
High-Dimensional Multivariate Forecasting with
Low-Rank Gaussian Copula Processes

David Salinas
Naverlabs ∗

david.salinas@naverlabs.com

Michael Bohlke-Schneider
Amazon Research

bohlkem@amazon.com

Laurent Callot
Amazon Research

lcallot@amazon.com

Roberto Medico
Ghent University ∗

roberto.medico91@gmail.com

Jan Gasthaus
Amazon Research

gasthaus@amazon.com

Abstract

Predicting the dependencies between observations from multiple time series is
critical for applications such as anomaly detection, financial risk management,
causal analysis, or demand forecasting. However, the computational and numeri-
cal difficulties of estimating time-varying and high-dimensional covariance matri-
ces often limits existing methods to handling at most a few hundred dimensions or
requires making strong assumptions on the dependence between series. We pro-
pose to combine an RNN-based time series model with a Gaussian copula process
output model with a low-rank covariance structure to reduce the computational
complexity and handle non-Gaussian marginal distributions. This permits to dras-
tically reduce the number of parameters and consequently allows the modeling of
time-varying correlations of thousands of time series. We show on several real-
world datasets that our method provides significant accuracy improvements over
state-of-the-art baselines and perform an ablation study analyzing the contribu-
tions of the different components of our model.

1 Introduction

The goal of forecasting is to predict the distribution of future time series values. Forecasting tasks
frequently require predicting several related time series, such as multiple metrics for a compute
fleet or multiple products of the same category in demand forecasting. While these time series are
often dependent, they are commonly assumed to be (conditionally) independent in high-dimensional
settings because of the hurdle of estimating large covariance matrices.

Assuming independence, however, makes such methods unsuited for applications in which the corre-
lations between time series play an important role. This is the case in finance, where risk minimizing
portfolios cannot be constructed without a forecast of the covariance of assets. In retail, a method
providing a probabilistic forecast for different sellers should take competition relationships and can-
nibalization effects into account. In anomaly detection, observing several nodes deviating from their
expected behavior can be cause for alarm even if no single node exhibits clear signs of anomalous
behavior.

Multivariate forecasting has been an important topic in the statistics and econometrics literature.
Several multivariate extensions of classical univariate methods are widely used, such as vector au-
toregressions (VAR) extending autoregressive models [19], multivariate state-space models [7], or
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Figure 1: Top: covariance matrix predicted by our model for taxi traffic time series for 1214
locations in New-York at 4 different hours of a Sunday (only a neighborhood of 103 series is shown
here, for clearer visualization). Bottom: Correlation graph obtained by keeping only pairs with
covariance above a fixed threshold at the same hours. Both spatial and temporal relations are learned
from the data as the covariance evolves over time and edges connect locations that are close to each
other.

multivariate generalized autoregressive conditional heteroskedasticity (MGARCH) models [2]. The
rapid increase in the difficulty of estimating these models due to the growth in number of parameters
with the dimension of the problem have been binding constraints to move beyond low-dimensional
cases. To alleviate these limitations, researchers have used dimensionality reduction methods and
regularization, see for instance [3, 5] for VAR models and [34, 9] for MGARCH models, but these
models remain unsuited for applications with more than a few hundreds dimensions [23].

Forecasting can be seen as an instance of sequence modeling, a topic which has been intensively
studied by the machine learning community. Deep learning-based sequence models have been suc-
cessfully applied to audio signals [33], language modeling [13, 30], and general density estimation
of univariate sequences [22, 21]. Similar sequence modeling techniques have also been used in the
context of forecasting to make probabilistic predictions for collections of real or integer-valued time
series [26, 36, 16]. These approaches fit a global (i.e. shared) sequence-to-sequence model to a
collection of time series, but generate statistically independent predictions. Outside the forecasting
domain, similar methods have also been applied to (low-dimensional) multivariate dependent time
series, e.g. two-dimensional time series of drawing trajectories [13, 14].

