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A Proof of Theorem 1

The following proposition is used to prove Theorem 1.
Proposition 1. Define the directional derivative of Jp as the first variation of Jp at S ∈ Hd along a
direction V ∈ Hd,

DJp[S](V ) := lim
τ→0

1

τ

(
Jp[S + τV ]− Jp[S]

)
.

The first variation takes the form

DJp[S](V ) = −Ex∼p
[(
∇x log π(x+ S(x))

)>
V (x) + trace

(
(I +∇xS(x))−1∇xV (x)

)]
. (1)

Proof. Given the identity map I and a transport map in the form of T = I + S + τV , the pullback
density of π is defined as

T ∗π = π(T (x)) |det∇xT (x)| = π
(
x+ S(x) + τV (x)

) ∣∣det (I +∇xS(x) + τ∇xT (x)
)∣∣ .

The perturbed objective function Jp[S + τV ] takes the form

Jp[S + τV ] = DKL((I + S + τV )∗p ‖ π)
= DKL(p ‖ (I + S + τV )∗π)

=

∫
p(x) log p(x)dx−

∫
p(x)

(
log π

(
x+ S(x) + τV (x)

)
+ log

∣∣det (I +∇xS(x) + τ∇xV (x)
)∣∣) dx .

Thus we have

Jp[S + τV ]− Jp[S] = −
∫
p(x)

(
log π

(
x+ S(x) + τV (x)

)
− log π(x+ S(x))︸ ︷︷ ︸

(i)

)
dx

−
∫
p(x)

(
log
∣∣det (I +∇xS(x) + τ∇xV (x)

)∣∣− log
∣∣det (I +∇xS(x))∣∣︸ ︷︷ ︸

(ii)

)
dx .

(2)
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Performing a Taylor expansion of the terms (i) and (ii) in (2), we have

(i) = τ
(
∇x log π(x+ S(x))

)>
V (x) +O(τ2) ,

(ii) = τ trace
(
(I +∇xS(x))−1∇xV (x)

)
+O(τ2) ,

where∇x log π(x+S(x)) is the partial derivative of log π evaluated at x+S(x). Plugging the above
expression into (2) and the definition of the directional derivative, we obtain

DJp[S](V ) = −Ex∼p
[(
∇x log π(x+ S(x))

)>
V (x) + trace

(
∇x(x+∇xS(x))−1∇xV (x)

)]
.

(3)

The Fréchet derivative of Jp evaluated at S ∈ Hd,∇Jp[S] : Hd → L(Hd,R) satisfies

DJp[S](V ) = 〈∇Jp[S] , V 〉Hd , ∀V ∈ Hd ,
and thus we can use Proposition 1 to prove Theorem 1.

Proof of Theorem 1. The second variation of Jp at 0 along directions V,W ∈ Hd takes the form

D2Jp[0](V,W ) := lim
τ→0

1

τ

(
DJp[τW ](V )−DJp[0](V )

)
.

Following Proposition 3, we have

D2Jp[0](V,W ) = lim
τ→0

1

τ

(
DJp[τW ](V )−DJp[0](V )

)
=− Ex∼p

[
lim
τ→0

1

τ

(
∇x log π(x+ τW (x))−∇x log π(x)︸ ︷︷ ︸

(i)

)>
V (x)

]

− Ex∼p
[
trace

(
lim
τ→0

1

τ
[(I + τ∇xW (x))−1 − I]︸ ︷︷ ︸

(ii)

∇xV (x)
)]
. (4)

By Taylor expansion, the limits (i) and (ii) of the above equation can be written as
(i) = ∇2

x log π(x)W (x) ,

(ii) = −∇xW (x) .

