A Concentration Inequalities

Hoeffding’s inequality [23]:
Let X;,---, X, be independent with u; = E[ X;], X; € [0,1], for all 1 <4 < n. Then,

and
P (Z(X; w) ¢ —t) <exp[-2n-1%], @

Markov’s inequality: If X is a non-negative random variable and a > 0, then the probability that X
is at least a is at most the expectation of X divided by a:

Pr(x 2 a) < B 5)

B Proofs of Lemmas in Section
Proof of lemmal/l}

Proof. First, we prove that at any iteration 7, Pr[éi* >0+ —€/8]>1- % In the first iteration (i.e.,
r =1), S, is exactly the same as the input arm set S (i.e., S1 = 5), and Algorithm[I]samples at least
3—3 log % times for every arm in S7. Therefore, every arm ¢* is initialized for 6;+. Based on Hoeftding

bound, we have éi* > 07 — ¢/8 with probability at least 1 — 5—1, for the case of r = 1.
Assume that in iteration r — 1, éi* > 0;+ — €¢/8 holds. Then, at iteration r, if éi,« is not updated,
0;+ > 0;+ — €/8 still holds. Otherwise, by Hoeffding’s inequality, in iteration r,

Pr[fs > 05 — €/8] > 1 — exp[—(32/€%) log(k/5,) - 2(¢/8)%] 2 1 - 6, [k. (6)

By the union bound, for all iterations,

. ) )
Pr[0; >0;« —¢/8] >1- > 6, /k>1- >1-—. 7
[ ¢/8] Zl / ;%,zr o (7
Applying the union bound again, we have that with probability 1 — §/2, for all i € [1, k],
O > ;- — €/8. (8)

Let j,- be an arm inserted into S’ in iteration r. Since we have re-sample @, times for j,., the
estimation in Line 8 of Algorithm[I]is unbiased. By Hoeffding’s inequality,

Pr[f; <0, +¢/8]>1-0d,/k. )

Since we insert at most k values to S’, by the union bound, we have that for every arm 7, inserted
into S’,

Pr[f; <0, +¢/8]>1-6,. (10)
Applying the union bound again, we have that for each iteration r,
Pr[d;, <0; +¢/8]21-> 6, >1-5/2. (11)
r=1

Let i° be the arm with the ' largest value in S’. Assume that both Eq. (8) and Eq. (TT) hold. By
Eq. (8), there are at least ¢ arms whose empirical values are greater than 6; — €/8. From Line 10 of
Algorithm[I] we have

Oso +€/8 > 00 > min{fy, -, 05 } — 3/4e > O;x — 3/4e > 0;+ — 3/4e — 1/8e. (12)
From above equation, we have that with probability 1 - §, for all i € [1, k], 60 > 0;+ — €.

Similarly, we can prove the second part of Lemma by replacing €/8 < (e —€1)/2, 32/(€?) «
2/(e—€1)? and 3/4e < €. O
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Proof of Lemma

Proof. For S, let 01, 0,5, be the decreasing order of arm’s average reward. In Line 6 of Algo-
rithm (] if &’ = |S,|, then S,.1 = & and the lemma easily follows Hence, we focus on proving the
hard case, i.e., when k" = k in Line 6 of Algorlthm Let | )ﬂf |Sy|]+k-1=mand0,, =u. We
divide [0, 1] into three parts: [0,u — 3¢/8), [u — 3¢/8, u) and [w,01]. And denote A, Aa, A3 be the
sets of arms in S;. whose average means are in [0, u — 3¢/8), [u — 3¢/8,u) and [u, 61 ], respectively.
Let X 4, be the number of arms in A; whose empirical values updated at iteration r are greater than
u — 3¢/16, where ¢ = 1,2, 3. Furthermore, let b, be the arm with the smallest mean that is inserted
into S’ in iteration r. We prove that with high probability, both following conditions hold.

I: br ¢ Al;
2: S'(k) +3¢e/4 > u+ 3¢/16.
We first prove Condition 1. By Hoeffding’s inequality, for i € Ay,

Pr[6; < 6; +3¢/16] > 1 - exp (—262/(%6)2 (57/€%) - B, 1og(6£)) >1- (%’”)45’". (13)

From Eq. , for i € Ay, with probability 1 — ( )48+ 0; < 0; + 3¢/16 < u — 3¢/16. This implies
E[X4,] < (%)"‘f‘2r |S,.|. From Markov’s mequahty.