Two main issues prevent the estimation of high-dimensional multivariate time series models. The
first one is theO(N2) scaling of the number of parameters required to express the covariance matrix
where N denotes the dimension. Using dimensionality reduction techniques like PCA as a pre-
processing step is a common approach to alleviate this problem, but it separates the estimation of
the model from the preprocessing step, leading to decreased performance. This motivated [27] to
perform such a factorization jointly with the model estimation. In this paper we show how the low
rank plus diagonal covariance structure of the factor analysis model [29, 25, 10, 24] can be used in
combination with Gaussian copula processes [37] to an LSTM-RNN [15] to jointly learn the tempo-
ral dynamics and the (time-varying) covariance structure, while significantly reducing the number
of parameters that need to be estimated.

The second issue affects not only multivariate models, but all global time series models, i.e. models
that estimate a single model for a collection of time series: In real-world data, the magnitudes of the
time series can vary drastically between different series of the same data set, often spanning several
orders of magnitude. In online retail demand forecasting, for example, item sales follow a power-
law distribution, with a large number of items selling only a few units throughout the year, and a few
popular items selling thousands of units per day [26]. The challenge posed by this for estimating
global models across time series has been noted in previous work [26, 37, 27]. Several approaches
have been proposed to alleviate this problem, including simple, fixed invertible transformations such
as the square-root or logarithmic transformations, and the data-adaptive Box-Cox transform [4],
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that aims to map a potentially heavy-tailed distribution to a Normal distribution. Other approaches
includes removing scale with mean-scaling [26], or with a separate network [27].

Here, we propose to address this problem by modeling each time series’ marginal distribution sepa-
rately using a non-parametric estimate of its cumulative distribution function (CDF). Using this CDF
estimate as the marginal transformation in a Gaussian copula (following [18, 17, 1]) effectively ad-
dresses the challenges posed by scaling, as it decouples the estimation of marginal distributions from
the temporal dynamics and the dependency structure.

The work most closely related to ours is the recent work [32], which also proposes to combine deep
autoregressive models with copula to model correlated time series. Their approach uses a nonpara-
metric estimate of the copula, whereas we employ a Gaussian copula with low-rank structure that
is learned jointly with the rest of the model. The nonparametric copula estimate requires splitting a
N -dimensional cube into ε−N many pieces (where N is the time series dimension and ε is a desired
precision), making it difficult to scale that approach to large dimensions. The method also requires
the marginal distributions and the dependency structure to be time-invariant, an assumption which
is often violated is practice as shown in Fig. 1. A concurrent approach was proposed in [35] which
also uses Copula and estimates marginal quantile functions with the approach proposed in [11] and
models the Cholesky factor as the output of a neural network. Two important differences are that this
approach requires to estimate O(N2) parameters to model the covariance matrix instead of O(N)
with the low-rank approach that we propose, another difference is the use of a non-parametric esti-
mator for the marginal quantile functions.

The main contributions of this paper are:

• a method for probabilistic high-dimensional multivariate forecasting (scaling to dimensions
up to an order of magnitude larger than previously reported in [23]),

• a parametrization of the output distribution based on a low-rank-plus-diagonal covariance
matrix enabling this scaling by significantly reducing the number of parameters,

• a copula-based approach for handling different scales and modeling non-Gaussian data,
• an empirical study on artificial and six real-world datasets showing how this method im-

proves accuracy over the state of the art while scaling to large dimensions.

The rest of the paper is structured as follows: In Section 2 we introduce the probabilistic forecast-
ing problem and describe the overall structure of our model. We then describe how we can use the
empirical marginal distributions in a Gaussian copula to address the scaling problem and handle
non-Gaussian distributions in Section 3. In Section 4 we describe the parametrization of the covari-
ance matrix with low-rank-plus-diagonal structure, and how the resulting model can be viewed as
a low-rank Gaussian copula process. Finally, we report experiments with real-world datasets that
demonstrate how these contributions combine to allow our model to generate correlated predictions
that outperform state-of-the-art methods in terms of accuracy.

