Fast Low-rank Metric Learning for Large-scale and
High-dimensional Data

Han Liu f, Zhizhong Han*, Yu-Shen Liu’ *, Ming Gu'
1 School of Software, Tsinghua University, Beijing, China
BNRist & KLISS, Beijing, China
1 Department of Computer Science, University of Maryland, College Park, USA
liuhan15@mails.tsinghua.edu.cn h312h@umd.edu
liuyushen@tsinghua.edu.cn guming@tsinghua.edu.cn

Abstract

Low-rank metric learning aims to learn better discrimination of data subject to
low-rank constraints. It keeps the intrinsic low-rank structure of datasets and
reduces the time cost and memory usage in metric learning. However, it is still a
challenge for current methods to handle datasets with both high dimensions and
large numbers of samples. To address this issue, we present a novel fast low-rank
metric learning (FLRML) method. FLRML casts the low-rank metric learning
problem into an unconstrained optimization on the Stiefel manifold, which can be
efficiently solved by searching along the descent curves of the manifold. FLRML
significantly reduces the complexity and memory usage in optimization, which
makes the method scalable to both high dimensions and large numbers of samples.
Furthermore, we introduce a mini-batch version of FLRML to make the method
scalable to larger datasets which are hard to be loaded and decomposed in limited
memory. The outperforming experimental results show that our method is with
high accuracy and much faster than the state-of-the-art methods under several
benchmarks with large numbers of high-dimensional data. Code has been made
available at https://github.com/highan911/FLRML.

1 Introduction

Metric learning aims to learn a distance (or similarity) metric from supervised or semi-supervised
information, which provides better discrimination between samples. Metric learning has been widely
used in various area, such as dimensionality reduction [1} 2} 3], robust feature extraction [4} 5] and
information retrieval [6} [7]. For existing metric learning methods, the huge time cost and memory
usage are major challenges when dealing with high-dimensional datasets with large numbers of
samples. To resolve this issue, low-rank metric learning (LRML) methods optimize a metric matrix
subject to low-rank constraints. These methods tend to keep the intrinsic low-rank structure of the
dataset, and also, reduce the time cost and memory usage in the learning process. Reducing the
matrix size in optimization is an important idea to reduce time and memory usage. However, the
size of the matrix to be optimized still increases linearly or squarely with either the dimensions, the
number of samples, or the number of pairwise/triplet constraints. As a result, it is still a research
challenge when dealing with the metric learning task on datasets with both high dimensions and large
numbers of samples [18(9].

To address this issue, we present a Fast Low-Rank Metric Learning (FLRML). In contrast to state-of-
the-art methods, FLRML introduces a novel formulation to better employ the low rank constraints to
further reduce the complexity, the size of involved matrices, which enables FLRML to achieve high

*Corresponding author: Yu-Shen Liu.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/highan911/FLRML

accuracy and faster speed on large numbers of high-dimensional data. Our main contributions are
listed as follows.

- Modeling the constrained metric learning problem as an unconstrained optimization that can be
efficiently solved on the Stiefel manifold, which makes our method scalable to large numbers of
samples and constraints.

- Reducing the matrix size and complexity in optimization as much as possible while ensuring the
accuracy, which makes our method scalable to both large numbers of samples and high dimensions.
- Furthermore, a mini-batch version of FLRML is proposed to make the method scalable to larger
datasets which are hard to be fully loaded in memory.

2 Related Work

In metric learning tasks, the training dataset can be represented as a matrix X = [xy, ..., X,] € RP*",
where n is the number of training samples and each sample x; is with D dimensions. Metric
learning methods aim to learn a metric matrix M € R”>* from the training set in order to obtain
better discrimination between samples. Some low-rank metric learning (LRML) methods have
been proposed to obtain the robust metric of data, and to reduce the computational costs for high-
dimensional metric learning tasks. Since the optimization with fixed low-rank constraint is nonconvex,
the naive gradient descent methods are easy to fall into bad local optimal solutions [2,|10]. In terms
of different strategies to remedy this issue, the existing LRML methods can be roughly divided into
the following two categories.

One type of method [} [L1} [12} [13] [14] introduces the low-rankness encouraging norms (such as
nuclear norm) as regularization, which relaxes the nonconvex low-rank constrained problems to
convex problems. The two disadvantages of such methods are: (1) the norm regularization can only
encourage the low-rankness, but cannot limit the upper bound of rank; (2) the matrix to be optimized
is still the size of either D? or n2.

Another type of method [2, 3} [15 16} 17, [18] considers the low-rank constrained space as Rieman-
nian manifold. This type of method can obtain high-quality solutions of the nonconvex low-rank
constrained problems. However, for these methods, the matrices to be optimized are at least a
linear size of either D or n. The performance of these methods is still suffering on large-scale and
high-dimensional datasets.

