
Appendix A Pruning algorithm details

Pruning can be expressed as

ω̄ = arg min
(
∑

G∈G 1[‖ωG‖2>0])≤s
L ({α, ϑ, ω}) (7)

where L (·) denotes the loss function for the appropriate task, e.g. cross-entropy for classification, G
denotes the set of disjoint groups covering the indices of each entry in ω, ωG denotes a particular
group of weights, and 1 [·] denotes the indicator function. When |G| = 1∀G ∈ G , (7) is referred to
as unstructured pruning. On other other hand, structured pruning arises when G is chosen to group
related elements of ω, i.e. the weights corresponding to a given feature map.

An alternative to (7) is to cast pruning as Bayesian inference with priors that promote sparse solu-
tions [54]. One such algorithm for unstructured pruning is sparse variational dropout (SpVD) [43].
The prior over ω is assumed to factor over the elements of ω, with p (|ωij |) ∝ |ωij |−1. Given a
dataset D , the goal of Bayesian inference is to then compute the posterior p (ω|D). SpVD employs
variational inference (VI) [30] to approximate the posterior by a parametrized distribution qφ (ω),
whose parameters φ are chosen to minimize DKL (qφ (ω) ||p (ω|D)). The distribution qφ (ω) is
assumed to factor over the elements of ω and qφ (ωij) = N

(
µij , βijµ

2
ij

)
, where φ = {µ, β}. Tech-

niques for scalable VI are employed to estimate φ [31, 32]. Upon convergence, the estimate of ω̄ij
becomes ω̄ij = µij � 1 [βij ≤ τl], where τl is a layer-specific threshold and ωij resides in network
layer l. Note that φ contains all of the information about both the network weight values as well as
which weights can be masked to 0. One of the side-effects of the choice of prior in SpVD is that the
VI objective decomposes into a sum of a data-dependant term and a term which only depends on the
prior, leading to the interpretation of VI as regularized training. Although there is no constant in front
of the prior term, it can be beneficial to scale it by γ. Depending on the dataset, Molchanov et al. [43]
keep γ at 0 for N1 epochs, which is referred to as the pretraining phase, and then increase γ to γN2

over N2 epochs [50]. We include {τl}Ll=1, N1, N2, and γN2
in Ω.

The structured pruning extension of SpVD is called Bayesian Compression (BC) [41], which
assumes a hierarchical prior on ω that ties weights in the same group to each other: ω|z ∼∏
G∈G

∏
(ij)∈G N(ωij ; 0, z2G). Inference for this prior proceeds in much the same way as SpVD and,

upon convergence, entire groups of weights can be pruned away.

Appendix B Search space details

The search space considered in this work is described in Table 7.

Appendix C Morphism detals

In the present work, a configuration Ωn is considered a morph of Ωr if Ωn is generated by applying one
or more of the operations listed in Table 8 to Ωr. These morphs are used to generated random samples
for the Thompson sampling step in Section 2.4. Each sample Ωn is generating by randomly choosing
one or more of the morphs from Table 8 and applying them to a randomly chosen Ωr ∈ {Ωr}n−1r=1 .
This procedure ensures that each configuration proposal is relatively close to a reference configuration.
We then use the fact that Ωn is closely related to Ωr during the pruning process by letting φn inherit
information from φr, where φn denotes the parameters of the approximated weight posterior for
configuration Ωn. The inheritance process proceeds by first checking for identical nodes between Ωr

and Ωn and then copies the corresponding elements of φr into φn for those nodes. The nodes which
participate in this step are the nodes which were not influenced during the morphing process. For
the remaining nodes, if corresponding nodes in Ωn and Ωr have the same operation type, we copy
as many of the corresponding elements of φr into φn as possible. For example, if the first layer of
Ωn is a 3 × 3 × 50 convolution and the first layer of Ωr is a 3 × 3 × 30 convolution, we copy the
elements of φr corresponding to the first convolution layer into the elements of φn corresponding to
the first 30 feature maps of the first convolution layer. Upon completion of the inheritance process,
most of the elements of φn are inherited from φr, and the remaining elements are learned from the
training data. Unlike Elsken et al. [14], we do not restrict the training process to just the elements of
φn which were not inherited, but instead update all of the elements of φn during learning.

14

Table 7: Search space details. For discrete variables, ranges are listed in format [lower-
bound:increment:upperbound].