Thus, the second variation of Jp at 0 along directions V,W ∈ Hd becomes

D2Jp[0](V,W ) = −Ex∼p
[
W (x)>∇2

x log π(x)V (x)− trace
(
∇xW (x)∇xV (x)

)]
. (5)

Using the reproducing property of V,W ∈ Hd, i.e.
vi(x) = 〈k(x, ·), vi(·)〉H , wj(x) = 〈k(x, ·), wj(·)〉H
∇xvi(x) = 〈∇xk(x, ·), vi(·)〉Hd , ∇xwi(x) = 〈∇xk(x, ·), wi(·)〉Hd

we then have

Ex∼p
[
W (x)>∇2

x log π(x)V (x)
]
=

d∑
i=1

d∑
j=1

〈
〈Ex∼p

[
∂2ij log π(x)k(x, y)k(x, z)

]
, wj(z)〉H, vi(y)

〉
H

and

Ex∼p
[
trace

(
∇xW (x)∇xV (x)

)]
=

d∑
i=1

d∑
j=1

〈
〈Ex∼p

[
∂ik(x, y)∂jk(x, z)

]
, wj(z)〉H, vi(y)

〉
H
.

Plugging the above identities into (5), the second variation can be expressed as

D2Jp[0](V,W ) =

d∑
i=1

d∑
j=1

〈
〈hij(y, z), wj(z)〉H, vi(y)

〉
H
,

where
hij(y, z) := Ex∼p

[
− ∂2ij log π(x)k(x, y)k(x, z) + ∂ik(x, y)∂jk(x, z)

]
.

Hence the result.
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B Proof of Corollary 1

Proof. Here we drop the subscript pl. The ensemble of particles (xk)nk=1 defines a linear function
space Hn = span{k(x1, ·), . . . , k(xn, ·)}. In the Galerkin approach, we seek a solution W =
(w1, . . . , wd)

> ∈ Hdn such that the residual of the Newton direction

d∑
i=1

〈
d∑
j=1

〈hij(y, z), wj(z)〉H + ∂iJ [0](y), vi(y)

〉
H

= 0, (6)

is zero for all possible V ∈ Hdn. This way, we can approximate each component wj of the function
W as

wj(z) =

n∑
k=1

αkj k(xk, z), (7)

for a collection of unknown coefficients (αkj ). We define V s = (vs1, . . . , v
s
d)
> to be the test function

where vsi (y) = k(xs, y) for all s = 1, . . . , n.

We first project the Newton direction (6) onto V s for all s = 1, . . . , n. Applying the reproducing
property of the kernel, this leads to

d∑
j=1

〈hij(xs, z), wj(z)〉Hd + ∂iJpl [0](xs) = 0, i = 1, . . . , d, s = 1, . . . , n. (8)

Plugging (7) into (8), we obtain the fully discrete set of equations

d∑
j=1

n∑
`=1

hij(xs, xk)α
k
j + ∂iJpl [0](xs) = 0, i = 1, . . . , d, s = 1, . . . , n, k = 1, . . . , n. (9)

We denote the coefficient vector αk :=
(
αk1 , . . . , α

k
d

)>
for each xk, the block Hessian matrix

(Hs,k)ij := hij(xs, xk) for each pair of xs and xk, and ∇Js := ∇J [0](xs) for each xs. Then
equation (9) can be expressed as

n∑
k=1

Hs,k αk = ∇Js, s = 1, . . . , n. (10)

C Additional test cases

C.1 Comparison between the full and inexact Newton methods

Here we compare three different Stein variational Newton methods: SVNfull denotes the method that
solves the fully coupled Newton system in equation (16) of the main paper, with no approximations;
SVNCG denotes the method that applies inexact Newton–CG to the fully coupled system (16); and
SVNbd employs the block-diagonal approximation given in equation (17) of the main paper.

We first make comparisons using the two-dimensional double banana distribution presented in Section
5.1. We run our test case for N = 100 particles and 20 iterations. Figure 1 shows the contours of
the target density and the samples produced by each of the three algorithms. Compared to the full
Newton method, both the block-diagonal approximation and the inexact Newton–CG generate results
of similar quality.