2 Autoregressive RNN Model for Probabilistic Multivariate Forecasting

Let us denote the values of a multivariate time series by zi,t ∈ D, where i ∈ {1, 2, . . . , N} indexes
the individual univariate component time series, and t indexes time. The domain D is assumed to
be either R or N. We will denote the multivariate observation vector at time t by zt ∈ DN . Given T
observations z1, . . . , zT , we are interested in forecasting the future values for τ time units, i.e. we
want to estimate the joint conditional distribution P (zT+1, ..., zT+τ |z1, . . . , zT ). In a nutshell, our
model takes the form of a non-linear, deterministic state space model whose state hi,t ∈ Rk evolves
independently for each time series i according to transition dynamics ϕ,

hi,t = ϕθh(hi,t−1, zi,t−1) i = 1, . . . , N, (1)

where the transition dynamics ϕ are parametrized using a LSTM-RNN [15]. Note that the LSTM is
unrolled for each time series separately, but parameters are tied across time series. Given the state
values hi,t for all time series i = 1, 2, . . . , N and denoting by ht the collection of state values for
all series at time t, we parametrize the joint emission distribution using a Gaussian copula,

p(zt|ht) = N ([f1(z1,t), f2(z2,t), . . . , fN (zN,t)]
T | µ(ht),Σ(ht)). (2)
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Figure 2: Illustration of our model parametrization. During training, dimensions are sampled at
random and a local LSTM is unrolled on each of them individually (1, 2, 4, then 1, 3, 4 in the
example). The parameters governing the state updates and parameter projections are shared for all
time series. This parametrization can express the Low-rank Gaussian distribution on sets of series
that varies during training or prediction.

The transformations fi : D → R here are invertible mappings of the form Φ−1 ◦ F̂i, where Φ

denotes the cumulative distribution function of the standard normal distribution, and F̂i denotes an
estimate of the marginal distribution of the i-th time series zi,1, . . . , zi,T . The role of these functions
fi is to transform the data for the i-th time series such that marginally it follows a standard normal
distribution. The functions µ(·) and Σ(·) map the state ht to the mean and covariance of a Gaussian
distribution over the transformed observations (described in more detail in Section 4).

Under this model, we can factorize the joint distribution of the observations as

p(z1, . . . zT+τ ) =

T+τ∏
t=1

p(zt|z1, . . . , zt−1) =

T+τ∏
t=1

p(zt|ht). (3)

Both the state update function ϕ and the mappings µ(·) and Σ(·) have free parameters that are
learned from the data. We denote θ the vector of all free parameters, consisting of the parameters of
the state update θh as well as θµ and θΣ which denote the free parameters in µ(·) and Σ(·). Given
θ and hT+1, we can produce Monte Carlo samples from the joint predictive distribution

p(zT+1, . . . zT+τ |z1, . . . , zT ) = p(zT+1, . . . zT+τ |hT+1) =

T+τ∏
t=T+1

p(zt|ht) (4)

by sequentially sampling from P (zt|ht) and updating ht using ϕ 2. We learn the parameters θ from
the observed data z1, . . . , zT using maximum likelihood estimation by i.e. by minimizing the loss
function

− log p(z1, z2, . . . , zT ) = −
T∑
t=1

log p(zt|ht), (5)

using stochastic gradient descent-based optimization. To handle long time series, we employ a data
augmentation strategy which randomly samples fixed-size slices of length T ′ + τ from the time
series during training, where we fix the context length hyperparameter T ′ to τ . During prediction,
only the last T ′ time steps are used in computing the initial state for prediction.

3 Gaussian Copula

A copula function C : [0, 1]N → [0, 1] is the CDF of a joint distribution of a collection of real
random variables U1, . . . , UN with uniform marginal distribution [8], i.e.

C(u1, . . . , uN ) = P (U1 ≤ u1, . . . , UN ≤ uN ).

Sklar’s theorem [28] states that any joint cumulative distribution F admits a representation in terms
of its univariate marginals Fi and a copula function C,

F (z1, . . . , zN ) = C(F1(z1), . . . , FN (zN )).

2Note that the model complexity scales linearly with the number of Monte Carlo samples.
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When the marginals are continuous the copula C is unique and is given by the joint distribution
of the probability integral transforms of the original variables, i.e. u ∼ C where ui = Fi(zi).
Furthermore, if zi is continuous then ui ∼ U(0, 1).

