
Appendices
A Proof of Proposition 1

For simplicity, in this proof we will be working with the [0, 1] interval as the domain. Consider the
following randomized algorithm:

• Suppose that each machine i observes n function f i1, · · · , f in and finds the minimizer of∑n
j=1 f

i
j(θ), which we denote by θi. Machine i then sends a signal Y i of the following

form

Y i =

{
0, with prob. θi,
1, with prob. 1− θi.

• The server receives signals from all machines and outputs θ̂ = 1/m
∑m
i=1 Y

i.

For the above algorithm, we have

var
(
θ̂
)

= var

(
1

m

m∑
i=1

Y i

)
=

1

m
var
(
Y 1
)

= O

(
1

m

)
, (7)

where the last equality is because Y 1 is a binary random variable. Then,

E
[(
θ̂ − θ∗

)2]
= E

[(
θ̂ − E[θ̂] + E[θ̂]− θ∗

)2]
= E

[(
θ̂ − E[θ̂]

)2]
+ E

[(
E[θ̂]− θ∗

)2]
= var

(
θ̂
)

+
(
E
[
θ̂ − θ∗

])2

= O

(
1

m

)
+O

(
1

n

)
,

where the last equality is due to (7) and Lemma 1. This completes the proof of Proposition 1.

B Proof of Proposition 2

For the ease of notation, we denote the number of grid points by k = 3
√
m/ log(m). Then, the

probability of choosing each point θ in the grid equals 1/k. Let N(θ) be the number of machines
that select grid point θ. From Hoeffding’s inequality (cf. Lemma 2 (a)), for any grid point θ,

Pr
(
N(θ) <

m

2k

)
= Pr

(
−N(θ) +

m

k
>
m

2k

)
≤ Pr

(
1

m

∣∣∣N(θ)− E
[
N(θ)

]∣∣∣ > 1

2k

)
≤ exp

(
−2m

(
1

2k

)2
)

= exp

(
− 3
√
m log2m

2

)
.

It then follows from union bound that with probability at most 1−k exp
(
−Ω( 3

√
m)
)

= 1− exp
(
−

Ω( 3
√
m)
)

, for any grid point θ, we have N(θ) ≥ m/(2k). For the rest of the proof, we assume that
N(θ) ≥ m/(2k), for all grid points θ.

Recall that the derivatives of the functions in F are assumed to be in the [−1, 1] interval (cf. Assump-
tion 1). Then, it follows from the Hoeffding’s inequality (cf. Lemma 2 (a)) that for any point θ in the
grid and any α ≥ 1,

Pr
(∣∣F̂ ′(θ)− F ′(θ)∣∣ > α

k

)
≤ 2 exp

(
−2

22
× m

2k
×
(α
k

)2
)

= 2 exp

(
−α

2 log2m

4

)
.
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Let Eα be the event that for all grid points θ,
∣∣F̂ ′(θ)− F ′(θ)∣∣ ≤ α/k. From union bound, we have

1− Pr(Eα) ≤ 2k exp

(
−α

2 log3m

4

)
= O

(
exp

(
− α2 log3m

))
, (8)

where the equality is because α ≥ 1. Let θ̃ be the closest grid point to θ∗. Then, |θ̃ − θ∗| ≤ 1/k and
it follows from the Lipschitz continuity of F ′ that∣∣F ′(θ̃)∣∣ =

∣∣F ′(θ̃)− F ′(θ∗)∣∣ ≤ |θ̃ − θ∗| ≤ 1

k
. (9)

Since F is λ-strongly convex, for any α ≥ 1, we have

Pr

(∣∣θ̂ − θ∗∣∣ > 3α

kλ

)
≤ Pr

(∣∣F ′(θ̂)− F ′(θ∗)∣∣ > 3α

k

)
= Pr

(∣∣F ′(θ̂)∣∣ > 3α

k

)
≤ Pr

(∣∣F ′(θ̂)− F̂ ′(θ̂)∣∣ > α

k

)
+ Pr

(∣∣F̂ ′(θ̂)∣∣ > 2α

k

)
≤a O

(
exp

(
− α2 log3m

))
+ Pr

(∣∣F̂ ′(θ̂)∣∣ > 2α

k

)
≤b O

(
exp

(
− α2 log3m

))
+ Pr

(∣∣F̂ ′(θ̃)∣∣ > 2α

k

)
≤ O

(
exp

(
− α2 log3m

))
+ Pr

(∣∣F̂ ′(θ̃)− F ′(θ̃)∣∣ > α

k

)
+ Pr

(∣∣F ′(θ̃)∣∣ > α

k

)
≤c O

(
exp

(
− α2 log3m

))
+ O

(
exp

(
− α2 log3m

))
+ 0

= O
(

exp
(
− α2 log3m

))
,

where (a) follows from (8), (b) is because θ̂ minimizes
∣∣F̂ ′(θ)∣∣ over all grid points θ, and (c) is due

