
A Proofs

A.1 QPE computation

Proposition 1. In a zero-sum extensive-form game with perfect recall, a limit point as ε ↓ 0 of
solutions of the linear problem in Figure 1(a) is the strategy of player i ∈ {1, 2} in a QPE.

Proof. We start by considering the max-min problem for player i,




maxri





minr−i r>i Uir−i

s.t. 1 F−i r−i = f−i

2 r−i ≥ l−i(ε)

s.t. 3 Fi ri = fi
4 ri ≥ li(ε).

(3)

Taking the dual of the inner problem, we obtain the following:





maxri





maxv−i,z−i
f>−i v−i + l−i(ε)>z

s.t. 1 F>−i v−i + z ≤ U>i ri
2 z−i ≥ 0

s.t. 3 Fi ri = fi

4 ri ≥ li(ε).

By substituting r̃i = ri − li(ε), r̃−i = r−i − l−i(ε) we obtain the formulation in the statement.

A.2 EFPE computation

Lemma 12 (Farina and Gatti [2017]). Let R(ε) be a behavioral perturbation matrix. Then R(ε) is
invertible.

Proposition 2. In a zero-sum extensive-form game with perfect recall, a limit point as ε ↓ 0 of
solutions of the linear problem in Figure 1(b) is the strategy of player i ∈ {1, 2} in an EFPE.

Proof. We start by considering the max-min problem for player i,




maxri





minr−i r>i Uir−i

s.t. 1 F−i r−i = f−i

2 R−i(ε) r−i ≥ 0

s.t. 3 Fi ri = fi
4 Ri(ε) ri ≥ 0.

(4)

Since the perturbation matrices Ri and R−i are invertible (Lemma 12), we can substitute r̃i =
Ri(ε)ri, r̃−i = R−i(ε)r−i, obtaining





maxr̃i





minr̃−i
r̃>i R

−>
i (ε)UiR

−1
−i (ε)r̃−i

s.t. 1 F−iR
−1
−i (ε)r̃−i = f−i

2 r̃−i ≥ 0

s.t. 3 FiR
−1
i (ε) r̃i = fi

4 r̃i ≥ 0.

Taking the dual of the inner problem introducing the vector of dual variables v−i for constraint 1 ,
we obtain the LP in the statement.
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A.3 Trembling linear program

Theorem 5. Let P : ε 7→ P (ε) be a TLP, and let B be a stable basis for P , optimal for all
ε : 0 < ε ≤ ε̄. Furthermore, let x(ε) be the optimal basic solution of P (ε) corresponding to B.
Then, x̃ = limε↓0 x(ε) exists, and x̃ is a limit solution to the TLP P .

Proof. The fact that x̃ is a solution to P follows directly from Definition 3. Therefore, it is enough
to show the existence of x̃.

For all ε, let B(ε) be the basis matrix in P (ε), corresponding to the given basis B. By definition
of stable basis, B is optimal for P (ε) for all ε : 0 < ε ≤ ε̄. Therefore, B(ε) is invertible for all
ε : 0 < ε ≤ ε̄ and we conclude that detB(ε) is not identically zero over that range. This implies
that x(ε) = B−1(ε)b(ε) is well defined and is a vector of rational functions. This, together with the
boundedness assumption in Section 4, is enough to conclude that limε↓0 x(ε) exists.

Theorem 6. Given a TLP ε 7→ P (ε), a basis B is stable if and only if there exists ε̄ > 0 such that

tB(ε) :=

(
B−1(ε)b(ε)

B̄>(ε)B−>(ε)cB − cB̄

)
≥ 0 ∀ ε : 0 ≤ ε ≤ ε̄.

The vector tB(ε) is called the optimality certificate for B.

Proof. Remember that B(ε) be the basis matrix corresponding to B in the underlying perturbed LP
P (ε). From the theory of LPs, we know that B is optimal for P (ε) if and only if (see, for instance,
the book by Dantzig and Thapa [2006]):

• it is primal-feasible, that is, B−1(ε)b(ε) ≥ 0, and

• the reduced costs of all nonbasic columns are nonpositive, that is, c>B̄−c>BB−1(ε)B̄(ε)≤0,
where cB is the part of c corresponding to the basic variables, cB̄ is the part of c corre-
sponding to the nonbasic variables, B̄(ε) is the matrix formed by all nonbasic columns.

The optimality certificate collects the conditions above into a vector tB(ε), which is nonnegative if
and only if B is an optimal basis for the LP P (ε). Therefore, by the definition of basis stability, a
basis is stable if tB(ε) is nonnegative for all sufficiently small values of ε.

