
Appendix
A Connection to Markov Logic Network

Similar to the proposed model, the Markov logic network (MLN) [33] is an alternative to intro-
duce uncertainty into logic rules. However, there is significant difference in the way the retrosyn-
thetic templates are treated. The proposed model considers the templates as separate variables
that will be inferred for the target molecules together with the reactions. The explicit proba-
bilistic modeling of templates makes it more straightforward to interpret the prediction. The
MLN instead sets the logic rules (the templates) as features in the energy-based model, i.e.,
p (R|O) / exp

�P
T2T wT,O�O (T) + wT,R,O�O,T (R)

�
, upon which the template inference is

not well-defined. Moreover, our model will also lead to efficient sampling and inference, avoiding
the MCMC on combinatorial space P (M) in the MLN, which accelerates the model learning.
So in summary:
• GLN is a directed graphical model while MLN is undirected.
• MLN treats the predicates of logic rules as latent variables, and the inference task is to get the

posterior of them. While in GLN, the task is the structured prediction, and the predicates are
implemented with subgraph matching.

• Due to the above two, GLN can be implemented with efficient hierarchical sampling. However
for MLN, generally the expensive MCMC in combinatorial space is needed for both training and
inference.

B Details of setup

Figure 6: Distribution of reaction types.

Dataset information Figure 6 shows the distribution of reactions over 10 types. We can see this
dataset is highly unbalanced.

Implementation details The preprocessing of TO and RT,O is relatively expensive, since theoreti-
cally the subgraph isomorphism check is NP-hard. However, since the processing is embarrassingly
parallelizable, it took about 1 hour on a cluster with 48 CPU cores for 50k reactions.
We implement the entire model using pytorch. The optimizer we used is Adam [34] with a fixed
learning rate of 1e� 3 and a gradient clip of 5.0.
In all the experiments, the graph embedding module is implemented using s2v [21]. The best
embedding size we used has size of 256 for representing each molecule or subgraph structure, and
relu is used as nonlinear activation function.

For the aggregation used in g(·), in DeepSet module used for representation of rT
i

N(T)
i=1 for a specific

T , or in DeepSet module for molecule set R, we tried {max, sum, average}-pooling, and found the
performance is about the same. We use average-pooling since it offers the scoring of each node
embedding within the graphs. The visualization in Fig 5 relies on this trick.

12

s2v-3 GGNN MPNN GIN ECFP s2v-0 s2v-1 s2v-2
top-1 52.6 51.6 50.4 51.8 51.9 40.7 47.0 51.3

top-10 83.1 81.8 83.2 83.3 81.5 78.1 80.4 82.2
Table 5: Ablation study on USPTO-50k with different representations.

Class Fraction %
1 30.3
2 23.8
3 11.3
4 1.8
5 1.3
6 16.5
7 9.2
8 1.6
9 3.7

10 0.5

Figure 7: Reaction distribu-
tion over 10 types. Figure 8: Top-10 accuracy per each reaction type.

C More experiment results

C.1 Ablation study of design choices

Our GLN provides a general graphical model to retrosynthesis problem, which is compatible with
many reasonable choices of the representation of graphs. In addition to structure2vec with 3
layers (s2v-3) we used in the paper, we provide more ablation studies using different widely used
GNNs and different number of “message-passing” layers.
The rationale behind the choices are: 1) the GNNs should be able to take both atom and bond features
into consideration; 2) according to Xu et al. [35], the family of message-passing GNNs should have
similar representation power as WL graph isomorphism check at best. We adopt the s2v in our paper
since it satisfies these requirements. Meanwhile, it comes with efficient c++ binding of RDKit.
We use 2 layers of GNN by default, or use -k after the name in Table 5 to denote k-layer design.
We can see that most variations of GNNs can achieve similar performances with enough number of
message-passing like propagations. Based on this, for the experiment on the full USPTO dataset we
simply use ECFP-2 provided by RDKit, as it is WL-isomorphism check based method with enough
expressiveness [35] but faster to run.
Besides the choice of GNN, we also compare the choices of v1, v2 and w2 mentioned in Section 4.2.
Basically all these functions are comparing the compatibility of two vectors ~x, ~y. In the paper, we
simply used inner-product ~x>

~y. Here we also studied MLP ([~x, ~y]) and bilinear ~x>
A~y. For top-1,

the inner-prod, MLP and bilinear gets 52.6, 52.7 and 53.5, respectively. So our GLN could be further
improved with better design choices.

C.2 Per-category performance

We study the performance per each reaction category. Following the setting of baseline methods,
we report the top-10 accuracy. As is shown in Table 7, the distribution of reaction types is highly
unbalanced. From Fig 8 we can see our performances are better than retrosim in most classes,
including the most common cases like class 1 and 2, or rare cases like class 4 or 8. This shows that
our performance is not obtained by overfitting to one particular category of reactions. Such property
is also important, as the retrosynthesis could involve rare reactions that haven’t been well studied in
the literature.
For per category performance for reaction type conditional tasks, as well the effect of beam-size,
please refer to Appendix C.