A common modeling choice for C is to use the Gaussian copula, defined by:

C(F1(z1), . . . , Fd(zN )) = φµ,Σ(Φ−1(F1(z1)), . . . ,Φ−1(FN (zN ))),

where Φ : R→ [0, 1] is the CDF of the standard normal and φµ,Σ is a multivariate normal distribu-
tion parametrized with µ ∈ RN and Σ ∈ RN×N . In this model, the observations z, the marginally
uniform random variables u and the Gaussian random variables x are related as follows:

x
Φ−→ u

F−1

−−−→ z z
F−→ u

Φ−1

−−−→ x.

Setting fi = Φ−1 ◦ F̂i results in the model in Eq. (2).

The marginal distributions Fi are not given a priori and need to be estimated from data. We use
the non-parametric approach of [18] proposed in the context of estimating high-dimensional distri-
butions with sparse covariance structure. In particular, they use the empirical CDF of the marginal
distributions,

F̂i(v) =
1

m

m∑
t=1

1zit≤v,

where m observations are considered. As we require the transformations fi to be differentiable, we
use a linearly-interpolated version of the empirical CDF resulting in a piecewise-constant derivative
F̂ ′(u). This allow us to write the log-density of the original observations under our model as

log p(z;µ,Σ) = log φµ,Σ(Φ−1(F̂ (z))) + log
d

dz
Φ−1(F̂ (z))

= log φµ,Σ(Φ−1(F̂ (z))) + log
d

du
Φ−1(u) + log

d

dz
F̂ (z)

= log φµ,Σ(Φ−1(F̂ (z)))− log φ(Φ−1(F̂ (z)) + log F̂ ′(z)

which are the individual terms in the total loss (5) where φ is the probability density function of the
standard normal.

The number of past observations m used to estimate the empirical CDFs is an hyperparameter and
left constant in our experiments with m = 100 3.

4 Low-rank Gaussian Process Parametrization

After applying the marginal transformations fi(·) our model assumes a joint multivariate Gaussian
distribution over the transformed data. In this section we describe how the parameters µ(ht) and
Σ(ht) of this emission distribution are obtained from the LSTM state ht.

We begin by describing how a low-rank-plus-diagonal parametrization of the covariance matrix can
be used to keep the computational complexity and the number of parameters manageable as the
number of time series N grows. We then show how, by viewing the emission distribution as a
time-varying low-rank Gaussian Process gt ∼ GP(µ̃t(·), kt(·, ·)), we can train the model by only
considering a subset of time series in each mini-batch further alleviating memory constraints and
allowing the model to be applied to very high-dimensional sets of time series.

Let us denote the vector of transformed observations by

xt = f(zt) = [f1(z1,t), f2(z2,t), . . . , fN (zN,t)]
T
,

so that p(xt|ht) = N (xt|µ(ht),Σ(ht)). The covariance matrix Σ(ht) is a N × N symmetric
positive definite matrix with O(N2) free parameters. Evaluating the Gaussian likelihood naïvely

3This makes the underlying assumption that the marginal distributions are stationary, which is violated e.g.
in case of a linear trend. Standard time series techniques such as de-trending or differencing can be used to
pre-process the data such that this assumption is satisfied.
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requires O(N3) operations. Using a structured parametrization of the covariance matrix as the
sum of a diagonal matrix and a low rank matrix, Σ = D + V V T where D ∈ RN×N is diagonal
and V ∈ RN×r, results in a compact representation with O(N × r) parameters. This allows the
likelihood to be evaluated usingO(Nr2+r3) operations. As the rank hyperparameter r can typically
be chosen to be much smaller than N , this leads to a significant speedup. In all our low-rank
experiments we use r = 10. We investigate the sensitivity to this parameter of accuracy and speed
in the Appendix.

Recall from Eq. 1 that hi,t represents the state of an LSTM unrolled with values preceding zi,t. In
order to define the mapping Σ(ht), we define mappings for its components

Σ(ht) =

d1(h1,t) 0
. . .