BlXa) ()Y 1S

Pr{Xy, > ( o) [418,] < ca(’ ) (14)
()20 J4IS, |~ ()20 /418, ~
Let & be the event X 4, < ( )28 [4]S,.|, then Pr[&] > 1 - 4( - )2hr,
On the other hand, by Hoeffding’s inequality, for i € As,
Pr[d; > 0; - 3¢/16] > 1 —exp(—e o= (5T/2%) - B log(1/ 7 )) s1- (X Ly as)

By the above equation, for ¢ € Az, Pr[éi <u-3e/16] < (%)437‘. We divide A3 into two parts B
and By, where |By| =k -1 and |By| = [(%)5"|Sr|]. Then

Pr[XBl:k:—l]21—(%)45*~(l€—1)21—(%)362 (16)
and
[(Q)BqSTH S \Br Br
X BrlS. 4B\ ()7 1S -1 Pr1S, |21+
Pr[Xp, < [( =) 1S 1/21] < ([( )50 18, ] - [(Q)MS 2]+ 1 ) (( ) )

ol (5)771S:11 . (( )4/%)( 2)0r18,/2]
< ol ()18 T, (( " Y260y ‘”)“T\&I/?],((%)mq[(%)ﬂwsr\/z]

ol (IS, (1/16) (IS ((%)W%)[(%)’”I&I/ﬂ

( )Zﬁr
a7
Let & be the event that X 4, > [(2)P"|S,|/2] + k — 1, then Pr[&] > 1 — (%£)2Fr — (22)36r,

If both &; and &5 hold, then there are more than [( =)8718,|/2] + k — 1 arms with empirical value
greater than u — 36/16 By the union bound, Pr[§1 N&] > 1-4(8)% — (82)28r — (52)36r =
1-— 5( R )QBT ( - )3Br_
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Assume that both £; and &5 hold, then in iteration r

9r V2B, Or \2Br Sr )20y
S IO & 3 i NN L
[(5E)P1Sel /2] + k-1 [(GE)Pr1Se1/2] + k= 17T ()P IS 1/2] + k-2
ey pais s
) l(él)ﬂr|5r|/2l+k—1 [(5)571S,1/2] + & - 2
s,
<Z 1+i-1

<k- (?’")ﬁr /2.
(18)
Therefore, Condition 1 holds.

Next, we assume that Condition 1 holds and focus on proving Condition 2. In Algorithm ] since we
re-sample (), times for each arm j,. € S,

Pr(f;, >6; —3¢/16) > 1 - (%)4/3"; (19)

Let émm be the smallest value inserted into S’ in iteration r. By the union bound and Eq. @), with
probability 1 - k - ( = )45,

Opmin > 0y — 3¢/16 > 1 — 9¢/16. (20)
If émm > u — 9¢/16 holds, then S’(k) + 3¢/4 > émm +3€/4 > u + 3¢/16. Therefore, Condition 2
holds.
Similar to Eq. (I3) and (T4), we can prove that with probability 1 — 4(% )2A7, there are less than
( )25’ /4|S,| arms in A; and A5 whose empirical values are larger than u + 3¢/16. This means that
under Conditions 1 and 2, with probability 1 - 4(%2)2%", |S,.,1| < (32)2% /4|8, l+ [(%2)5r1S, ] + k-

1 - k. Note that the —k term is due to the factor that Sy is selected from top-[[(%= 2= )Pr| S, |/2] + K - 1]
arms but is eliminated in Line 10 of Algorithm|I]

Applying the union bound, we have

o oy S, d
RISl < () JaiS e 1) 18,111 2 1-5( 20y Oy 0 ) fa-h( O 0 -a( O )2
2D
Note that 3, > 1, 6, < §/4 < 1/16, we have
26,
[IST+1I<[2( OIS =121 -5 (22)
O

Proof of Lemma[3

Proof. Proof of Part 1: Assume that Algorithm |1|terminates at iteration r’. Note that in Algorithm
each iteration has two rounds, and hence, R’ = 2r’. We prove r’ < log} (n).
5

For r <1/, by Lemma with probability 1 - 26,., [Sy11] < [2- (6,/k)P7|S:] =1 <2+ (6,./k)P"|S, .
This implies that with probability 1 — 24,.,

r < r < FPr . 23
T W s LT MW e L o e @9
Thus, with probability 1 —2(d1 + -+ + §,.),
k ( yPr-1 k‘g...g
Bra1 > (= )ﬁr>( ) 22 (24)

——
T
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el

k5
For integer m > log’, (n), we have n < % *  .If m<r’, by Eq. (24), we have that with probability
5

——
1-2(61++m-1) " )
ks’

B 2 5 (25)
Tl

Assume that Eq. (23) holds. Then, by Lemma with probability 1-20,,, |Spi1] < 2-(6m/k)P™ | S| <
k

kS
1Sml/(2-%° ) <|S|/(2n) < 1. This implies S, = @. Applying the union bound, we have that

——
m

w.p.
1-326,21-6, (26)
i=1

R’ =2r" <2log’ (n).
5
Proof of Part 2: Let p = log’ (n). Given positive integer I, we prove w.p. 1 — 2%, r’ < lp. Similar to
5
Eq. (23) and (24), we have that with probability 1 — 2(0(;_1)p+1 + O(1-1)ps2 + = + d1p-1),