C.3 Reaction conditional performance

In Figure 9 we show the per-class performance when the reaction type is given as prior. As is shown
Figure 6, the distribution of reaction types is not uniform, where some reactions only get less than 5%

13

Figure 9: Top-10 accuracy per reaction class, when the reaction class is given during training.

Figure 10: Top-k accuracy with
different beam sizes.

Figure 11: Inference speed with
different beam sizes.

Figure 12: Top-k accuracy of re-
action center and template.

of the total data. In this case, it is important to have a flexible model that can take the reaction type
into account. Training one model per each reaction class is not a good idea in this case due to the
imbalance of distribution.
From Figure 9 we can see our performances are comparable to retrosim in all classes, while being
much better than expertSys and seq2seq. Even in rare classes like class 9 or 10, we can still get best
or second best performance. This shows the effectiveness and the flexibility of our GLN.

C.4 Effect of beam size

Beam size In Section. 6.1 we reported the top-k accuracy with beam size of 50, since k is at most
50. Here we study the performance of GLN using different beam sizes. Figure 10 shows the top-k
accuracy for different k and different beam sizes. Overall the performance gets consistently better
with larger beam sizes, for all top-k predictions. We can also see that the top-1 accuracy improved
about 10% from beam size 1 (i.e., greedy inference) to beam size 3. Note that the curve of beam size
s flattened after top-s predictions, since generally it didn’t produce more predictions than s.
We also report the speed for inference in Figure 11. Such information during inference is averaged
over 5,007 test predictions. The majority of the time is spent during applying the template via the call
to RDKit, thus the time required grows up linearly with the beam size, as the number of RDKit calls
grows linearly with the beam size.
Accuracy of p(T |O) In Figure 12 we show the accuracy of p(T |O), which decomposes into the
reaction center identification accuracy and the template selection accuracy related to that reaction
center. Here the beam size is fixed to 50. Predicting the reaction center is relatively easy and GLN
achieves 99% top-20 accuracy. These results indicate that the current bottleneck in performance is in
the template selection part, which is reasonably good now but can definitely be further improved by
capturing more reaction features.

C.5 Generalize logic check �O(T)

The logic function �O(T) comes with our GLN can be potentially applied to any rule based systems.
For example, when combined with neuralsym [9] (we denote the modified one as �-neuralsym), it

14

OHNH

O
S

O

O

NH

O

Cl

Cl

O

NH

O
S

O

O

NH

O

Cl

Cl

O

NHN
O

O
O

O
N

NH
2

O

OH

S

O

O

NH

O

Cl

Cl
NH

O
S

O

O

NH

O

Cl

Cl

O

NHN
O

O

NH
2

O

NH

N

O

O

NH

O
S

O

O

NH

O

Cl

Cl
O

OH

NH

O
S

O

O

NH

O

Cl

Cl

O

NHN
O

O
O

O
N

NH
2

NH

O
S

O

O

NH

O

Cl

Cl

O

NHN
O

O

NH
2

O

NH

N

O

O

O

OH

S

O

O

NH

O

Cl

Cl

Ground truth

Similarity=0.9

Correct

Similarity=0.9
Figure 13: Example successful predictions.

Ground truth

Similarity=0.82

Similarity=0.87

Similarity=0.82

N

N

NH

F

NH S

O

O

F

O

N

S

O

O

I

N

NH

F

NH S

O

O

F

O

N

S

O

O

N

N

N

NH

F

NH S

O

O

F

O

N

S

O

O
S

O

O

NH

F

O

OH

F
N

NH2

N

N

S

O

O

N

N

NH

F

NH S

O

O

F

O

N

S

O

O NH

O

F

NH S

O

O

F
N

N

S

O

O
O

NH

N

N

NH

F

NH S

O

O

F

O

N

S

O

O

S

O

O

NH

F

O

OH

F
N

NH2

N

N

S

O

O

Figure 14: Example failed predictions.

further reduces the space of template selection. �-neuralsym gets top-1 accuracy of 46.9% and 57.7%
in reaction type unconditional and conditional cases, respectively. This is about 2% improvement
over its vanilla performance.

C.6 Visualization results

In Figure 13 and 13 we put examples of successful and failed predictions with better resolution.

15

	Introduction
	Background
	Conditional Graph Logic Network
	Model Design
	Decomposable design of p(T|O)
	Graph Neuralization for v1, v2 and w2

	MLE with Efficient Inference
	Experiment
	Main results
	Interpret the predictions
	Study of the performance
	Large scale experiments on USPTO-full

	Discussion
	Connection to Markov Logic Network
	Details of setup
	More experiment results
	Ablation study of design choices
	Per-category performance
	Reaction conditional performance
	Effect of beam size
	Generalize logic check O(T)
	Visualization results