Besides low-rank metric learning methods, there are some other types of methods for speeding up
metric learning on large and high-dimensional datasets. Online metric leaning [6, 7, |19} [20]] randomly
takes one sample at each time. Sparse metric leaning [21} 22, 23] 24} 25| 26] represents the metric
matrix as the sparse combination of some pre-generated rank-1 bases. Non-iterative metric leaning
[27, 28] avoids iterative calculation by providing explicit optimal solutions. In the experiments,
some state-of-the-art methods of these types will also be included for comparison. Compared with
these methods, our method also has advantage in time and memory usage on large-scale and high-
dimensional datasets. A literature review of many available metric learning methods is beyond the
scope of this paper. The reader may consult Refs. [8} 9, 129] for detailed expositions.

3 Fast Low-Rank Metric Learning (FLRML)

The metric matrix M is usually semidefinite, which guarantees the non-negative distances and non-
negative self-similarities. A semidefinite M can be represented as the transpose multiplication of
two identical matrices, M = L T L, where L. € R?*? is a row-full-rank matrix, and rank(M) = d.
Using the matrix L as a linear transformation, the training set X can be mapped into Y € R4x",
which is denoted by Y = LX. Each column vector y; in Y is the corresponding d-dimensional
vector of the column vector x; in X.

In this paper, we present a fast low-rank metric learning (FLRML) method, which typically learns
the low-rank cosine similarity metric from triplet constraints 7. The cosine similarity between
a pair of vectors (x;,x;) is measured by their corresponding low dimensional vector (y;,y;) as
T ;
sim(x;,x;) = % Each constraint {i,j,k} € T refers to the comparison of a pair of
i J

similarities sim(x;,x;) > sim(x;, Xg).

To solve the problem of metric learning on large-scale and high-dimensional datasets, our motivation
is to reduce matrix size and complexity in optimization as much as possible while ensuring the
accuracy. To address this issue, our idea is to embed the triplet constraints into a matrix K, so that
the constrained metric learning problem can be casted into an unconstrained optimization in the
“form” of tr(WK), where W is a low-rank semidefinite matrix to be optimized (Section . By
reducing the sizes of W and K to R"™*" (r = rank(X)), the complexity and memory usage are
greatly reduced. An unconstrained optimization in this form can be efficiently solved on the Stiefel
manifold (Section @ In addition, a mini-batch version of FLRML is proposed, which makes our
method scalable to larger datasets that are hard to be fully loaded and decomposed in the memory

(Section[3.3).

3.1 Forming the Objective Function

Using margin loss, each triplet ¢t = {i,j,k} in T corresponds to a loss function I({4,j,k}) =
max(0, m — sim(x;,X;) + sim(x;,Xx)). A naive idea is to sum the loss functions, but when » and
|T| are very large, the evaluation of loss functions will be time consuming. Our idea is to embed the
evaluation of loss functions into matrices to speed up their calculation.

For each triplet ¢ = {4, j,k} in 7, a matrix C® with the size n X n is generated, which is a

sparse matrix with c;-ti) =1 and c,(fi) = —1. The summation of all C®*) matrices is represented as

C = ,c+ C®. The matrix YC is with the size R?*™. Let T; be the subset of triplets with ¢ as the
first item, and ¥; be the i-th column of Y C, then y; can be written as §; = Z{i SEIET: (=y; + V&)
This is the sum of negative samples minus the sum of positive samples for the set 7;. By multiplying

on ﬁ on both sides, we can get ﬁyl as the mean of negative samples minus the mean of

positive samples (in which “|7;| + 1” is to avoid zero on the denominator).

Let z; = ﬁy? ¥, then by minimizing z;, the vector y; tends to be closer to the positive samples

than the negative samples. Let T be a diagonal matrix with T}, then z; is the i-th diagonal

1
BRUEEN
element of —Y " YCT. The loss function can be constructed by putting z; into the margin loss as
L(T) = >, max(0, z; + m). A binary function A(z) is defined as: if z > 0, then A(z) = 1;
otherwise, A(z) = 0. By introducing the function A(x), the loss function L(7) can be written as
L(T) = >, (2 + m)A(z; + m), which can be further represented in matrices:

L(T) = —tr(Y "YCTA) + M(A), (1)

where A is a diagonal matrix with A;; = A(z;+m), and M (A) = m > | A;; is the sum of constant
terms in the margin loss.

In Eq., Y € R*™ is the optimization variable. For any value of Y, the corresponding value of
L can be obtained by solving the linear equation group Y = LX. A minimum norm least squares
solution of Y = LX is L = YVX~1U', where [U € RPX" 2 € R™" 'V € R"*"] is the SVD
of X. Based on this, the size of the optimization variable can be reduced from RIX7 tg RIXT g
shown in Theorem [T

Theorem 1. {Y : Y = BV B € R¥*"} is a subset of Y that covers all the possible minimum
norm least squares solutions of L.

Proof. By substituting Y = BV intoL = YVX~1U',
L=BxX U,)

Since U and X are constants, then B € R?*" covers all the possible minimum norm least squares
solutions of L. O

By substituting Y = BV ' into Eq., the sizes of W and K can be reduced to R"*", which are
represented as

L(T) = —tr(BTBV CTAV) + M(A). (3)
This function is in the form of tr(WK), where W = BTB and K = —VTCTAYV. The size of W

and K are reduced to R"*", and r < min(n, D). In addition, VTCT € R™*" is a constant matrix
that will not change in the process of optimization. So this model is with low complexity.

