(
1 +

1

2N − 1

)Nt
≤
∑
t

∑
a

pat

(
ˆ̀a
t

)2(
1 +

1

2N − 1

)2N−1

≤
∑
t

∑
a

pat

(
ˆ̀a
t

)2
e,

which in expectation is bounded by TKe.

The final term in (21) requires a bit more work. We first note that:

E

[∑
t

∑
a

ˆ̀a
t

Nt∑
i=1

qa
(
Ct−1 ∪ {z′j : j < i}

)
ˆ̀a
z′i

]
≤
∑
t

Nt,
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since t is not part of the enumeration z′j , so the two expectations are taken independently: E[ˆ̀az′j
] ≤ 1

and E[ˆ̀at ] ≤ 1. Additionally we use that qa is a distribution. We now note that summing over t or s is
equivalent in the above, i.e.,∑

t

Nt ≤
∑
t

|{s : s+ ds ∈ [t, t+ dt)}| =
∑
s

|{t : s+ ds ∈ [t, t+ dt)}|,

since counting in how many intervals every loss is observed in is the same as counting how many
losses are observed in every interval. Note that we implicitly restrict both s and t to be in [T ].

We now split this∑
s

|{t : s+ ds ∈ [t, t+ dt)}| =
∑
s

|{t > s : s+ ds ∈ [t, t+ dt)}|

+ |{t < s : s+ ds ∈ [t, t+ dt)}|
and bound the first term as

|{t > s : s+ ds ∈ [t, t+ dt)}| ≤ |{t > s : t ≤ s+ ds}\{t > s : t+ dt < s+ ds}|
≤ ds − |{t > s : t+ dt < s+ ds}|, (22)

The second term is similarly bounded as
|{t < s : s+ ds ∈ [t, t+ dt)}| ≤ |{t < s : s+ ds < t+ dt}|. (23)

Finally we note that by the prior equivalency of summing over t or s, the negative term in (22) cancel
with (23) once summed. This bounds the final term of (21) by D and results in

R̄T ≤
lnK

η′
+ η′

(
eKT

2
+D

)
. (24)

We now consider the truncation of the learning rate which is mandated by Lemma 11. If the input
learning rate fulfils η ≤ (2eN)−1 then η′ = η, and (24) simply becomes

R̄T ≤
lnK

η
+ η

(
eKT

2
+D

)
,

where η is the input learning rate.

If instead the learning rate is truncated, meaning the input learning rate is larger than (2eN)−1, the
algorithm uses η′ = (2eN)−1, meaning (24) becomes

R̄T ≤ 2eN lnK +
eKT
2 +D

2eN
≤ 2eN lnK + η

(
eKT

2
+D

)
.

Taking the maximum of these two regret bounds finalizes the proof for any input learning rate η.

C Additional proofs

C.1 Proof of Lemma 2

Consider first skipping just one round s. We then have

R̄T := E
A1,...,AT

[∑
t

∑
a

pat `
a
t

]
−min

a

∑
t

`at

≤ E
A1,...,AT

[∑
a

pas`
a
s

]
−min

a
`as + E

A1,...,AT

∑
t 6=s

∑
a

pat `
a
t

−min
a

∑
t6=s

`at

≤ 1 + E
A1,...,As−1,As,...,AT

∑
t6=s

∑
a

pat `
a
t

−min
a

∑
t 6=s

`at

= 1 + R̄T\{s},
where the first inequality uses mina[xa + ya] ≥ mina xa + mina ya for any x, y and the second
inequality uses `as ∈ [0, 1] for all a and pas being a distribution. In this line we also use the fact that
no pt depend on As. The proof is then complete by iterating this argument over all s ∈ C.
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C.2 Proof of Lemma 5

The first inequality follows directly from insertion of βm =
√
ωm/4e lnK into (4) and using the

doubling condition for staying in the epoch (6).

For the second condition, we consider several cases of the optimal value in epoch m:

Case 1 If β∗m ≥ βm we have

Boundm(β∗m) ≥ 4eβ∗m lnK ≥ 4eβm lnK =
√
ωm ≥

Boundm(βm)

3
, (25)

In all following cases we consider β∗m < βm.

Case 2 We now consider the case where β∗m < βm and the doubling happened because the number
of skipped rounds grew to large. This implies the following inequality(

|Smβm |+ 1
)2 ≥ ωm,

leading to

Boundm(β∗m) ≥ |Smβ∗m | ≥ |S
m
βm | ≥

√
ωm − 1 ≥ Boundm(βm)

3
− 1, (26)

where the second inequality comes from the assumption that β∗m < βm, meaning at least as many
delays are skipped using β∗m, as this is a lower threshold for skipping.

Case 3 If β∗m < βm and the doubling instead happened because the second term grew too large,
we have the following inequality:(

Ke/2 · (σ(m) + 1) +Dm
βm + βm

)
lnK ≥ ωm. (27)

In this case we have

Boundm(β∗m) ≥
eKσ(m)/2 +Dm

β∗m

β∗m

=
βm
β∗m

(
eKσ(m)/2 +Dm

βm

βm
+
Dm
β∗m
−Dm

βm

βm

)
=
βm
β∗m

(
eKσ(m)/2 +Dm

βm

βm
−∆|S|

)
(28)

=
βm
β∗m

(
4e
√
ωm −

eK

2βm
− 1−∆|S|

)
(29)

=
βm
β∗m

(
4e
√
ωm −

2e2K lnK
√
ωm

− 1−∆|S|
)
, (30)

where (28) uses Dm
βm
≤ Dm

β∗m
+ βm∆|S| for ∆|S| = |Smβ∗m | − |S

m
βm
|. For (29) we use (27) with

βm =
√
ωm/4e lnK.

Again we consider cases, this time of (30). Assume first

4e
√
ωm −

2e2K lnK
√
ωm

− 1−∆|S| ≥ 2e
√
ωm.

which means

Boundm(β∗m) ≥ βm
β∗m

2e
√
ωm ≥ Boundm(βm).

If we instead assume

4e
√
ωm −

2e2K lnK
√
ωm

− 1−∆|S| ≤ 2e
√
ωm,
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which implies

∆|S| ≥ 2e
√
ωm −

2e2K lnK
√
ωm

− 1,

we directly have

Boundm(β∗m) ≥ ∆|S| ≥ Boundm(βm)− 2e2K lnK − 1, (31)

where we have used
√
ωm ≥ 1. Note that this final inequality is the worst case of case 3.

Finally we compare the cases: Noting that they are exhaustive and by comparing (25), (26) and (31)
the lemma is proven.

C.3 Proof of Theorem 6

The idea of the proof is to use the nature of the doubling schema in the usual way, combined with
Lemma 5 for the second to last epoch.

Let M be the total number of epochs in the doubling schema:

R̄T ≤
M∑
m=

Boundm(βm)

≤
M∑
m=1

3
√
ωm

=

M∑
m=1

3
√

2
m

= 3

√
2
M+1 − 1√
2− 1

≤ 6√
2− 1

√
2M−1

=
6√

2− 1

√
ωM−1

≤ 2√
2− 1

(
3 BoundM−1(β∗M−1) + 2e2K lnK + 1

)
.

The proof is finalised by

BoundM−1(β∗M−1) ≤ min
β

{
|Sβ |+ 4eβ lnK +

KT +Dβ

4eβ

}
.
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