0 dN (hN,t)

+

[
v1(h1,t)
. . .

vN (hN,t)

][
v1(h1,t)
. . .

vN (hN,t)

]T
= Dt + VtV

T
t .

Note that the component mappings di and vi depend only on the state hi,t for the i-th component
time series, but not on the states of the other time series. Instead of learning separate mappings
di,vi, and µi for each time series, we parametrize them in terms of the shared functions d̃, ṽ, and
µ̃, respectively. These functions depend on an E-dimensional feature vector ei ∈ RE for each
individual time series. The vectors ei can either be features of the time series that are known a
priori, or can be embeddings that are learned with the rest of the model (or a combination of both).

Define the vector yi,t = [hi,t; ei]
T ∈ Rp×1, which concatenates the state for time series i at time t

with the features ei of the i-th time series and use the following parametrization:
µi(hi,t) = µ̃(yi,t) = wT

µyi,t

di(hi,t) = d̃(yi,t) = s(wT
d yi,t)

vi(hi,t) = ṽ(yi,t) = Wvyi,t,

where s(x) = log(1 + ex) maps to positive values, wµ ∈ Rp×1,wd ∈ Rp×1,Wv ∈ Rr×p are
parameters.

All parameters θµ = {wµ,wµ̃}, θΣ = {wd,Wv,wd̃} as well as the LSTM update parameters θh
are learned by optimizing Eq. 5. These parameters are shared for all time series and can therefore be
used to parametrize a GP. We can view the distribution of xt as a Gaussian process evaluated at points
yi,t, i.e. xi,t = gt(yi,t), where gt ∼ GP(µ̃(·), k(·, ·)), with k(y,y′) = 1y=y′ d̃(y) + ṽ(y)T ṽ(y′).
Using this view it becomes apparent that we can train the model by evaluating the Gaussian terms
in the loss only on random subsets of the time series in each iteration, i.e. we can train the model
using batches of size B � N as illustrated in Figure 2 (in our experiments we use B = 20).
Further, if prior information about the covariance structure is available (e.g. in the case of spatial
data the covariance might be directly related to the distance between points), this information can
be easily incorporated directly into the kernel, either by exclusively using a pre-specified kernel or
by combining it with the learned, time-varying kernel specified above.

5 Experiments

Synthetic experiment. We first perform an experiment on synthetic data demonstrating that our
approach can recover complex time-varying low-rank covariance patterns from multi-dimensional
observations. An artificial dataset is generated by drawing T observations from a normal distribution
with time-varying mean and covariance matrix, zt ∼ N (ρtu,Σt) where ρt = sin(t), Σt = UStU

T

and

St =

[
σ2

1 ρtσ1σ2

ρtσ1σ2 σ2
2

]
The coefficients of u ∈ RN×1 and U ∈ RN×r are drawn uniformly in [a, b] and σ1, σ2 are fixed
constants. By construction, the rank of Σt is 2. Both the mean and correlation coefficient of the
two underlying latent variables oscillate through time as ρt oscillates between -1 and 1. In our
experiments, the constants are set to σ1 = σ2 = 0.1, a = −0.5, b = 0.5 and T = 24, 000.

In Figure 3, we compare the one-step-ahead predicted covariance given by our model, i.e. the lower
triangle of Σ(ht), to the true covariance, showing that the model is able to recover the complex
underlying pattern of the covariance matrix.
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Figure 3: True (solid line) and predicted (dashed line) covariance after training withN = 4 (left) and
N = 8 (right) time series. Each line corresponds to an entry in the lower triangle of Σt (including
the diagonal, i.e. 10 lines in the left plot, 28 in the right).

Experiments with real-world datasets. The following publicly-available datasets are used to
compare the accuracy of different multivariate forecasting models.