It should be noted that the purpose of SVD here is not for approximation. If all the ranks of X are
kept, i.e. r = rank(X), the solutions are supposed to be exact. In practice, it is also reasonable to
neglect the smallest eigenvalues of X to speed up the calculation. In the experiments, an upper bound
is set as 7 = min(rank(X), 3000), since most computers can easily handle a matrix of 30002 size,
and the information in most of the datasets can be preserved well.

3.2 Optimizing on the Stiefel Manifold

The matrix W = B B is the low-rank semidefinite matrix to be optimized. Due to the non-convexity
of low-rank semidefinite optimization, directly optimizing B in the linear space often falls into bad
local optimal solutions [2, [10]. The mainstream strategy of low-rank semidefinite problem is to
achieve the optimization on manifolds.

The Stiefel manifold St(d, r) is defined as the set of 7 X d column-orthogonal matrices, i.e., St(d, r) =

{P € R4 . PTP = I;}. Any semidefinite W with rank(W) = d can be represented as

W =PSP", where P € St(d,r) and S € {diag(s) : s € R% }. Since P is already restricted on the

Stiefel manifold, we only need to add regularization term for s. We want to guarantee the existence

of dense finite imal solution of s, so the L2-norm of s is used as a regularization term. By adding
3)

%|Is||? into Eq.(3), we get
T Lo =1
fo(W) = tx(PSPTK) + _s||* + M(A) = 2(23 + sip, Kp;) + M(A), (4)
i=1
where p; is the ¢-th column of P.
Let k; = —p, Kp;. Since fo(W)is a quadratic function for each s;, for any value of P, the only
corresponding optimal solution of s € R? 4 s
8§ ={[51,...,84] " : 8 = max(0, k;)}. (5)

By substituting the 3; values into Eq. (E]) the existence of s in fo(W) can be eliminated, which
converts it to a new function f(P) that is only relevant with P, as shown in the following Theorem |2] l

Theorem 2.
d

£(P) = _% S (max(0, ki)k;) + M(A). ©)

i=1

Proof. An original form of f(P) can be obtained by substituting Eq. into Eq.:
> (3max(0, k;) — ki)max(0, k;)) + M (A).
The f P in Eq. @) is equal to this formula in both k; < 0 and k; > 0 conditions. O]

In order to make the gradient of f(P) continuous, and to keep s dense and positive, we adopt function
u(x) = —log(o(—x)) as the smoothing of max(0,) [2], where o(x) = 1/(1 + exp(—z)) is the
sigmoid function. Function p(x) satisfies lim,_, 1+ o, = 2 and lim,_, _, = 0. The derivative of u(x)
is dp(z)/dz = o(x). Figuredisplays the sample plot of max(0, z) and p(z). Using this smoothed

3 .
——max(0, z) 7
T E—
7
RS
e
1 7
."’./
0 ez T T
. . i
5 4 3 2 1 0 1 2 3
x

Figure 1: A sample plot of max(0, z) and pu(x).

Algorithm 1 FLRML Algorithm 2 M-FLRML

1: Input: the data matrix X € RP*™ the sparse supervision ma- 1: Input: the data matrices X € RPX™I the supervision matri-
trix C € R™* ", the low-rank constraint d ces C; € R™I*™I the low-rank constraint d
D

2: [UeRPX" S e R™*",V € R"X"] + SVD(X) 2: Randomly initialize L € R**
3: Calculating constant matrix v'ctT 3:forI =1:Tdo
4: Randomly initialize P € St(d, r) 4: [U, 21, Vi] + SVD(X))
5: Initialize S satisfies Eq.(8) 5: GetPyands; by Eq.L1)
6: repeat 6: Update A and K by Eq.(3)
7: Update A and K b Eq, 7: Update Py and s; by Eq.{12) and Eq.
8: Update G by Eq. 8: Get AL by E1q
9: Update P and S by searching on h(7) in Eq. 90 L+« L+ AL
10: until convergence 10: end for
11: Output: L + v/SPTx"1UT 11: Output: L
function, the loss function f(P) is redefined as

1 d

f(P)=—=5) (ulki)k;) + M(A). (7
2
=1

The initialization of S € {diag(s) : s € R } needs to satisfy the condition
s =S8.)]

When P is fixed, S is a linear function of K (see Eq.), K is a linear function of A (see Eq.),
and the 0-1 values in A are relevant with s (see Eq.(3)). So Eq.(8) is a nonlinear equation in a form
that can be easily solved iteratively by updating s with 8. Since § € O(K?'), K € O(A'), and
A € O(s?), this iterative process has a superlinear convergence rate.

. . . . __af(P
To solve the model of this paper, for a matrix P € St(d,), we need to get its gradient G = 6(13),
Theorem 3. o1 (P)
G=—5p =—(K+ K ")Pdiag(q), 9)

where q; = —5 (u(ki) + kio(k;)).