Theorem 7. Given as input a TLP ε 7→ P (ε), there exists ε∗ > 0 such that for all 0 < ε̄ ≤ ε∗, any
optimal basis for the numerical LP P (ε̄) is stable. Furthermore, such a value ε∗ can be computed
in polynomial time in the input size, assuming that a polynomial of degree d requires Ω(d) space in
the input.

Before showing the proof of Theorem 7 we introduce a couple of simple facts.

Lemma 13 (Farina and Gatti [2017]). Let p(ε) = a0 + a1ε + · · · + anε
n be a polynomial over R

such that a0 6= 0, and let M = maxi |ai|. Then p(ε) has the same sign of a0 for all 0 ≤ ε ≤ ε∗

where ε∗ = |a0|/(M + |a0|).

Lemma 14 (Farina and Gatti [2017]). Let

p(ε) =
a0 + a1ε+ · · ·+ anε

n

b0 + b1ε+ · · ·+ bmεm

be a rational function with integer coefficients, where the denominator is not identically zero; let
µa = maxi |ai|, µb = maxi |bi|, µ = max{µa, µb} and ε∗ = 1/(2µ). Exactly one of the following
holds:

• p(ε∗) = 0 for all ε : 0 < ε ≤ ε∗;
• p(ε∗) > 0 for all ε : 0 < ε ≤ ε∗;
• p(ε∗) < 0 for all ε : 0 < ε ≤ ε∗.

We now proceed with the proof of Theorem 7.
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Proof of Theorem 7. We extend the arguments made by Miltersen and Sørensen [2010] and Farina
and Gatti [2017], and we generalize them to the case of trembling LPs.

Let Ω be the set of all bases for P (ε) that are optimal for at least one ε ∈ R++. For any B ∈ Ω, we
let tB(δ) be the optimality certificate for B (Theorem 6). All entries of tB(δ) are rational functions
in δ; hence, by Lemma 14, we can find a value δ∗B > 0, such that all entries of tB(δ) keep the same
sign on the domain 0 < δ ≤ δ∗B. We now introduce the function f : Ω → R++ mapping every
B ∈ Ω to the corresponding value of δ∗B. Since Ω is finite, min f exists and is (strictly) positive;
this means that any optimal basis for P (min f) is optimal for all P (ε) where 0 < ε ≤ min f , and is
therefore stable.

In light of the above, we only need to prove that we can compute a lower bound for min f in poly-
nomial time. We will assume without loss of generality that the objective function is not perturbed
and. Furthermore, we will assume without loss of generality that A(ε),b(ε) and c(ε) only contain
integer entries (if not, it is enough to multiply all the entries in the LP by the least common multiple
of all denominators to satisfy this assumptions). As long as we can prove that the maximum coef-
ficient appearing in tB is polynomially large (in the size of the input TLP), the result follows from
the bound in Lemma 14.

The entries of the optimality certificate are obtained by composing sums and products of entries from
three vectors: the LP matrix A(ε), the inverse of the basis matrix B−1(ε), the vector of constants
b(ε) and the objective function coefficients c. Let M be the largest coefficient that appears in
A(ε),b(ε) and c, and let m be the largest polynomial degree appearing in A(ε) and b(ε). We
now study the magnitude of the maximum coefficient and the maximum polynomial degree that can
appear in B(ε)−1.

Introducing C(ε) = cof B(ε), the cofactor matrix of B(ε), we can write the well-known identity

B−1(ε) =
C>(ε)

detB(ε)

Denominator. We now give an upper bound on the coefficients of the denominator of the entries in
B−1(ε). By using Hadamard’s inequality, we can write

coeff(detB(ε)) ≤ nn/2Mn coeff((1 + ε+ · · ·+ εmA)n),

where coeff(·) is the largest coefficient of its polynomial argument. Since coeff((1 + ε + · · · +
εmA)n) ≤ (mA + 1)n, we have

coeff(detB(ε)) ≤ nn/2((mA + 1)M)n,

deg(detB(ε)) ≤ n ·mA.

Notice that this bound is valid for all possible basis matrices B(ε).

Numerator. It is easy to see that the bounds on coeff(detB(ε)) hold for the cofactor matrix as well:

coeff(detC>(ε)) ≤ nn/2((mA + 1)M)n,

deg(detC>(ε)) ≤ n ·mA.

Again, it is worthwhile to notice that this bound is valid for all possible basis matrices B(ε).