to (8) and (9). This completes the proof of Proposition 2.

C Proof of Theorem 1

We first show that s∗ is a closest grid point of G to θ∗ with high probability. We then show that for
any l ≤ t and any p ∈ G̃ls∗ , the number of received signals corresponding to p is large enough so that
the server obtains a good approximation of∇F at p. Once we have a good approximation of∇F at
all points of G̃ts∗ , a point with the minimum norm for this approximation lies close to the minimizer
of F .

Suppose that machine i observes functions f i1, . . . , f
i
n. Recall the definition of θi in (3). The following

lemma provides a bound on θi − θ∗, which improves upon the bound in Lemma 8 of [Zhang et al.,
2013].

Lemma 1 For any i ≤ m,

Pr

(
‖θi − θ∗‖ ≥ α√

n

)
≤ d exp

(
−α2λ2

d

)
,

where λ is the lower bound on the curvature of F (cf. Assumption 1).

The proof relies on concentration inequalities, and is given in Appendix D. We collect two well-known
concentration inequalities in the following lemma.

Lemma 2 (Concentration inequalities)

(a) (Hoeffding’s inequality) Let X1, · · · , Xn be independent random variables ranging over
the interval [a, a+ γ]. Let X̄ =

∑n
i=1Xi/n and µ = E[X̄]. Then, for any α > 0,

Pr
(
|X̄ − µ| > α

)
≤ 2 exp

(
−2nα2

γ2

)
.

12



(b) (Theorem 4.2 in Motwani and Raghavan [1995]) Let X1, · · · , Xn be independent Bernoulli
random variables, X =

∑n
i=1Xi, and µ = E[X]. Then, for any α ∈ (0, 1],

Pr
(
X < (1− α)µ

)
≤ exp

(
−µα

2

2

)
.

Based on the above lemma, we have

Pr

(
‖θi − θ∗‖ ≤ log(mn)

2
√
n

, for i = 1, . . . ,m

)
≥ 1−mPr

(
‖θ1 − θ∗‖ ≥ log(mn)

2
√
n

)
≥ 1−md exp

(
−λ2 log2(mn)

4d

)
= 1− exp

(
− Ω

(
log2(mn)

))
,

(10)

where the first inequality is due to the union bound and the fact that the distributions of θ1, . . . , θm

are identical, and the second inequality follows from Lemma 1. Thus, with probability at least
1 − exp

(
− Ω(log2(mn))

)
, every θi is in the distance log(mn)/2

√
n from θ∗. For each machine

i, let si be the s-component of machine i’s signal. Therefore, with probability at least 1− exp
(
−

Ω(log2(mn))
)
, for any machine i,

Pr

(
‖si − θ∗‖∞ >

log(mn)√
n

)
≤ Pr

(
‖si − θi‖∞ + ‖θi − θ∗‖∞ >

log(mn)√
n

)
≤ Pr

(
‖si − θi‖∞ >

log(mn)

2
√
n

)
+ Pr

(
‖θi − θ∗‖∞ >

log(mn)

2
√
n

)
= 0 + Pr

(
‖θi − θ∗‖∞ >

log(mn)

2
√
n

)
= exp

(
− Ω

(
log2(mn)

))
,

where the first equality is due to the choice of si as the nearest grid point to θi, and the last equality
follows from (10). Recall that s∗ is the grid point with the largest number of occurrences in the
received signals. Therefore, with probability at least 1− exp

(
− Ω(log2(mn))

)
,

‖s∗ − θ∗‖∞ ≤
log(mn)√

n
; (11)

equivalently, θ∗ lies in the
(
2 log(mn)/

√
n
)
-cube Cs∗ centered at s∗.