(S
Sk

k- k
1 1 5 ko
2 2 > > — 27
Bis (6/k)Pro-1 (8/k)Pa-nes ) 27)
——
p—-1
k %
If above equation holds, then with probability 1 —0;,, Sjps1 < 2- (6lp/k)'8’ﬂ 1S1,] < |51,/ (2 %X )<
——

P
|S1p]/(2n) < 1, which means that Sj, = @. By the union bound, with probability 1 —2(J(;_1)p+1 +

5([,1)p+2 + -+ 61/7) >1- ﬁ, 7", < lp

Now, we have

BIR)<2(1-0) p+ 205 )+ (2p) + 2~ 502) - (39) + -
<2+ zl[;‘sf)p] (28)
<2(1+20)p=2(1+29) log% (n)
O
Proof of Lemmal[]
Proof. Proof of Part 1: Let £ be the event that 8,1 = 3, - % holds for all > 1. By Lemma ,

with probability 1 - 20,, |Sys1] < [2-(6,/k)?[S.|] -1 < 2 (6,/k)"|S,| < 22|S,|. Hence w.p.

1-26,, Brs1 = Br- 2\|5ﬂll' Applying the union bound, the event £ holds with probability 1 — §.

Assume that £ holds. In iteration r, the total number of arms pulled by Lines 5 and 7 of Algorithm ]|
is (IS:|+1)- 8- Q- log f. Note that § € (0,1/4) and 8,11 = BT%, we have

N =008+ 1) 5@ log ] <2 S (15161 @ log + ]
=1 [ i=1 )

522[;1 -Q~(log%+z’)] (29)
i=1

4
§6n-Q+4nQ~logFlf
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Thus with probability 1 - §, N < 7n- Q - log 4.

Proof of Part 2: Let V; be the number of samples in iteration r. By Lemma 2} with probability 1 —24,,
|Sps1| <2+ (8,/k)P(S:|] - 1 <2+ (6,/k)?"|S,| < 22|S,|. Then, by Algorithm 1] with probability

126, Brs1 - |Sre1] = Br - |Sr|/2. I |Spya] = 16, glven that d,- < 10’ we have
17
E[Nr+1] = (|Sr+1| + 1) '67"4—1 . Q : 10g < 7|Sr+1‘ ' Q ' BT‘+1 10g
57‘+1 5'r+1
k
<*(1 26,) -S| Q- Br - 10g7+ 25r ISy - Q- B - log
5 5T+1 (30)
<(1-25,)- 17N, log(k/dr+1) 75 N log(k/dr+1)
32 log(k/é,) " log(k/é,)
<3N,
4
Then
E[N1 + et NT+1:| < E[Nl] + 3/4E[N1] + e+ (3/4)TE[N1:| < 4E[N1] (31)
If |S;4+1] < 16, then
k k 5
Nr+l :(|ST+1|+1)'BT+1'Q'1Og §2|S7‘+1|'6r+1'Q'10g < 7NT' (32)
6r+1 51’+1 2
By Lemma with probability 1 — 26,11, |Sy12| < 26,;’“ |Sy+1] — 1 < 1. Thus
E[N;;2] <26 §N < 3N (33)
r+2] > r+1 2 r+l > 392 r+1-
Hence,
5 32 80 80
B[N + Neso] € B[No] + B[Nyl + - € ZB[Npa] € 2N, € 2Ny, (34)
Therefore, E[N] = ¥,_; E[N;] <4N1 + 32N <7(n+1) - Q- log & 3 O

Proof of Lemma

Proof. We first focus on iteration » < R — 1. For convenience, we follow the notation used in the
proof of Lemma 2] By Eq.(2I) in the proof of Lemma 2], we have that with probability at least
1—5(%)2ﬁr - (%)Sﬁr —k(‘S—kr)ﬁr/Q—k(%)43r —4(%)25T > 1-26,, both of the following conditions
hold.

I: br ¢ Al;

2: All the arms’ empirical values in S,.\\S,.,1 are smaller than u + 3/16e.