• Exchange rate: daily exchange rate between 8 currencies as used in [16]

• Solar: hourly photo-voltaic production of 137 stations in Alabama State used in [16]

• Electricity: hourly time series of the electricity consumption of 370 customers [6]

• Traffic: hourly occupancy rate, between 0 and 1, of 963 San Francisco car lanes [6]

• Taxi: spatio-temporal traffic time series of New York taxi rides [31] taken at 1214 locations
every 30 minutes in the months of January 2015 (training set) and January 2016 (test set)

• Wikipedia: daily page views of 2000 Wikipedia pages used in [11]

Each dataset is split into a training and test set by using all data prior to a fixed date for the training
and by using rolling windows for the test set. We measure accuracy on forecasts starting on time
points equally spaced after the last point seen for training. For hourly datasets, accuracy is measured
on 7 rolling time windows, for all other datasets we use 5 time windows, except for taxi, where
57 windows are used in order to cover the full test set. The number of steps predicted τ , domain,
time-frequency, dimension N and time-steps available for training T is given in the appendix for all
datasets.

Evaluation against baseline and ablation study. As we are looking into modeling correlated
time series, only methods that are able to produce correlated samples are considered in our compar-
isons. The first baseline is VAR, a multivariate linear vector auto-regressive model using lag 1 and
a lag corresponding to the periodicity of the data. The second is GARCH, a multivariate conditional
heteroskedasticity model proposed by [34] with implementation from [12]. More details about these
methods can be found in the supplement.

We also compare with different RNN architectures, distributions, and data transformation schemes
to show the benefit of the low-rank Gaussian Copula Process that we propose. The most straightfor-
ward alternative to our approach is a single global LSTM that receives and predicts all target dimen-
sions at once. We refer to this architecture as Vec-LSTM. We compare this architecture with the GP
approach described in Section 4, where the LSTM is unrolled on each dimensions separately before
reconstructing the joint distribution. For the output distribution in the Vec-LSTM architecture, we
compare independent4, low-rank and full-rank normal distributions. For the data transformation we
compare the copula approach that we propose, the mean scaling operation proposed in [26], and no
transformation.

4Note that samples are still correlated with a diagonal noise due to the conditioning on the LSTM state.
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baseline architecture data transformation distribution CRPS ratio CRPS-Sum ratio num params ratio

VAR - - - 10.0 10.9 35.0
GARCH - - - 7.8 6.3 6.2
Vec-LSTM-ind Vec-LSTM None Independent 3.6 6.8 13.9
Vec-LSTM-ind-scaling Vec-LSTM Mean-scaling Independent 1.4 1.4 13.9
Vec-LSTM-fullrank Vec-LSTM None Full-rank 29.1 44.4 103.4
Vec-LSTM-fullrank-scaling Vec-LSTM Mean-scaling Full-rank 22.5 37.6 103.4
Vec-LSTM-lowrank-Copula Vec-LSTM Copula Low-rank 1.1 1.7 20.3
GP GP None Low-rank 4.5 9.5 1.0
GP-scaling GP Mean-scaling Low-rank 2.0 3.4 1.0
GP-Copula GP Copula Low-rank 1.0 1.0 1.0

Table 1: Baselines summary and average ratio compared to GP-Copula for CRPS, CRPS-Sum and
number of parameters on all datasets.

The description of the baselines as well as their average performance compared to GP-Copula are
given in Table 1. For evaluation, we generate 400 samples from each model and evaluate multi-step
accuracy using the continuous ranked probability score metric [20] that measures the accuracy of
the predicted distribution (see supplement for details). We compute the CRPS metric on each time
series individually (CRPS) as well on the sum of all time series (CRPS-Sum). Both metrics are
averaged over the prediction horizon and over the evaluation time points. RNN models are trained
only once with the dates preceding the first rolling time point and the same trained model is then
used on all rolling evaluations.

Table 2 reports the CRPS-Sum accuracy of all methods (some entries are missing due to models
requiring too much memory or having divergent losses). The individual time series CRPS as well as
mean squared error are also reported in the supplement. Models that do not have data transforma-
tions are generally less accurate and more unstable. We believe this to be caused by the large scale
variation between series also noted in [26, 27]. In particular, the copula transformation performs
better than mean-scaling for GP, where GP-Copula significantly outperforms GP-scaling.

