Appendices

A Proof of Proposition[I]

For simplicity, in this proof we will be working with the [0, 1] interval as the domain. Consider the
following randomized algorithm:

e Suppose that each machine ¢ observes n function fio-+, fi and finds the minimizer of
Z;’:l f3(0), which we denote by 0°. Machine i then sends a signal Y of the following
form

yi_ [0 with prob. 6%,
L, with prob. 1 — °.

o The server receives signals from all machines and outputs =1 /my T Y

For the above algorithm, we have

. 1 m ; 1 1
var (0) = var <m ;Y > = _var (Yl) =0 <m) , (7
where the last equality is because Y'! is a binary random variable. Then,
E[(0-0)°] = E[(0—E] +E6] - 0)°]
— E|(0 - EW)’] +E[ (B[] - 6*)’]
. . 2
var (6) + (B[ - 0]

o(2)-0(2)

where the last equality is due to (7) and Lemma([I] This completes the proof of Proposition T}

B Proof of Proposition 2]

For the ease of notation, we denote the number of grid points by k = ¥/m/log(m). Then, the
probability of choosing each point 6 in the grid equals 1/k. Let N () be the number of machines
that select grid point #. From Hoeffding’s inequality (cf. Lemmal[2|(a)), for any grid point 6,

Pr(N(O) < %) = Pr(-N@®)+ % > %)

Pr <71n‘N(9) —E[N(G)H > 2119)

o (-2 (5:))
o (S,

IN

IN

It then follows from union bound that with probability at most 1 — k exp ( — Q( \3/%)) =1l-exp(—

Q( %)), for any grid point 8, we have N (6) > m/(2k). For the rest of the proof, we assume that
N(6) > m/(2k), for all grid points 6.

Recall that the derivatives of the functions in F are assumed to be in the [—1, 1] interval (cf. Assump-
tion . Then, it follows from the Hoeffding’s inequality (cf. Lemma (a)) that for any point € in the
grid and any o > 1,

~ -2 2 21 2
Pr (‘F/(G) —F’(Q)’ > %) < 2exp (22 X % X (%) ) = 2exp <_O‘Ofm>_
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EF'(0) — F'(0)| < o/k. From union bound, we have

2 1 3
1 —Pr(&,) < 2kexp (_ao4gm) = O(exp(—oz2 log?’m))7 )
where the equality is because o > 1. Let 0 be the closest grid point to 6*. Then, |0 — 6*| < 1/k and
it follows from the Lipschitz continuity of F’ that

1

|F'(0)] = |[F'(6) — F'(6")| <160 —07] < —. 9)

N

Since F' is A-strongly convex, for any o > 1, we have

<|e 9" ii) < Pr<\F’(é)—F’(e*)| > Sko‘)
3o

> k)
"6

(
Pr (|F/(6) - F/(6)] > %) + Pr(
(

Pr( |F'(9)

IA

F'(6)

<* O( exp (- a*log® m)) + Pr (|F’(é)| > Qa)

<b O(exp(—a log® m)+Pr<

@) — F'(6)| > %) + Pr(|F/()] > %)

)
< O(exp —a?log? m) Pr(
<¢ O(exp(—a log m)) O(exp(—a2log3m)) + 0

= O(exp(—ozZIOg?’m)>,

where (a) follows from (8), (b) is because § minimizes | F” (6)| over all grid points 6, and (c) is due
to (B) and (©). This completes the proof of Proposition

C Proof of Theorem

We first show that s is a closest grid point of G to §* with high probability. We then show that for
any [ < t and any p € G, the number of received signals corresponding to p is large enough so that
the server obtains a good approximation of VF' at p. Once we have a good approximation of VF' at

all points of Gg* , a point with the minimum norm for this approximation lies close to the minimizer
of F.

Suppose that machine 7 observes functions fi, ..., fi. Recall the definition of §% in (@). The following
lemma provides a bound on 6* — 6*, which improves upon the bound in Lemma 8 of [Zhang et al.,
2013].