Proof. Since q; = %&f) = —2(u(k;) + kio(k;)), the gradient can be derived from % =
d Ok

2 ic1 GiGE-

The ‘g’;;’ can be easily obtained since k; = —p;eri. O

For solving optimizations on manifolds, the commonly used method is the “projection and retraction”,
which first projects the gradient G onto the tangent space of the manifold as G, and then retracts
(P - G) back to the manifold. For Stiefel manifold, the projection of G on the tangent space
is G = G — PGTP [I0]. The retraction of the matrix (P - G) to the Stiefel manifold can be

represented as retract(P — G, which is obtained by setting all the singular values of (P — G) to 1
[30].

For Stiefel manifolds, we adopt a more efficient algorithm [[10], which performs a non-monotonic
line search with Barzilai-Borwein step length [31,/32] on a descent curve of the Stiefel manifold. A
descent curve with parameter 7 is defined as

h(r) = (I+ gH)*l(I - gH)P, (10)

where H = G P" — P G'. The optimization is performed by searching the optimal 7 along the
descent curve. The Barzilai-Borwein method predicts a step length according to the step lengths in
previous iterations, which makes the method converges faster than the “projection and retraction”.

The outline of the FLRML algorithm is shown in Algorithm[I] It can be mainly divided into four
stages: SVD preprocessing (line 2), constant initializing (line 3), variable initializing (lines 4 and
5), and the iterative optimization (lines 6 to 11). In one iteration, the complexity of each step is: (a)
updating Y and A: O(nrd); (b) updating K: O(nr?); (¢) updating G : O(r?d); (d) optimizing P
and S: O(rd?).

3.3 Mini-batch FLRML

In FLRML, the maximum size of constant matrices in the iterations is only R"*" (V and VTCT),
and the maximum size of variable matrices is only R"*". Smaller matrix size theoretically means the
ability to process larger datasets on the same size of memory. However, in practice, we find that the
bottleneck is not the optimization process of FLRML. On large-scale and high-dimensional datasets,
SVD preprocessing may take more time and memory than the FLRML optimization process. And for
very large datasets, it will be difficult to load all data into memory. In order to break the bottleneck,
and make our method scalable to larger numbers of high-dimensional data in limited memory, we
further propose Mini-batch FLRML (M-FLRML).

Inspired by the stochastic gradient descent method [[18} 33]], M-FLRML calculates a descent direction
from each mini-batch of data, and updates L at a decreasing ratio. For the I-th mini-batch, we
randomly select [V, triplets from the triplet set, and use the union of the samples to form a mini-batch
with n; samples. Considering that the Stiefel manifold St(d, r) requires r > d, if the number of
samples in the union of triplets is less than d, we randomly add some other samples to make n; > d.
The matrix X; € RPxnr jg composed of the extracted columns from X, and C; € R™*"I g
composed of the corresponding columns and rows in C.

The objective fo(W) in Eq. consists of small matrices with size R"*" and R"*%. Our idea is to
first find the descent direction for small matrices, and then maps it back to get the descent direction of
large matrix L € R%*P . Matrix X can be decomposed as X; = U;X; V], and the complexity of
decomposition is significantly reduced from O(Dnr) to O(Dn?) on this mini-batch. According to
Eq. @) a matrix By can be represented as By = LU;3;. Using SVD, matrix B; can be decomposed
as By = Qdiag(y/s7)P] , and then the variable W for objective fo(W) can be represented as

W = B B; = P;diag(s;)P] . (a1

In FLRML, in order to convert fo(W) into f(P), the initial value of s satisfies the condition s = 8.
But in M-FLRML, s; is generated from B, so generally this condition is not satisfied. So instead,
we take P and sy as two variables, and find the descent direction of them separately. In Mini-batch
FLRML, when a different mini-batch is taken in next iteration, the predicted Barzilai-Borwein step

length tends to be improper, so we use “projection and retraction” instead. The updated matrix P;is
obtained as .

P; = retract(P; — G; + P;G | Py). (12)
For s;, we use Eq.()) to get an updated vector §;. Then the updated matrix for B; can be obtained as
B;=Q rdiag(v/81)P By mapping B back to the high-dimensional space, the descent direction

of L can be obtained as .
AL = Qrdiag(y/$7)P; ¥;'U;] — L. (13)
For the I-th mini-batch, L is updated at a decreasing ratio as L < L + %AL. The theoretical

analysis of the stochastic strategy which updates in step sizes by % can refer to the reference [18]].
The outline of M-FLRML is shown in Algorithm

4 Experiments

4.1 Experiment Setup

In the experiments, our FLRML and M-FLRML are compared with 5 state-of-the-art low-rank
metric learning methods, including LRSML [1]], FRML [2]], LMNN [34], SGDINC [18], and
DRML [3]]. For these methods, the complexities, maximum variable size and maximum constant
size in one iteration are compared in Table[2] Considering that d < D and n; < n, the relatively
small items in the table are omitted.

In addition, four state-of-the-art metric learning methods of other types are also compared, including
one sparse method (SCML [23]]), one online method (OASIS [6]]), and two non-iterative methods
(KISSME [27]], RMML [28])).