We use an additional nonlinear regression test case for further comparisons. In this case, the forward
operator is given by

F(x) = c1x
3
1 + c2x2 ,

where x = [x1, x2]
> and c1, c2 are some fixed coefficients sampled independently from a standard

normal distribution. A data point is then given by y = F(x) + ε, where ε ∼ N(0, σ2) and σ = 0.3.
We use a standard normal prior distribution on x.
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Figure 1: Double-banana example: performance comparison between SVNfull, SVNCG, and SVNbd

after 20 iterations

-2 -1 0 1 2
-2

-1

0

1

2
target

-2 -1 0 1 2
-2

-1

0

1

2
SVNfull-H

-2 -1 0 1 2
-2

-1

0

1

2
SVNbd-H

-2 -1 0 1 2
-2

-1

0

1

2
SVNCG-H

Figure 2: Nonlinear regression example: performance comparison between SVNfull, SVNCG, and
SVNbd after 20 iterations

We run our test case for N = 100 particles and 20 iterations. Figure 2 shows contours of the posterior
density and the samples produced by each of the three algorithms. Again, both the block-diagonal
approximation and the inexact Newton–CG generate results of similar quality to those of the full
Newton method.

These numerical results suggest that the block-diagonal approximation and the inexact Newton–CG
can be effective methods for iteratively constructing the transport maps in SVN. We will adopt these
approximate SVN strategies on large-scale problems, where computing the full Newton direction is
not feasible.
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C.2 Bayesian neural network

In this test case, we set up a Bayesian neural network as described in [1]. We use the open-source
“yacht hydrodynamics” data set1 and denote the data by D = (xi, yi)

M
i=1, where xi is an input, yi is

the corresponding scalar prediction, and M = 308. We divide the data into a training set of m = 247
input–prediction pairs and a validation set of M −m = 61 additional pairs. For each input, we model
the corresponding prediction as

yi = f(xi, w) + εi ,

where f denotes the neural network with weight vector w ∈ Rd and εi ∼ N(0, γ−1) is an additive
Gaussian error. The dimension of the weight vector is d = 2951. We endow the weights w with
independent Gaussian priors, w ∼ N(0, λ−1I). The inference problem then follows from the
likelihood function,

L(D|w, γ) =
( γ
2π

)m
2

exp

(
−γ
2

m∑
i=1

(f(x,w)− yi)2
)
,

and the prior density,

π0(w|λ) =
(
λ

2π

)m
2

exp

(
−γ
2

m∑
i=1

w2
j

)
,

where γ and λ play the role of hyperparameters.

Performance comparison of SVN-H with SVGD-I. We compare SVN-H with the original SVGD-
I algorithm on this Bayesian neural network example, with hyperparameters fixed to log λ = −10
(which provides a very uninformative prior distribution) and log γ = 0. First, we run a line-search
with Newton–CG to find the posterior mode w∗. Figure 3 shows that neural network predictions at
the posterior mode almost perfectly match the validation data. Then, we randomly initialise n = 30
particles (xi)ni=1 around the mode, i.e., by independently drawing xi ∼ N (w∗, I). As in the previous
test cases, we make a fair comparison of SVN-H and SVGD-I by taking 10, 20, and 30 iterations of
SVN-H and rescaling the number of iterations of SVGD-I to match the computational costs of the
two algorithms. Because this test case is very high-dimensional, rather than storing the entire Hessian
matrix and solving the Newton system we use the inexact Newton–CG approach within SVN, which
requires only matrix-vector products and yields enormous memory savings. Implementation details
can be found in our GitHub repository.

Figure 4 shows distributions of the error on the validation set, as resulting from posterior predictions.
To obtain these errors, we use the particle representation of the posterior on the weights w to evaluate
posterior predictions on the validation inputs (xi)

M
i=m+1. Then we evaluate the error of each of

these predictions. The red line represents the mean of these errors at each validation input xi, and
the shaded region represents the 90% credible interval of these error distribution. Although both
algorithms “work” in the sense of producing errors of small range overall, SVN-H yields distributions
of prediction error with smaller means and considerably reduced variances, compared to SVGD-I.