Lemma 1 For any i < m,

; e} —a?)\?
P 0¥ > — <
r<|9 9||_\/ﬁ>_dexp( y )7

where X is the lower bound on the curvature of F (cf. Assumption|[I)).

The proof relies on concentration inequalities, and is given in Appendix[D] We collect two well-known
concentration inequalities in the following lemma.

Lemma 2 (Concentration inequalities)

(a) (Hoeffding’s inequality) Let X1, - - - , X,, be independent random variables ranging over
the interval [a,a + 7). Let X = Zl 1 Xi/nand jp = E[X]. Then, for any o > 0,

_ —2na?
Pr (|X—u| > a) < 2exp (r;a ) .
Y
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(b) (Theorem 4.2 in|Motwani and Raghavan| [|[1995|]) Let X1, - -- , X, be independent Bernoulli
random variables, X =Y, | X;, and i = E[X]|. Then, for any € (0,1],

Pr(X < (1—a)) < exp (_’“‘3‘2) .

Based on the above lemma, we have
; log(mmn)
P 0" — 0* e
(107 - o) < <50
1
1 — mPr (”91 PATES Og<mn>)
2\/n
—\21og?(mn)
4d

= 1—exp ( — Q(logz(mn)))’

where the first inequality is due to the union bound and the fact that the distributions of §*, ..., 6
are identical, and the second inequality follows from Lemma|l] Thus, with probability at least
1 — exp ( — Q(log*(mn))), every §' is in the distance log(mn)/2+/n from 6*. For each machine
i, let s° be the s-component of machine i’s signal. Therefore, with probability at least 1 — exp ( —

Q(log®(mn))), for any machine i,

IN

,fori:l,...,m)

v

(10)
>1—mdexp (

m

IN

| - |
Pr (s =0 > P ([ = 01+ 10— 07 > 22020

vn

C log(mn)
< T _N?
Pr<|s 9Hoo>72\/ﬁ )
- 1
— 04 Pr (||91 — ]| > O‘g(j‘;)>

= exp ( - Q(logQ(mn))),

where the first equality is due to the choice of s as the nearest grid point to 6%, and the last equality
follows from (I0). Recall that s* is the grid point with the largest number of occurrences in the
received signals. Therefore, with probability at least 1 — exp ( — Q(log”(mn))),

log(mn)
ﬁ 7

equivalently, 0* lies in the (2log(mn)/+/n)-cube Cs- centered at s*.

[s" = 0" [lo < (11)

Let m* be the number of machines that select s = s*. We let £ be the event that m* > m/29.

Since the grid G has block size 2 log(mmn)/+/n, there are at most 2¢ points s of the grid that satisfy
s — 0*|lco < log(mn)/+/n. It then follows from (TT)) that

Pr (&) = 1—exp (— Qlog*(mn))). (12)
We now turn our focus to the inside of cube C«. Let
s 2/dlogmn) o 8dlog™t T ()

Forany p € U<, G'.,let N, be the number of machines that select point p. Let £ be the event that

€

13)

for any [ < t and any p € G.., we have

N> d?22 1og®(mn)

P= 2ne? 14

Then,
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Lemma 3 Pr (£”) =1 —exp ( — Q(log*(mn))).

The proof is based on the concentration inequality in Lemma 2] (b), and is given in Appendix [E]

Capitalizing on Lemma|[3] we now obtain a bound on the estimation error of gradient of F' at the grid
points in G',... Let £ be the event that for any [ < ¢ and any grid point p € G'., we have

. €
[VE@) - VFO)| < -

Lemma 4 Pr(£”) = 1— exp (— Q(log”(mn))).