The GP-Copula model that we propose provides significant accuracy improvements on most
datasets. In our comparison CRPS and CRPS-Sum are improved by on average 10% and 40%
(respectively) compared to the second best models for those metrics Vec-LSTM-lowrank-Copula
and Vec-LSTM-ind-scaling. One factor might be that the training is made more robust by adding
randomness, as GP models need to predict different groups of series for each training example, mak-
ing it harder to overfit. Note also that the number of parameters is drastically smaller compared to
Vec-LSTM architectures. For the traffic dataset, the GP models have 44K parameters to estimate
compared to 1.1M in a Vec-LSTM with a low-rank distribution and 38M parameters with a full-rank
distribution. The complexity of the number of parameters are also given in Table 3.

We also qualitatively assess the covariance structure predicted by our model. In Fig. 1, we plot the
predicted correlation matrix for several time steps after training on the Taxi dataset. We following
the approach in [18] and reconstruct the covariance graph by truncating edges whose correlation
coefficient is less than a threshold kept constant over time. Fig. 1 shows the spatio-temporal cor-
relation graph obtained at different hours. The predicted correlation matrices show how the model
reconstructs the evolving topology of spatial relationships in the city traffic. Covariance matrices
predicted over time by our model can also be found in the appendix for other datasets.

Additional details concerning the processing of the datasets, hyper-parameter optimization, eval-
uations, and model are given in the supplement. The code to perform the evaluations of
our methods and different baselines is available at https://github.com/mbohlkeschneider/gluon-
ts/tree/mv_release.

6 Conclusion

We presented an approach to obtain probabilistic forecast of high-dimensional multivariate time
series. By using a low-rank approximation, we can avoid the potentially very large number of pa-
rameters of a full covariate matrix and by using a low-rank Gaussian Copula process we can stably
optimize directly parameters of an autoregressive model. We believe that such techniques allow-
ing to estimate high-dimensional time varying covariance matrices may open the door to several
applications in anomaly detection, imputation or graph analysis for time series data.
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CRPS-Sum

dataset exchange solar elec traffic taxi wiki
estimator

VAR 0.010+/-0.000 0.524+/-0.001 0.031+/-0.000 0.144+/-0.000 0.292+/-0.000 3.400+/-0.003
GARCH 0.020+/-0.000 0.869+/-0.000 0.278+/-0.000 0.368+/-0.000 - -
Vec-LSTM-ind 0.009+/-0.000 0.470+/-0.039 0.731+/-0.007 0.110+/-0.020 0.429+/-0.000 0.801+/-0.029
Vec-LSTM-ind-scaling 0.008+/-0.001 0.391+/-0.017 0.025+/-0.001 0.087+/-0.041 0.506+/-0.005 0.133+/-0.002
Vec-LSTM-fullrank 0.646+/-0.114 0.956+/-0.000 0.999+/-0.000 - - -
Vec-LSTM-fullrank-scaling 0.394+/-0.174 0.920+/-0.035 0.747+/-0.020 - - -
Vec-LSTM-lowrank-Copula 0.007+/-0.000 0.319+/-0.011 0.064+/-0.008 0.103+/-0.006 0.326+/-0.007 0.241+/-0.033
GP 0.011+/-0.001 0.828+/-0.010 0.947+/-0.016 2.198+/-0.774 0.425+/-0.199 0.933+/-0.003
GP-scaling 0.009+/-0.000 0.368+/-0.012 0.022+/-0.000 0.079+/-0.000 0.183+/-0.395 1.483+/-1.034
GP-Copula 0.007+/-0.000 0.337+/-0.024 0.024+/-0.002 0.078+/-0.002 0.208+/-0.183 0.086+/-0.004

Table 2: CRPS-sum accuracy comparison (lower is better, best two methods are in bold). Mean and
std are obtained by rerunning each method three times.

input output
independent low-rank full-rank

Vec-LSTM O(Nk) O(Nk) O(Nrk) O(N2k)
GP O(k) O(k) O(rk) O(N2k)

Table 3: Number of parameters for input and output projection of different models. We recall that
N and k denotes the dimension and size of the LSTM state.
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