The methods are evaluated on eight datasets with high dimensions or large numbers of samples: three
datasets NG20, RCV1-4 and TDT2-30 derived from three text collections respectively [35.36]; one

Table 1: The datasets used in the experiments.

D

dataset n Ntest Neat
NG20 62,061 15,935 3,993 20
RCVI1 29,992 4,813 4,812 4
TDT2 36,771 4,697 4,697 30
MNIST 780 60,000 10,000 10
MI10-16 4,096 47,892 10,896 10
M40-16 4,096 118,116 | 29,616 40
M10-100 1,000,000 47,892 10,896 10
M40-100 1,000,000 118,116 | 29,616 40

Table 2: The complexity, variable matrix size and
constant matrix size of 7 low-rank metric learning

methods (in one iteration).

methods complexity size(var) | size(const)
LMNN T2+ 73 | | Tlr+ 72 nr
LRSML n?d n? n?
FRML Dn? + D?%d D? Dn
DRML D?|T| + D?d Dd DI|T]|
SGDINC Dd? + Dn3 Dd Dn;
FLRML nrd + nr? r?2 4+ nd nr
M-FLRML | Dn% + Dn;d Dd Dny

Table 3: The classification accuracy (left) and training time (right, in seconds) of 7 metric learning
methods with SVD preprocessing.

datasets | NG20 [RCV1 [TDT2 [MNIST [M10-16 [M40-16
tsvd 191 | 91 107 | 10 | 355 | 814
OASIS 24.3% 405 | 84.6% 368 | 89.4% 306 | 97.7% 21 83.3% 492 | 67.9% 380
KISSME | 67.8% 627 | 92.1% 224 | 95.9% 220 | 95.7% 74 | 76.2% 1750 | 40.8% 7900
RMML 43.7% 342 | 66.5% 476 | 87.5% 509 | 97.6% 18 | 82.1% 366 M
LMNN 62.2% 1680 | 88.4% 261 | 97.6% 1850 | 97.8% 3634 M M
LRSML 46.9% 90 | 93.7% 50 | 85.3% 1093 M M M
FRML 75.7% 227 | 94.2% 391 | 97.0% 371 | 90.5% 48 | 76.1% 172 | 69.1% 931
FLRML | 80.2% 37 | 93.5% 14 | 96.3% 10 | 95.9% 7 | 83.4% 41 | 75.0% 101

Table 4: The classification accuracy (left) and training time (right, in seconds) of 4 metric learning
methods without SVD preprocessing.

datasets | NG20 | RCVI | TDI2 | MNIST | MIO0-16 | M40-16 | MIO-100 | M40-100
SCML M 939% 8508[96.9% 211[913% 310 E E M M
DRML 25.1% 2600(91.4% 216|822% 750 |82.1% 1109 |72.5% 6326 M M M
SGDINC | 54.0% 3399 | 94.2% 1367 |96.9% 1121 |97.6% 44 |835% 174 |742% 163|56.9% 4308 |35.5% 5705
M-FLRML [542% 26 |92.7% _ 11|950% _ 14]|96.1% __ 1[83.0% __ 2|740% 2 |82.7% 637 |738% 654

handwritten characters dataset MNIST [37]; four voxel datasets of 3D models M10-16, M10-100,
M40-16, and M40-100 with different resolutions in 162 and 100 dimensions, respectively, generated
from “ModelNet10” and “ModelNet40” [38] which are widely used in 3D shape understanding
[39] 140, 41} 142} 43| 144) 45| 146, 147, 48, 149, 50]. To measure the similarity, the data vectors are
normalized to the unit length. The dimensions D, the number of training samples n, the number of
test samples n.5¢, and the number of categories n.,: of all the datasets are listed in Table

Different methods have different requirements for SVD preprocessing. In our experiments, a fast
SVD algorithm [51] is adopted. The time ¢,,4 in SVD preprocessing is listed at the top of Table[3]
Using the same decomposed matrices as input, seven methods are compared: three methods (LRSML,
LMNN, and our FLRML) require SVD preprocessing; four methods (FRML, KISSME, RMML,
OASIS) do not mention SVD preprocessing, but since they need to optimize large dense RP* P
matrices, SVD has to be performed to prevent them from out-of-memory error on high-dimensional
datasets. For all these methods, the rank for SVD is set as » = min(rank(X), 3000). The rest
four methods (SCML, DRML, SGDINC, and our M-FLRML) claim that there is no need for SVD
preprocessing, which are compared using the original data matrices as input. Specifically, since the
SVD calculation for datasets M10-100 and M40-100 has exceeded the memory limit of common PCs,
only these four methods are tested on these two datasets.

Most tested methods use either pairwise or triplet constraints, except for LMNN and FRML that
requires directly inputting the labels in the implemented codes. For the other methods, 5 triplets
are randomly generated for each sample, which is also used as 5 positive pairs and 5 negative
pairs for the methods using pairwise constraints. The accuracy is evaluated by a 5-NN classifier
using the output metric of each method. For each low-rank metric learning method, the rank
constraint for M is set as d = 100. All the experiments are performed on the Matlab R2015a
platform on a PC with 3.60GHz processor and 16GB of physical memory. The code is available at
https://github.com/highan911/FLRML!.