Name Range Description
downsample-input-in-depth True/False If True, max pool the input across the 3rd dimen-

sion
downsample-input True/False If True, max pool the input in spatial dimensions
input-downsampling-rate [2 : 1 : 4] Active only if downsample-input = True. The

amount by which to downsample the input.
zero-regularization-epochs [5:1:30] Number of epochs for which VI inference is per-

formed before the effect of the sparsity promoting
prior is introduced.

annealing-epochs [15:1:25] Only active if pretraining=False. Number of
epochs over which the coefficient in front of the
regularization term in the VI objective is annealed
from 0 to its final value

α [1e-2:1e-2:1] Final value for the coefficient of the regularization
term in the VI objective

pretraining True/False Only active if pretraining=False. If True, pretrain
the CNN before pruning

batch-norm True/False Only used for random weight pruning experiments.
If True, apply batch-normalization to the output of
each layer

num-conv-blocks [1:1:2] Number of convolution blocks in the CNN, where
each block consists of a series of convolutional
layers. The output of each block is downsampled
through max pooling

num-fc-layers [0:1:1] Number of FC layers in the main branch following
the convolution blocks

pruning-thresholds-block-k-
layer-l

[-6:1e-1:3] Thresholds for pruning weights in block k layer l

total-fc-layer-weights [1:1:800]e3 Number of weights in the FC layers comprising
the main, left, and right branches

weight-fraction-main-branch [0:1] Percentage of total-fc-layer-weights that go into
the FC layer in the main branch

num-conv-layers-block-k [1:1:3] Number of convolutional layers in block k
layer-type-block-k-layer-l [Conv2D, Down-

sampledConv2D,
SeparableConv2D]

Layer type for convolutional block k layer l

kernel-size-block-k-layer-l [2:1:5] Convolutional kernel size of block k layer l
num-filters-block-k-layer-l [1:1:100] Number of output feature maps for block k layer l
downsample-block-k-layer-l [0:0.5] Active only if layer-type-block-k-layer-

l=DownsampledConv2D. If True, the in-
put feature maps are first passed through a
1× 1× (downsample− block− k− layer− l×
num − filters − block − k − layer − (l − 1))
convolutional layer

left-branch True/False If True, a branch is added to the feed-forward ar-
chitecture. The branch takes the output of the first
convolution block, sends it to an FC layer, sends
the result to a merge operation, whose output is
sent to a final FC layer

right-branch True/False If True, a branch is added to the feed-forward ar-
chitecture. The branch takes the input to the first
convolution block, sends it to an FC layer, sends
the result to a merge operation, whose output is
sent to a final FC layer

weight-fraction-left-branch [0.01:1] Active only if left-branch=True. Percentage of
total-fc-layer-weights that go into the left branch
FC layer

weight-fraction-left-branch [0.01:1] Active only if right-branch=True. Percentage of
total-fc-layer-weights that go into the right branch
FC layer

merge-type Sum/Concatenate Active only if at least one of left-branch or right-
branch are True. How the main, left, and right
branches are to be combined

15

Table 8: Allowable morphs. Random sampling is always performed under a uniform distribution.
Morph Description
num-fc-layers Change the number of FC layers in the main branch by ±1
num-conv-blocks Change the number of convolution blocks by ±1. If the number of

convolution blocks is increased, set the number of convolution layers
in the new block to 1

layer-type Change the layer type for a randomly chosen convolution layer
num-conv-filters Change the number of output feature maps in a randomly chosen

convolution layer
kernel-size Change the kernel size for a randomly chosen convolution filter
downsampling-rate Randomly choose a convolution layer that has type Downsampled-

Conv2D and randomly sample its downsampling rate
batch-norm Switch the state of the batch-norm parameter
residual-connections Switch the state of the residual connections parameter
left-branch Switch the state of the left-branch parameter. If the new state is True,

set weight-fraction-left-branch=0.05
right-branch Switch the state of the right-branch parameter. If the new state is True,

set weight-fraction-right-branch=0.05
total-fc-layer-weights Change the number of total FC layer weights by ±5e3
merge-type Switch the state of the merge-type parameter
threshold Change the value of a randomly chosen pruning threshold by 0.5
weight-fraction For each one weight-fraction-main-branch, weight-fraction-left-branch,

weight-fraction-right-branch, perturb each active parameter by 5e-2
α Change α by ±0.1
num-conv-layers Change the number of convolution layers in a randomly chosen convo-

lution block by ±1

105 106
|E|

104‖ω̄
‖ 0

CURET‖networks‖with‖>80̄‖accuracy

(a)

104 105 106
|E|

104

105

‖ω̄
‖ 0

Char4k‖networks‖with‖>40̄‖accuracy

(b)

Figure 4: Scatter plots of |V | versus ‖ω̄‖0 for the best performing configurations.

Appendix D Visualization of discovered CNNs

Fig. 6 shows the architectures which dominated the competing methods in Table 2.

Appendix E Extended results on interaction of pruning and architecture

Fig. 4 shows the interaction of pruning with architecture for the Chars4k and CUReT dataset
experiments in Section 3.1. MNIST and CIFAR10-binary are given in Fig. 3.

Appendix F Evolution of winning CNNs

The evolution of the CNN architectures which ended up dominating the competing methods on the
MNIST dataset in Table 2 is shown in Fig. 5.