Let m∗ be the number of machines that select s = s∗. We let E ′ be the event that m∗ ≥ m/2d.
Since the grid G has block size 2 log(mn)/

√
n, there are at most 2d points s of the grid that satisfy

‖s− θ∗‖∞ ≤ log(mn)/
√
n. It then follows from (11) that

Pr
(
E ′
)

= 1− exp
(
− Ω(log2(mn))

)
. (12)

We now turn our focus to the inside of cube Cs∗ . Let

ε ,
2
√
d log(mn)√

n
× δ =

8d log1+ 5
max(d,2) (mn)

n
1
2 m

1
max(d,2)

. (13)

For any p ∈
⋃
l≤t G̃

l
s∗ , let Np be the number of machines that select point p. Let E ′′ be the event that

for any l ≤ t and any p ∈ G̃ls∗ , we have

Np ≥
d22−2l log6(mn)

2nε2
. (14)

Then,
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Lemma 3 Pr
(
E ′′
)

= 1− exp
(
− Ω(log2(mn))

)
.

The proof is based on the concentration inequality in Lemma 2 (b), and is given in Appendix E.

Capitalizing on Lemma 3, we now obtain a bound on the estimation error of gradient of F at the grid
points in G̃ls∗ . Let E ′′′ be the event that for any l ≤ t and any grid point p ∈ G̃ls∗ , we have∥∥∇̂F (p)−∇F (p)

∥∥ < ε

4
.

Lemma 4 Pr
(
E ′′′
)

= 1− exp
(
− Ω(log2(mn))

)
.

The proof is given in Appendix F and relies on Hoeffding’s inequality and the lower bound on the
number of received signals for each grid point, driven in Lemma 3.

In the remainder of the proof, we assume that (11) and E ′′′ hold. Let p∗ be the closest grid point in
G̃ts∗ to θ∗. Therefore,

‖p∗ − θ∗‖ ≤
√
d 2−t

log(mn)√
n

= ε/2. (15)

Then, it follows from E ′′′ that

‖∇̂F (p∗)‖ ≤
∥∥∇̂F (p∗)−∇F (p∗)

∥∥ + ‖∇F (p∗)‖
≤ ε/4 + ‖∇F (p∗)‖
= ε/4 +

∥∥∇F (p∗)−∇F (θ∗)
∥∥

≤ ε/4 +
∥∥p∗ − θ∗∥∥

≤ ε/4 + ε/2

= 3ε/4,

(16)

where the second inequality is due to E ′′′, the third inequality follows from the Lipschitz continuity
of∇F , and the last inequality is from (15). Therefore,

‖θ̂ − θ∗‖ ≤ 1

λ

∥∥∇F (θ̂)−∇F (θ∗)
∥∥

=
1

λ
‖∇F (θ̂)‖

≤ 1

λ
‖∇̂F (θ̂)‖+

1

λ

∥∥∇̂F (θ̂)−∇F (θ̂)
∥∥

≤a 1

λ
‖∇̂F (θ̂)‖+

ε

4λ

≤b 1

λ
‖∇̂F (p∗)‖+

ε

4λ

≤c 3ε

4λ
+

ε

4λ

=
ε

λ
,

(a) Due to event E ′′′.
(b) Because the output of the server, θ̂, is a grid point p in G̃ts∗ with smallest ‖∇̂F (p)‖.
(c) According to (16).
Finally, it follows from (11) and Lemma 4 that the above inequality holds with probability 1−exp

(
−

Ω(log2(mn))
)
. Equivalently,

Pr
(
‖θ̂ − θ∗‖ ≥ ε

λ

)
= exp

(
− Ω

(
log2(mn)

))
,

and Theorem 1 follows.
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D Proof of Lemma 1

Let F i(θ) =
∑n/2
j=1 f

i
j(θ), for all θ ∈ [−1, 1]d. From the lower bound λ on the second derivative of

F , we have

‖∇F (θi)−∇F i(θi)‖ = ‖∇F (θi)‖ = ‖∇F (θi)−∇F (θ∗)‖ ≥ λ‖θi − θ∗‖,

where the two equalities are because θi and θ∗ are the the minimizers of F i and F , respectively.
Then,