C.3 Scalability of kernels in high dimensions

Discretization-invariant posterior distribution. Here we illustrate the dimension scalability of
the scaled Hessian kernel, compared to the isotropic kernel used in [1]. We consider a linear
Bayesian inverse problem in a function space setting [3]: the forward operator is a linear functional
F(x) = 〈sin(πs), x(s)〉, where the function x is defined for s ∈ [0, 1]. The scalar observation
y = F(x) + ξ, where ξ is Gaussian with zero mean and standard deviation σ = 0.3. The prior
is a Gaussian measure N (0,K−1) where K is the Laplace operator −x′′(s), s ∈ [0, 1], with zero
essential boundary conditions.

Discretising this problem with finite differences on a uniform grid with d degrees of freedom, we
obtain a Gaussian prior density π0(x) with zero mean and covariance matrix K−1, where K is the
finite difference approximation of the Laplacian. Let the vector a denote the discretised function
sin(πs), s ∈ [0, 1], and let the corresponding discretised parameter be denoted by x (overloading

1http://archive.ics.uci.edu/ml/datasets/yacht+hydrodynamics
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Figure 3: Neural network prediction at the posterior mode very closely matches the validation data.

notation for convenience). Then the finite-dimensional forward operator can be written as F(x) =
a>x. After discretization, the posterior has a Gaussian density of the form π = N (mpos, Cpos), where

mpos =
y

σ2
Cpos a , Cpos =

(
K−1 +

1

σ2
aa>

)−1
.

To benchmark the performance of various kernels, we construct certain summaries of the posterior
distribution. In particular, we use our SVN methods with the scaled Hessian kernel (SVN-H)
and the isotropic kernel (SVN-I) to estimate the component-wise average of the posterior mean,
1
d

∑d
i=1mpos,i, and the trace of the posterior covariance, trace(Cpos), for problems discretised at

different resolutions d ∈ {40, 60, 80, 100}. We run each experiment with n = 1000 particles and 50
iterations of SVN. We compare the numerical estimates of these quantities to the analytically known
results. These comparisons are summarised in Tables 1 and 2.

From Table 1, we can observe that all algorithms almost perfectly recover the average of the posterior
mean up to the first three significant figures. However, Table 2 shows that SVN-H does a good job
in estimating the trace of the posterior covariance consistently for all dimensions, whereas SVN-I
under-estimates the trace—suggesting that particles are under-dispersed and not correctly capturing
the uncertainty in the parameter x. This example suggests that the scaled Hessian kernel can lead to a
more accurate posterior reconstruction for high-dimensional distributions than the isotropic kernel.

A posterior distribution that is not discretization invariant. Now we examine the dimension-
scalability of various kernels in a problem that does not have a well-defined limit with increasing
parameter dimension. We modify the linear Bayesian inverse problem introduced above: now the
prior covariance is the identity matrix, i.e., K−1 = I and the vector a used to define the forward
operator is drawn from a uniform distribution, ai ∼ U(2, 10), i = 1, . . . , d. This way, the posterior
is not discretization invariant. We perform the same set of numerical experiments as above and
summarise the results in Tables 3 and 4. Although the target distribution used in this case is not
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Figure 4: Bayesian neural network example: Comparison between SVN-H and SVGD-I, showing the
distribution of errors between the validation data and samples from the posterior predictive.

Table 1: Comparison of theoretical and estimated averages of the posterior mean

Averages of the posterior mean 1
d

∑d
i=1mpos,i

d 40 60 80 100

Theoretical 0.4658 0.4634 0.4622 0.4615
SVN-H 0.4658 0.4634 0.4623 0.4614
SVN-I 0.4657 0.4633 0.4622 0.4615

Table 2: Comparison of theoretical and estimated traces of the posterior covariance

Traces of the posterior covariance trace(Cpos)

d 40 60 80 100

Theoretical 0.1295 0.1297 0.1299 0.1299
SVN-H 0.1271 0.1281 0.1304 0.1293
SVN-I 0.0925 0.0925 0.0925 0.0923

discretization invariant, the scaled Hessian kernel is still reasonably effective in reconstructing the
target distributions of increasing dimension (according to the summary statistics below), whereas the
isotropic kernel under-estimates the target variances for all values of dimension d that we have tested.
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