Optimality certificate. We have

coeff(C>b(ε)) ≤ coeff(B̄>(ε)C>(ε) cB) ≤ nn/2((mA + 1)M)n ·mA ·McM,

coeff(detB(ε) cB̄) ≤ nn/2((mA + 1)M)n ·Mc.

Hence,

coeff(tB(ε)) ≤ nn/2((mA + 1)M)n ·Mc(mAM + 1)

≤ nn/2((mA + 1)M)n+1 ·Mc.

Therefore, all coefficients involved require a polynomial number of bits to be represented, conclud-
ing the proof.

14



A.4 Basis stability oracle

Lemma 9. For all n ≥ 1,
n∑

i=0

(
n

i

)
diM(ε)

dεi
dn−iM−1(ε)

dεn−i
= 0.

Proof. The statement is equivalent to the expansion of the identity

dn/dεn(M(ε)M−1(ε)) = 0,

true for all n ≥ 1, by means of the product rule of derivatives.

Lemma 15. Let f(ε)/g(ε) be a rational function with g(0) 6= 0 and with deg f = d. If the first
d+ 1 derivatives (starting from the zeroth derivative) of f(ε)/g(ε) evaluated at ε = 0 are zero, then
f(ε) (and therefore also f(ε)/g(ε)) is identically zero.

Proof. We prove the results by induction. The base case (d = 0) is clear. Otherwise, let deg f =
d+ 1, d ≥ 0. We can write

f(ε)

g(ε)
=
fd(ε)

g(ε)
+ ad+1

εd+1

g(ε)
,

where fd(ε) is a polynomial of degree d. All derivatives of order 6= d+1 of εd+1/g(ε) are 0. Hence,
since the first d + 2 derivatives (and thus, in particular, the first d + 1 = 1 + deg fd) of f/g are 0,
by induction we deduce that fd is identically 0.

Therefore, in order to conclude, it suffices to show that the derivative of order d+ 1 of εd+1/g(ε) is
nonzero. To this end, notice that

(
dn+1

dεn+1

εn+1

g(ε)

)
(0) =

n+1∑

i=0

(
di(xn+1)

dεi
(0) · d

n+1−i(1/g)

dεn+1−i (0)

)
= (n+ 1)!

1

g(0)
6= 0.

Lemma 10. Consider a TLP ε 7→ P (ε) where P (ε) has n rows and let m be the maximum degree
appearing in the polynomial functions defining P . Fixed any basis B, if the first 2nm+1 derivatives
of the i-th entry of the optimality certificate tB(ε) are all zero, the entry is identically zero.

Proof. First of all, notice that the maximum degree that can appear in the denominator of any entry
in the optimality certificate tB(ε) is 2mn. We use Lemma 15 to conclude.

Lemma 11. Let M(ε) be a square matrix with polynomial entries, not all of which are identically
zero. Then there exist k ∈ N+ and matrices M̃(ε) and T(ε) that have polynomials as entries, with
nonsingular M̃(0), such that

M(ε) = εkT−1(ε) M̃(ε), (2)
in proximity of ε = 0.

Proof. We prove the lemma by induction on the number of roots in 0 of detM(ε). This number
corresponds to the maximum integer d ≥ 0 such that εd is a divisor of detM(ε).

Base case. When d = 0, detM(0) 6= 0, and therefore M(0) is nonsingular. The result holds
trivially by letting M̃(ε) = M(ε) and T(ε) = I be the identity function for all ε.

Inductive step. Suppose the results holds for all matrices M(ε) whose determinants have d ≤ d̄− 1
roots in 0, with d̄ ≥ 1. We will now show that the results holds when d = d̄ as well. Since
d̄ ≥ 1, detM(0) = 0 and therefore there exists a nonzero vector v such that v>M(0) = 0. This
necessarily means that ε divides all entries of v>M(ε), and therefore ε−1v>M(ε) is a vector with
polynomial entries. Let i be any index such that vi 6= 0, and consider the new matrix M′(ε) obtained
by substituting the i-th row in M(ε) with ε−1v>M(ε). It is immediate to verify that we can write
this operation compactly as

M′(ε) =
1

ε
S(ε)M(ε).
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K SL L3 L4 L5 L6 L7 L8 L9 G3 G4 G∗3 G∗4

QPE 10−42 10−257 10−1875 10−3520 10−5883 10−9045 10−12966 10−17672 10−23187 10−1799 10−169732 10−276 10−5865
EFPE 10−67 10−381 10−2943 10−5611 10−9225 10−13822 10−19434 10−26088 10−33807 10−3215 10−323797 10−441 10−10405