4.2 Experimental Results

Table [3|and Table [dlist the classification accuracy (left) and training time (right, in seconds) of all the
compared metric learning methods in all the datasets. The symbol “E” indicates that the objective

https://github.com/highan911/FLRML

[
=]
S ——NG20 09 /f | |——nNG20
H RCV1 > RCV1
8 ——TDT2 Sos —3 ——TDT2
Sos ——MNIST 8 ——MNIST
°© ——M10-16 © 07 ——M10-16
,% ——M40-16 f\{ ——M40-16
° o0 06

2 4 6 8 10 12 14 0 0.5 1 15 2

iterations m/ly

Figure 2: The convergence behavior of FLRML Figure 3: The change in accuracy of FLRML

in optimization on 6 datasets. with different m /Iy, values on 6 datasets.
1 . , ,

o
©
a

accuracy
o
©

o
0
a

o
o

0 5 10 15 20
mini-batches

Figure 4: The change in accuracy of M-FLRML on “TDT2” with different NV; values and number of
mini-batches.

fails to converge to a finite non-zero solution, and “M” indicates that its computation was aborted
due to out-of-memory error. The maximum accuracy and minimum time usage for each dataset are
boldly emphasized.

Comparing the results with the analysis of complexity in Table |2} we find that for many tested
methods, if the complexity or matrix is a polynomial of D, n or | T, the efficiency on datasets with
large numbers of samples is still limited. As shown in Table [3|and Table |4, FLRML and M-FLRML
are faster than the state-of-the-art methods on all datasets. Our methods can achieve comparable
accuracy with the state-of-the-art methods on all datasets, and obtain the highest accuracy on several
datasets with both high dimensions and large numbers of samples.

Both our M-FLRML and SGDINC use mini-batches to improve efficiency. The theoretical complexity
of these two methods is close, but in the experiment M-FLRML is faster. Generally, M-FLRML is
less accurate than FLRML, but it significantly reduces the time and memory usage on large datasets.
In the experiments, the largest dataset “M40-100" is with size 1,000, 000 x 118, 116. If there is a
dense matrix of such size, it will take up 880 GB of memory. When using M-FLRML to process this
data set, the recorded maximum memory usage of Matlab is only 6.20 GB (Matlab takes up 0.95
GB of memory on startup). The experiment shows that M-FLRML is suitable for metric learning of
large-scale high-dimensional data on devices with limited memory.

In the experiments, we find the initialization of s usually converges within 3 iterations. The optimiza-
tion on the Stiefel manifold usually converges in less than 15 iterations. Figure 2] shows the samples
of convergence behavior of FLRML in optimization on each dataset. The plots are drawn in relative
values, in which the values of first iteration are scaled to 1.

In FLRML, one parameter m is about the margin in the margin loss. An experlment is performed
to study the effect of the margin parameter m on accuracy. Let l be the mean of yl y; values, i.e.
ly=1) S (v yi). We test the change in accuracy of FLRML when the ratio m /Iy, varies between
0 1 and 2. The mean values and standard deviations of 5 repeated runs are plotted in FlgureE], which
shows that FLRML works well on most datasets when m /Iy is around 1. So we use m/l, = 1 in the

experiments in Table [3|and Table]

In M-FLRML, another parameter is the number of triplets /V; used to generate a mini-batch. We
test the effect of [V, on the accuracy of M-FLRML with the increasing number of mini-batches. The
mean values and standard deviations of 5 repeated runs are plotted in Figure |4, which shows that
a larger /Ny makes the accuracy increase faster, and usually M-FLRML is able to get good results
within 20 mini-batches. So in Table[d] all the results are obtained with N; = 80 and 7" = 20.

5 Conclusion and Future Work

In this paper, FLRML and M-FLRML are proposed for efficient low-rank similarity metric learning
on high-dimensional datasets with large numbers of samples. With a novel formulation, FLRML and
M-FLRML can better employ low-rank constraints to further reduce the complexity and matrix size,
based on which optimization is efficiently conducted on Stiefel manifold. This enables FLRML and
M-FLRML to achieve good accuracy and faster speed on large numbers of high-dimensional data.
One limitation of our current implementation of FLRML and M-FLRML is that the algorithm still
runs on a single processor. Recently, there is a trend about distributed metric learning for big data
[52,153]. It is an interest of our future research to implement M-FLRML on distributed architecture
for scaling to larger datasets.

Acknowledgments

This research is sponsored in part by the National Key R&D Program of China (No. 2018YF-
B0505400, 2016QY07X1402), the National Science and Technology Major Project of China (No.
2016ZX 01038101), and the NSFC Program (No. 61527812).

References

[1] W. Liu, C. Mu, R. Ji, S. Ma, J. Smith, S. Chang, Low-rank similarity metric learning in high
dimensions, in: AAAI, 2015, pp. 2792-2799.