The proof is given in Appendix [Fand relies on Hoeffding’s inequality and the lower bound on the
number of received signals for each grid point, driven in Lemma 3]

In the remainder of the proof, we assume that (TT) and £"” hold. Let p* be the closest grid point in
GY. to 6*. Therefore,

[ = \/82‘tk’g(\/”7—;‘m = ¢/2 (15)

Then, it follows from £’ that

IVE@)| < [[VF(p*) = VE@")|| + [VF@)|
< /A4 [IVE(p)|
= e/4+ ||VF(p*) — VF(6")|| 16)
< e/d+|lp* - 0*
< ¢/d+¢€/2
= 3¢/4,

where the second inequality is due to £, the third inequality follows from the Lipschitz continuity
of VF, and the last inequality is from (I3)). Therefore,

66" < 5 [VF@) - VF@)|

1 .
= S IVF@)

IN

1o 1o - .
3 IVF@®)| + 1 |VF(6) — VF®©O)|

1, - A €
<* —||VF(0 —
< SIVFO)+

1 - €
<b7 E _
< SIVFEII+ 4
CE_A'_L
T 4N 4

€

Xa
(a) Due to event £,

(b) Because the output of the server, 6, is a grid point p in G.. with smallest | VF(p)].

(¢) According to (T6).

Finally, it follows from (TT)) and LemmaE|that the above inequality holds with probability 1—exp (—
Q(log®(mn))). Equivalently,

Pr(||é—9*|| > ;) = exp(—Q(logQ(mn))),

and Theorem [Tl follows.
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D Proof of Lemmal(ll

Let Fi(0) = Z”/ > fi(0), forall @ € [—1,1]%. From the lower bound \ on the second derivative of
F, we have

IVF@©") = VF'(0)| = [IVF©")|| = [VF(@) = VF@")] > N|6* -],

where the two equalities are because 6° and 6* are the the minimizers of F* and F, respectively.
Then,

Pr <||9i — 6" = a) < Pr <||VF(9’) VEH(6)]| > M)

Vvn Vn
. OF( 9%) AF(6") aX
: ZP <’ 00, ‘> \/Ex/ﬁ>
U2y p) aX an
=dbr ‘*Zaiofl @) ~ Er~rlgg, /1 ]| 2 Vdy/n

242
b ot
= dexp( 7 >,

(a) Follows from the union bound and the fact that for any d-dimensional vector v, there exists an

entry v; such that ||v| < |v;|/Vd.
(b) Due to Hoeffding’s inequality (cf. Lemma@](a)).
This completes the proof of Lemmal T}

E Proof of Lemma

Recall that for any [ < ¢, given s = s*, the probability that p € G . is 20d- 2”/2;:0 2(d=2)j,
Assuming &', for any [ < t and any p € G-,
]E[Np] = 27dl X ]‘Q(d;l x m*
ijo 2(d—2)j
272lm*
Z?ZO 2(d—2)j
e 272m 1
= Tl S ooy
7=0
b 272m y 1
= 2d +2t max(0,d—2) (18)
22l 6max(0,d—2)
24 " Tlog(1/0)
J 2—2lm 5max(d,2)
X
PALE log(mn)

C

272l log® (mn)
_e _ = " 4Vd max(d,2) Y5 \""1Y)
2442 log(mn) x (4Vad) m
4d2- 2 og* (mn)
> - 7

where (a) follows from &’, (b) is valid for all non-negative integers ¢ and d, (c) is from the definition
of t = log(1/4), (d) is due to the fact that 1/6 < y/m < mn and (e) is because of the definition of §
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in (@). Then,

Pr (N < d?2=2 logﬁ(mn)) B
P =

2ne?
E[N,
< Pr (Np < 7[2 p}> (19)

< 9-(/2%EIN,]/2

— exp (- Qlog* (mn)),
where the first equality is from the definition of e in (T3), the first inequality is due to (I8), the
second inequality follows from Lemma [2] (b), and the last equality is due to and the fact that
9—2lp > 9-2t 272103;(1/5) = §2. Then,

t
d22-2l» 1og® (mn)
Pr(e”|€)>1-> Y Pr (N,, < s )

=0 peéi*

1 —t2% exp ( - Q( log4(mn))>

v

Y

1 — log(1/5) ( ) exp( Q(log* mn)))

> 1 —mlog(m eXp( Q(log ))
)

)
(-

= 1—exp( log mn

On the other hand, we have from (T2) that Pr (£) = 1 — exp

Q(log?( mn))). Then, Pr (") =
1 —exp ( — Q(log®(mn))) and Lemmalfollows.