Table 3: Orders of magnitude of ε used for the NPP solver.

where S(ε) is a nonzero square matrix with polynomial entries. Hence,

M(ε) = εS−1(ε)M′(ε). (5)

M′(ε) is a square matrix with polynomial entries not all of which are identically zero; however, the
number of roots in 0 of detM′(ε) is smaller than d̄ since we multiplied one of the rows by ε−1.
Thus, we can apply our inductive hypothesis to M′(ε) and write

M′(ε) = εkT′
−1

(ε) M̃′(ε)

for some integer k ≥ 0. Substituting into Equation (5), we obtain

M(ε) = εk+1 S−1(ε)T′
−1

(ε) M̃′(ε)

= εk+1 (T′(ε)S(ε))−1M̃′(ε).

Sine T′(ε)S(ε) is a square matrix with polynomial entries, the proof is complete.

B Test game instances

Our testbed includes the following classes of extensive-form games. Table 1 shows the acronyms
that we will use, together with tree size results.

Kuhn poker [Kuhn, 1950]. This is a simplified poker variant with less than 100 leaves and a three-
card deck (King, Queen, and Jack). Each player first puts a payment of 1 into the pot. Each player
is then dealt one of the three cards, and the third is put aside unseen. A single round of betting then
occurs (with betting parameter p = 1, see the description of Leduc poker below). If no player folds,
a showdown occurs. The player with the higher card wins the pot; in case of tie, the pot is split
evenly.

Simple Leduc poker. The deck consists of two kings and two jacks. Each player first puts a
payment of 1 into the pot. A private card is dealt to each, followed by a betting round (with betting
parameter p = 2, see the description of Leduc poker below), then a public card is dealt, followed
by another betting round (with p = 4, see the description of Leduc poker below). If no player has
folded, a showdown occurs. In Simple Leduc poker, a showdown has two possible outcomes: one
player has a pair, or both players have the same private card. In the former case, the player with the
pair wins the pot. In the latter case, the pot is split evenly among the players.

Leduc poker [Southey et al., 2005]. This is a widely-used benchmark in the imperfect-information
game-solving community. We test on a larger variant of the game in order to better evaluate scal-
ability. In our enlarged variant, the deck contains k ≥ 3 card ranks, that is, it consists of pairs of
cards 1, . . . , k, for a total 2k cards. We use k ∈ {2, 3, 4, 5, 6, 7, 8, 9} to generate test games of dif-
ferent sizes. Each player initially pays one chip to the pot, and is dealt a single private card. After a
round of betting (with betting parameter p = 2, see below), a community card is dealt face up, and
a subsequent round of betting (with betting parameter p = 4, see below) is played. If no player has
folded, a showdown occurs, and both players reveal their private cards. If either player pairs their
card with the community card they win the pot. Otherwise, the player with the highest private card
wins. In the event that both players have the same private card, they draw and split the pot.

Each round of betting with betting parameter p goes as follows.

1. Player 1 can check or bet p. If Player 1 checks, the betting round continues with Step (2);
otherwise, the betting round continues with Step (4).

2. Player 2 can check or raise p. If Player 2 checks, the betting round ends; otherwise, Player 2 add
p to the pot the betting round continues with Step (3).

3. Player 1 can fold or call. If Player 1 folds, Player 2 wins the pot and the game ends; otherwise,
Player 1 puts p in the pot the betting round ends.
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4. Player 2 can fold or call. If Player 2 folds, Player 1 wins the pot and the game ends; otherwise,
Player 2 adds p to the pot and the betting round ends.

Goofspiel [Ross, 1971]. We consider a parametric version of the game in order to better test scal-
ability. In our variant with k card ranks, three decks containing cards with values {1, 2, . . . , k} are
distributed: one is shuffled and laid face-down on the table, and the two players hold on deck each
in their hands. Exactly k turns happen; in each turn, the topmost card in the table deck is revealed
for both players to observe. Then, both players simultaneously play a card from their hand. The
player with the highest card wins as many points as the value of the revealed table cards; in case of
tie, this value is split evenly among the players. The revealed table card and the two played cards
are discarded and the a new turn can begin.

Goofspiel∗. In this variant of Goofspiel, the table deck is not shuffled, but rather is laid face-up on
the table with cards 1, 2, . . . , k disposed in this order from top to bottom. The dynamics of the game
are left unchanged.
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