By Hoeffding’s inequality, for arm j in iteration r, we have

Pr(éj > 9]‘ - 36/16) >1- (%)4ﬂ7‘. (35)

For r = 1, then applying the union bound, for arm set {1*,2*--- i*}, with probability 1 - & - (%)4& ,
all arm’s empirical value greater than 6;+ — 3¢/16. Applying the union bound for all iterations, we

have that w.p. at least 1 - there are at least ¢ arms in set {1*,2%,--- 4"} whose empirical values

&
are greater than 0;» — 3¢/16. Let £ be the above event. Then Pr[¢] > 1 - g—;

Without loss of generality, we assume that ¢* is the first eliminated arm in {1*,2*-- 4*}, and that it is
eliminated in iteration r. Let j, be an arm inserted into S in iteration . Assume & holds. Combining
two conditions together, we have that with probability 1 — %&,

0, >0, >u—3/8 =u+3/16e - 9/16€ > 0; — 9/16€ > 0;+ — 3/4e. (36)
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In addition, Without loss of generality, we assume that ¢* has been eliminated before iteration R and
all z* (x < 1) are kept in Sg(Sg # @). In iteration R of Algorithm

k k (%)Pr-2 k g".ﬂl
Brz(5)7 2 (3) 22 (37)
——
R-1

By the definition of 31, we have [(6z/k)”®|Sg|/2] < 1. It follows that (ﬁ)ﬁ’% > |Sg|/2. Thus, we
have pulled each arm in Sy at least

k C2~10<‘;%R+Q-log£>c21 k- Sk
Q og

k Sk .
log(—)Pr > -log ==,Q -log —} >
Q Og(5R) > max{Q - log > @ Ong}_ 5 25 25,

times. Applying Hoeffding’s inequality and the union bound, for every jr € Sr, we have that with
probability 1 — 2Jg,

(38)

0 —1/Te<8;, <0;, +1/Te. (39)

In Algorithm we pull each arm (in S”) @ log %S,‘ times. By Hoeffding’s inequality and the union
bound, we have that with probability 1 — %, for all s € S/,

0, —1/10€ < 0, < 0, +1/10e. (40)

By Eq. (36) and union bound, with probability 1 — % Yro1 0r — Pr[€] > 1 - 6/2, there are at least k
arms in S” whose means are greater than 6;+ — 3/4e. Combining Eq. {@0) and the union bound, we

have that for any arm s whose empirical value is top-i in Line 4 of Algorithm [3| with probability
36

4 b
Os >0, —1/10€ 2 0;+ — 3/4e — 1/10€ > 0;+ — €. (41)
Assume that Eq. @T)),@0) and hold. Again, we assume " has been eliminated before iteration
and all 2* (« < i) are kept in Sg(Sg # @). Let 2° be the top-z returned arm. If 2° € S’, we consider
two cases as follows:

Case l:x >i. By Eq. 1)), 0,0 > 0; — €.
Case 2:x <i. By Eq. (0) and (39), we have

Opo + 1/10€ > Opo > Oye > Oye — 1/7e. (42)
Thus 0,0 > 0, — €.

On the other hand, if the returned arm z° ¢ S’, then we have x° € Si. We differentiate two cases as
follows.

Case 1: x <. Note that 2* € Si. By Eq. (39), we have

Opo > Ogo —1/T€> Oy —1/T€ > Ope — 2/ 7. (43)
Case 2: x > ¢. We have
Opo > Opo —1/7€ > O3 —3/4e — 1/Tc —1/10€ > 0;+ — €. (44)
Applying the union bound, Eq. {#I)), @0), and (39) hold with probability at least 1 — ¢, and hence, the
lemma is proved. O
Proof of Lemma

Proof. Let N; be the number of arms pulled in iteration » < R — 1. For r < R — 2, we have
1 3
Nr+1:|Sr+1|'5r+1'Q'log §§|S7‘|ﬁrQlog

< —N,. (45)

5r+1 4
Meanwhile, the R*™ round consumes in two places: Line 2 and Line 4 in Algorithm Let X
be the sample cost of Line 2. Similar to Equation we have X < 3/4Ng_;. For Line 4, since

|S’] < log*%c (n) - k, it can be proved that the cost of Line 4 is bounded by O( 4 (log & + ﬂog(ER) (n))).
5

5r+1

Therefore, N < O(LE P N,) + O(E%(logg + ilog(ER)(n))) = O(E%(ilog(;”)(n) +log %)) O
5 5
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Elimination Arms

Work [13] can eliminate most arms below a given threshold by using the Elimination procedure
defined in [24] as a subroutine. To bound the round complexity of the elimination procedure in our

Theorem 3, we need the Elimination procedure in [24]], Page 7, 6, < 9 —. Then, Lemma 2.4
104357 °

.
=

——
in [24] still holds and each elimination costs O(log% (n)) rounds.

Proof of Lemma

Proof. We consider the Exponential-Gap-Eliminating process and divide it into two part. The first
part is €, € [1, Ag]. In this part, since €,+1 = €,/8, we need at most log A;! iterations. For each
iteration, we need to run algorithm|l|and use Q(log’% (n)) rounds. Thus, for the first part, we need

O(log A ' log’% (n)) rounds.

The second part is €, < Ag. Once €, < Ag/8, from [13]’s Observation 4.2, we can get with high
probability the algorithm will return. Thus, the round complexity of second part is O(log% (n)). O

17