[2] Y. Mu, Fixed-rank supervised metric learning on Riemannian manifold, in: AAAI, 2016, pp.
1941-1947.

[3] M. Harandi, M. Salzmann, R. Hartley, Joint dimensionality reduction and metric learning: a
geometric take, in: [CML, 2017.

[4] Z. Ding, Y. Fu, Robust transfer metric learning for image classification, IEEE Transactions on
Image Processing PP (99) (2017) 1-1.

[5] L. Luo, H. Huang, Matrix variate gaussian mixture distribution steered robust metric learning,
in: AAAI 2018.

[6] G.Chechik, U. Shalit, V. Sharma, S. Bengio, An online algorithm for large scale image similarity
learning, in: Advances in Neural Information Processing Systems, 2009, pp. 306-314.

[7] U. Shalit, D. Weinshall, G. Chechik, Online learning in the embedded manifold of low-rank
matrices, Journal of Machine Learning Research 13 (Feb) (2012) 429-458.

[8] A.Bellet, A. Habrard, M. Sebban, A survey on metric learning for feature vectors and structured
data, arXiv preprint arXiv:1306.6709.

[9] F. Wang, J. Sun, Survey on distance metric learning and dimensionality reduction in data mining,
Data Mining and Knowledge Discovery 29 (2) (2015) 534-564.

[10] Z. Wen, W. Yin, A feasible method for optimization with orthogonality constraints, Mathemati-
cal Programming 142 (1-2) (2013) 397-434.

[11] M. Schultz, T. Joachims, Learning a distance metric from relative comparisons, in: Advances in
Neural Information Processing Systems, 2004, pp. 41-48.

[12] J. T. Kwok, I. W. Tsang, Learning with idealized kernels, in: ICML, 2003, pp. 400-407.

[13] C. Hegde, A. C. Sankaranarayanan, W. Yin, R. G. Baraniuk, Numax: A convex approach for
learning near-isometric linear embeddings, IEEE Transactions on Signal Processing 63 (22)
(2015) 6109-6121.

[14] B. Mason, L. Jain, R. Nowak, Learning low-dimensional metrics, in: Advances in Neural
Information Processing Systems, 2017, pp. 4139-4147.

[15] L. Cheng, Riemannian similarity learning, in: ICML, 2013, pp. 540-548.

[16] Z. Huang, R. Wang, S. Shan, X. Chen, Projection metric learning on Grassmann manifold with
application to video based face recognition, in: CVPR, 2015, pp. 140-149.

[17] A. Shukla, S. Anand, Distance metric learning by optimization on the Stiefel manifold, in:
International Workshop on Differential Geometry in Computer Vision for Analysis of Shapes,
Images and Trajectories, 2015.

[18] J. Zhang, L. Zhang, Efficient stochastic optimization for low-rank distance metric learning, in:
AAAL 2017.

[19] S. Gillen, C. Jung, M. Kearns, A. Roth, Online learning with an unknown fairness metric, in:
Advances in Neural Information Processing Systems, 2018, pp. 2600-2609.

[20] W.Li, Y. Gao, L. Wang, L. Zhou, J. Huo, Y. Shi, OPML: A one-pass closed-form solution for
online metric learning, Pattern Recognition 75 (2018) 302-314.

[21] G.-J. Qi, J. Tang, Z.-J. Zha, T.-S. Chua, H.-J. Zhang, An efficient sparse metric learning in
high-dimensional space via 1 1-penalized log-determinant regularization, in: ICML, 2009, pp.
841-848.

[22] A. Bellet, A. Habrard, M. Sebban, Similarity learning for provably accurate sparse linear
classification, in: ICML, 2012, pp. 1871-1878.
[23] Y. Shi, A. Bellet, F. Sha, Sparse compositional metric learning, in: AAAI, 2014.

[24] K. Liu, A. Bellet, F. Sha, Similarity learning for high-dimensional sparse data, in: AISTATS,
2015.

[25] L. Zhang, T. Yang, R. Jin, Z. hua Zhou, Sparse learning for large-scale and high-dimensional
data: a randomized convex-concave optimization approach, in: ALT, 2016, pp. 83-97.

[26] W. Liu, J. He, S.-F. Chang, Large graph construction for scalable semi-supervised learning, in:
Proceedings of the 27th international conference on machine learning (ICML-10), 2010, pp.
679-686.

[27] M. Koestinger, M. Hirzer, P. Wohlhart, P. Roth, H. Bischof, Large scale metric learning from
equivalence constraints, in: Computer Vision and Pattern Recognition (CVPR), 2012, pp.
2288-2295.

[28] P. Zhu, H. Cheng, Q. Hu, Q. Wang, C. Zhang, Towards generalized and efficient metric learning
on riemannian manifold, in: IJCAI, 2018, pp. 3235-3241.

[29] B. Kulis, Metric learning: A survey, Foundations and Trends® in Machine Learning 5 (4)
(2013) 287-364.

[30] P.-A. Absil, J. Malick, Projection-like retractions on matrix manifolds, SIAM Journal on
Optimization 22 (1) (2012) 135-158.