Pr

(
‖θi − θ∗‖ ≥ α√

n

)
≤ Pr

(
‖∇F (θi)−∇F i(θi)‖ ≥ λα√

n

)
≤a

d∑
j=1

Pr

(∣∣∣∂F i(θi)
∂θj

− ∂F (θi)

∂θj

∣∣∣ > αλ√
d
√
n

)

= d Pr

∣∣∣ 2
n

n/2∑
l=1

∂

∂θj
f il (θ

i) − Ef∼P
[ ∂
∂θj

f(θi)
]∣∣∣ ≥ αλ√

d
√
n


=b d exp

(
−α

2λ2

d

)
,

(17)

(a) Follows from the union bound and the fact that for any d-dimensional vector v, there exists an
entry vi such that ‖v‖ ≤ |vi|/

√
d.

(b) Due to Hoeffding’s inequality (cf. Lemma 2 (a)).
This completes the proof of Lemma 1.

E Proof of Lemma 3

Recall that for any l ≤ t, given s = s∗, the probability that p ∈ G̃ls∗ is 2(d−2)l/
∑t
j=0 2(d−2)j .

Assuming E ′, for any l ≤ t and any p ∈ G̃ls∗ ,

E
[
Np
]

= 2−dl × 2(d−2)l∑t
j=0 2(d−2)j

×m∗

=
2−2lm∗∑t
j=0 2(d−2)j

≥a 2−2lm

2d
× 1∑t

j=0 2(d−2)j

≥b 2−2lm

2d
× 1

t2tmax(0,d−2)

=c 2−2lm

2d
× δmax(0,d−2)

log(1/δ)

≥d 2−2lm

2dδ2
× δmax(d,2)

log(mn)

=e 2−2lm

2dδ2 log(mn)
× (4
√
d)max(d,2) log5(mn)

m

≥ 4d2−2l log4(mn)

δ2
,

(18)

where (a) follows from E ′, (b) is valid for all non-negative integers t and d, (c) is from the definition
of t = log(1/δ), (d) is due to the fact that 1/δ ≤

√
m ≤ mn and (e) is because of the definition of δ
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in (4). Then,

Pr

(
Np ≤

d22−2l log6(mn)

2nε2

)
= Pr

(
Np ≤

1

2
× d2−2l log4(mn)

4δ2

)
≤ Pr

(
Np ≤

E[Np]

2

)
≤ 2−(1/2)2E[Np]/2

= exp
(
− Ω(log4(mn))

)
,

(19)

where the first equality is from the definition of ε in (13), the first inequality is due to (18), the
second inequality follows from Lemma 2 (b), and the last equality is due to (18) and the fact that
2−2lp ≥ 2−2t = 2−2 log(1/δ) = δ2. Then,

Pr
(
E ′′ | E ′

)
≥ 1−

t∑
l=0

∑
p∈G̃l

s∗

Pr

(
Np ≤

d22−2lp log6(mn)

2nε2

)

≥ 1− t2dt exp
(
− Ω

(
log4(mn)

))
≥ 1− log(1/δ)

(
1

δ

)d
exp

(
− Ω

(
log4(mn)

))
> 1−m log(m) exp

(
− Ω

(
log4(mn)

))
= 1− exp

(
− Ω

(
log4(mn)

))
.

On the other hand, we have from (12) that Pr
(
E ′
)

= 1− exp
(
− Ω(log2(mn))

)
. Then, Pr

(
E ′′
)

=

1− exp
(
− Ω(log2(mn))

)
and Lemma 3 follows.

F Proof of Lemma 4

For any l ≤ t and any p ∈ G̃0
s∗ , let

∆̂(p) =
1

Np

∑
Signals of the form
Y i=(s∗,p,∆)

∆,

and let ∆∗(p) = E[∆̂(p)].

We first consider the case l = 0. Note that G̃0
s∗ consists of a single point p = s∗. Moreover, the

component ∆ in each signal is the average over the gradient of n/2 independent functions. Then,
∆̂(p) is the average over the gradient of Np × n/2 independent functions. Given event E ′′, for any
entry j of the gradient, it follows from Hoeffding’s inequality (Lemma 2 (a)) that

Pr

(∣∣∆̂j(p)−∆∗j (p)
∣∣ ≥ ε

4
√
d log(mn)

)
≤ exp

(
−Npn×

(
ε

4
√
d log(mn)

)2

/ 22

)

≤ exp

(
−nd

2 log6(mn)

8nε2
× ε2

16d log2(mn)

)
= exp

(
−d log4(mn)

128

)
= exp

(
− Ω

(
log4(mn)

))
.