F Proof of Lemma/d

For any [ <t and any p € Gs*,

Ap) = ]& >oooa,

p Signals of the form
Y'=(s",p,)

and let A*(p) = E[A(p)].

We first consider the case [ = 0. Note that C:'g* consists of a single point p = s*. Moreover, the
component A in each signal is the average over the gradient of n/2 independent functions. Then,

A(p) is the average over the gradient of N, x n/2 independent functions. Given event £”, for any
entry j of the gradient, it follows from Hoeffding’s inequality (Lemma@] (a)) that

e (130020 )

2
€
<e —Nyn X [ ————— 22
- Xp( P (4ﬂlog(mn)) / )
2] 6 2
< exp (—nd og (27nn) " 62 ) (20)
8ne 16d log=(mn)

—dlog®*(mn)
b 128

exp ( — Q(10g4(mn))).

For [ > 1, consider a grid point p € C?ls =
V/d 2~ 1og(mn) /+/n. Furthermore, for any function f € F, we have |V f(p) =V ()| < [lp—p'||.
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Hence, for any j < n,

of(p) of(p)

Vdlog(mn)2~!
6$j (')xj '

NG

Therefore, Aj (p) is the average of N,, x n/2 independent variables with absolute values no larger
than v £ v/dlog(mn)2~!/\/n. Given event £, it then follows from the Hoeffding’s inequality that

Pr (\Aj( —Aj(p)] = 4\f10€g(mn)>

1 € i
< exp <_an e~ (4\/&10g(mn)> )

“ d22-21og®(mn) n €2
<*exp|-—-n o2 X YRR X 2
ne 4d2—2log*(mn)  16dlog”(mn)

= exp(— nlogz(mn)/128)
= exp ( - Q(10g2(mn))),

where the second inequality is by substituting N, from (I4). Employing union bound, we obtain

N

—pl =

)

d . €
< §Pr<|AJ—( - Ai(p)| > W)
= d exp ( - Q(log2(mn)))

= exp ( — Q(logz(mn))).

A(p) — A*(p)|| >

Recall from (6)) that for any non-zero [ < ¢ and any p € C;*lg* with parent p/,
VE(p) = VF(p) = VE@') = VF (') + A(p) — A% (p).
Then,

o NESVS
Pr (HVF(p) VE®)| > 4log(mn))

< Pr (H@F(Pl) - VF(p/)H 4log( ))

Pr (HA(p) =8O > oz >>

< Pr <||@F(p - VF(@)| > 410gl(€mn)) + exp ( - Q(logQ(mn))>.

Employing an induction on [, we obtain for any [ < ¢,

Pr <H@F(p) - VF(p)H > m> < exp ( - Q(logQ(mn))).

Therefore, for any grid point p,

o (WF(p) - V@Il > i) = Pr OWF(p) — VF(p)|| > W)

41og(mn)
— exp ( - Q(log2(mn)))7
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where the inequality is because ¢ + 1 = log(1/6) + 1 < log(mn). It then follows from the union
bound that

Pr(e”€) = 1=3 > Pr(|VF@) - VFG)| > ])
1=0 pedt ,
> 1—t2%exp ( - Q(log2(mn))>

1 —log(1/4) ( > exp( Q log mn) )
> 1—mlog(m exp( Q(log ))
= 17exp( (log (mn)))

On the other hand, we have from Lemma that Pr (£”) = 1 —exp ( — Q(log2(mn))). Then,
Pr(£") =1—exp (— Q(log®(mn))) and Lemmafollows.

18