16

105 106

|E|

103

6×102

2×103

3×103

4×103

‖ω̄
‖ 0

Dominating‖configuration‖for‖Bonsai

0̄0

0̄5

1̄0

1̄5

2̄0

2̄5

3̄0

3̄5

4̄0

(a)

105 106
|E|

103

6×102

2×103

3×103
4×103

‖ω̄
‖ 0

̄ominating‖configuration‖for‖ProtoNN

0

1

2

3

4

5

6

(b)

1063×1054×105 6×105
|E|

103

6×102

‖ω̄
‖ 0

̄ominating‖configuration‖for‖KNN

0

1

2

3

4

5

6

(c)

5×105 6×105 7×1058×105
|E|

103

8×102
9×102

‖ω̄
‖ 0

Dominating‖configuration‖for‖GBDT

0̄0
0̄5
1̄0
1̄5
2̄0
2̄5
3̄0
3̄5
4̄0

(d)

105 106
|E|

103

6×102

2×103

3×103
4×103

‖ω̄
‖ 0

Dominating configuration for LeNet+SpVD

0

1

2

3

4

5

6

7

8

(e)

5×105 6×105 7×1058×105
|E|

103

8×102
9×102

‖ω̄
‖ 0

Dominating‖configuration‖for‖RBF̄SVM

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(f)

Figure 5: MNIST: Evolution of dominating configuration. Lighter colored samples indicate configu-
rations which were sampled later in the optimization process.

17

input

Conv2D 3x3x20
 ModelSize [73/180]

 WorkingMemory [857/964]
MaxPool 2x2

MaxPool 2x2

SeparableConv2D 5x5x50
 ModelSize [137/1500]

 WorkingMemory [2796/4380]

Conv2D 1x1x50
 ModelSize [4/50]

 WorkingMemory [200/246]

MaxPool 2x2

Sum

MaxPool 2x2

FC 800x500
 ModelSize [91/400000]

 WorkingMemory [283/400800]

FC 500x10
 ModelSize [111/5000]

 WorkingMemory [161/5500]

(a) Winner against Bonsai on MNIST

input

Conv2D 3x3x20
 ModelSize [74/180]

 WorkingMemory [858/964]
MaxPool 2x2

MaxPool 2x2

SeparableConv2D 5x5x50
 ModelSize [129/1500]

 WorkingMemory [2790/4380]

Conv2D 1x1x50
 ModelSize [5/50]

 WorkingMemory [201/246]

MaxPool 2x2

Sum

MaxPool 2x2

FC 800x500
 ModelSize [73/400000]

 WorkingMemory [249/400800]

FC 500x10
 ModelSize [105/5000]

 WorkingMemory [153/5500]

(b) Winner against ProtoNN on MNIST
input

Conv2D 5x5x19
 ModelSize [76/475]

 WorkingMemory [860/1259]

Conv2D 5x5x20
 ModelSize [225/9500]

 WorkingMemory [11169/20444]

DownsampledConv2D 1x1x3, 4x4x19
 ModelSize [81/972]

 WorkingMemory [8031/8060]

Conv2D 3x3x20
 ModelSize [117/3420]

 WorkingMemory [5608/8911]

Conv2D 5x5x20
 ModelSize [127/10000]

 WorkingMemory [4627/14500]

DownsampledConv2D 1x1x8, 5x5x20
 ModelSize [100/4160]

 WorkingMemory [2482/4968]

FC 980x10
 ModelSize [160/9800]

 WorkingMemory [1140/10780]

(c) Winner against LeNet+SpVD on MNIST

input

Conv2D 5x5x19
 ModelSize [62/475]

 WorkingMemory [846/1259]

Conv2D 5x5x20
 ModelSize [187/9500]

 WorkingMemory [11131/20444]

DownsampledConv2D 1x1x3, 4x4x19
 ModelSize [50/972]

 WorkingMemory [8033/8060]

Conv2D 3x3x20
 ModelSize [99/3420]

 WorkingMemory [5590/8911]

Conv2D 5x5x20
 ModelSize [81/10000]

 WorkingMemory [4581/14500]

DownsampledConv2D 1x1x8, 5x5x20
 ModelSize [72/4160]

 WorkingMemory [2465/4968]

FC 980x10
 ModelSize [125/9800]

 WorkingMemory [1105/10780]

(d) Winner against GBDT on MNIST

Figure 6: Visualization of winning CNNs on MNIST classification in Table 2. Working memory
is reported for the model in (5). The dominating configuration against KNN is the same as that for
ProtoNN. The dominating configuration against RBF-SVM is the same as that for Bonsai.

Appendix G Visualization of winning CNNs

Fig. 6 shows the architectures which dominating the competing methods on the task of classifying
MNIST with the minimum number of parameters (i.e. Section 3.1).

18