(20)

For l ≥ 1, consider a grid point p ∈ G̃ls∗ and let p′ be the parent of p. Then, ‖p − p′‖ =√
d 2−l log(mn)/

√
n. Furthermore, for any function f ∈ F , we have ‖∇f(p)−∇f(p′)‖ ≤ ‖p−p′‖.
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Hence, for any j ≤ n, ∣∣∣∂f(p)

∂xj
− ∂f(p′)

∂xj

∣∣∣ ≤ ‖p− p′‖ =

√
d log(mn)2−l√

n
.

Therefore, ∆̂j(p) is the average of Np × n/2 independent variables with absolute values no larger
than γ ,

√
d log(mn)2−l/

√
n. Given event E ′′, it then follows from the Hoeffding’s inequality that

Pr

(∣∣∆̂j(p)−∆∗j (p)
∣∣ ≥ ε

4
√
d log(mn)

)
≤ exp

(
−nNp ×

1

(2γ)2
×
(

ε

4
√
d log(mn)

)2
)

≤a exp

(
−nd

22−2l log6(mn)

2nε2
× n

4d2−2l log2(mn)
× ε2

16d log2(mn)

)
= exp

(
− n log2(mn)/128

)
= exp

(
− Ω

(
log2(mn)

))
,

where the second inequality is by substituting Np from (14). Employing union bound, we obtain

Pr

(∥∥∆̂(p)−∆∗(p)
∥∥ ≥ ε

4 log(mn)

)
≤

d∑
j=1

Pr

(∣∣∆̂j(p)−∆∗j (p)
∣∣ ≥ ε

4
√
d log(mn)

)
= d exp

(
− Ω

(
log2(mn)

))
= exp

(
− Ω

(
log2(mn)

))
.

Recall from (6) that for any non-zero l ≤ t and any p ∈ G̃ls∗ with parent p′,

∇̂F (p)−∇F (p) = ∇̂F (p′)−∇F (p′) + ∆̂(p)−∆∗(p).

Then,

Pr

(∥∥∇̂F (p)−∇F (p)
∥∥ > (l + 1)ε

4 log(mn)

)
≤ Pr

(∥∥∇̂F (p′)−∇F (p′)
∥∥ > lε

4 log(mn)

)
+ Pr

(∥∥∆̂(p)−∆∗(p)
∥∥ > ε

4 log(mn)

)
≤ Pr

(∥∥∇̂F (p′)−∇F (p′)
∥∥ > lε

4 log(mn)

)
+ exp

(
− Ω

(
log2(mn)

))
.

Employing an induction on l, we obtain for any l ≤ t,

Pr

(∥∥∇̂F (p)−∇F (p)
∥∥ > (l + 1)ε

4 log(mn)

)
≤ exp

(
− Ω

(
log2(mn)

))
.

Therefore, for any grid point p,

Pr
(∥∥∇̂F (p)−∇F (p)

∥∥ > ε

4

)
≤ Pr

(∥∥∇̂F (p)−∇F (p)
∥∥ > (t+ 1)ε

4 log(mn)

)
= exp

(
− Ω

(
log2(mn)

))
,
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where the inequality is because t + 1 = log(1/δ) + 1 ≤ log(mn). It then follows from the union
bound that

Pr
(
E ′′′ | E ′′

)
≥ 1−

t∑
l=0

∑
p∈G̃l

s∗

Pr
(∥∥∇̂F (p)−∇F (p)

∥∥ > ε

4

)
≥ 1− t2dt exp

(
− Ω

(
log2(mn)

))
= 1− log(1/δ)

(
1

δ

)d
exp

(
− Ω

(
log2(mn)

))
≥ 1−m log(m) exp

(
− Ω

(
log2(mn)

))
= 1− exp

(
− Ω

(
log2(mn)

))
.

On the other hand, we have from Lemma 3 that Pr
(
E ′′
)

= 1 − exp
(
− Ω(log2(mn))

)
. Then,

Pr
(
E ′′′
)

= 1− exp
(
− Ω(log2(mn))

)
and Lemma 4 follows.
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