[31] H. Zhang, W. W. Hager, A nonmonotone line search technique and its application to uncon-
strained optimization, SIAM journal on Optimization 14 (4) (2004) 1043-1056.

[32] J. Barzilai, J. M. Borwein, Two-point step size gradient methods, IMA Journal of Numerical
Analysis 8 (1) (1988) 141-148.

[33] Q. Qian, R. Jin, J. Yi, L. Zhang, S. Zhu, Efficient distance metric learning by adaptive sampling
and mini-batch stochastic gradient descent (SGD), Machine Learning 99 (3) (2015) 353-372.

[34] K. Weinberger, L. Saul, Distance metric learning for large margin nearest neighbor classification,
Journal of Machine Learning Research 10 (Feb) (2009) 207-244.

[35] K. Lang, Newsweeder: Learning to filter netnews, in: ICML, 1995, pp. 331-339.

[36] D. Cai, X. He, Manifold adaptive experimental design for text categorization, IEEE Transactions
on Knowledge and Data Engineering 24 (4) (2012) 707-719.

[37] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document
recognition, Proceedings of the IEEE 86 (11) (1998) 2278-2324.

[38] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao, 3D ShapeNets: A deep
representation for volumetric shapes, in: CVPR, 2015, pp. 1912—-1920.

[39] Z. Han, M. Shang, Y.-S. Liu, M. Zwicker, View Inter-Prediction GAN: Unsupervised representa-
tion learning for 3D shapes by learning global shape memories to support local view predictions,
in: AAAL 2019.

[40] Z. Han, X. Liu, Y.-S. Liu, M. Zwicker, Parts4Feature: Learning 3D global features from
generally semantic parts in multiple views, in: IJCAI, 2019.

[41] Z. Han, X. Wang, C.-M. Vong, Y.-S. Liu, M. Zwicker, C. P. Chen, 3DViewGraph: Learning
global features for 3d shapes from a graph of unordered views with attention, in: IJCAI, 2019.

10

[42] X.Liu, Z. Han, Y.-S. Liu, M. Zwicker, Point2Sequence: Learning the shape representation of
3D point clouds with an attention-based sequence to sequence network, in: AAAI, 2019.

[43] Z. Han, X. Wang, Y.-S. Liu, M. Zwicker, Multi-angle point cloud-vae:unsupervised feature
learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half
prediction, in: ICCYV, 2019.

[44] Z. Han, H. Lu, Z. Liu, C.-M. Vong, Y.-S. Liu, M. Zwicker, J. Han, C. P. Chen, 3D2SeqViews:
Aggregating sequential views for 3d global feature learning by cnn with hierarchical attention
aggregation, IEEE Transactions on Image Processing 28 (8) (2019) 3986-3999.

[45] Z. Han, M. Shang, Z. Liu, C.-M. Vong, Y.-S. Liu, M. Zwicker, J. Han, C. P. Chen, Se-
qViews2SeqLabels: Learning 3D global features via aggregating sequential views by rnn with
attention, IEEE Transactions on Image Processing 28 (2) (2019) 685-672.

[46] X.Liu, Z. Han, W. Xin, Y.-S. Liu, M. Zwicker, L2g auto-encoder: Understanding point clouds
by local-to-global reconstruction with hierarchical self-attention, in: ACMMM, 2019.

[47] Z.Han, M. Shang, X. Wang, Y.-S. Liu, M. Zwicker, Y2Seq2Seq: Cross-modal representation
learning for 3D shape and text by joint reconstruction and prediction of view and word sequences,
in: AAAL 2019.

[48] Z.Han, Z. Liu, C.-M. Vong, Y.-S. Liu, S. Bu, J. Han, C. Chen, BoSCC: Bag of spatial context
correlations for spatially enhanced 3D shape representation, IEEE Transactions on Image
Processing 26 (8) (2017) 3707-3720.

[49] Z. Han, Z. Liu, J. Han, C.-M. Vong, S. Bu, C. Chen, Unsupervised learning of 3D local features
from raw voxels based on a novel permutation voxelization strategy, IEEE Transactions on
Cybernetics 49 (2) (2019) 481-494.

[50] Z.Han, Z. Liu, C.-M. Vong, Y.-S. Liu, S. Bu, J. Han, C. Chen, Deep Spatiality: Unsupervised
learning of spatially-enhanced global and local 3D features by deep neural network with coupled
softmax, IEEE Transactions on Image Processing 27 (6) (2018) 3049-3063.

[51] H. Li, G. Linderman, A. Szlam, K. Stanton, Y. Kluger, M. Tygert, Algorithm 971: An imple-
mentation of a randomized algorithm for principal component analysis, ACM Transactions on
Mathematical Software 43 (3) (2017) 28:1-28:14.

[52] Y. Su, H. Yang, I. King, M. Lyu, Distributed information-theoretic metric learning in apache
spark, in: IJCNN, 2016, pp. 3306-3313.

[53] E.P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, Y. Yu, Petuum:
a new platform for distributed machine learning on big data, IEEE Transactions on Big Data
1 (2) (2015) 49-67.

11

