Appendix

A Proof of Lemma 2.10

Suppose that dry (p,Cu) > €. We want to show that with high probability over the samples it holds
> ics IPi —p(S)/|S|| = (€). The main difficulty is that the value of p(.S) is unknown, hence we
need a somewhat indirect argument. By Claim for all z € [0, 1] we have that

Zmin{pi, lpi — x|} > €/2. 3)
ien

To show that Z(x) def Yics Ipi — x| = Q(¢€), when x = p(S)/|S|. To do this, we note that for any
S, Z(x) always attains a minimum at p; for some 4. Furthermore, if |S| = ©(n) and p(S) > 1/3,
then Z(x) is automatically large unless z = ©(1/n). Thus, it suffices to show that:

Claim A.1. With probability at least 19/20, for all v = p; = ©(1/n), we have that Z () = Q(e).

Proof. We note that there are only O(n) allowable values of z, and so we will prove that for any
given z = ©(1/n) that the statement holds with high probability.

Let Z;, i € €2, be the indicator of the event i € S. Then, Z(z) = >, . |pi — z|Z;. Note that Z;
is a Bernoulli random variable with E[Z;] = 1 — e ?i™ and that the Z;’s are mutually independent.

Note that E[Z(z)] = ), (1 — 7P )|p; — x|. We recall the following concentration inequality
for sums of non-negative random variables (see, e.g., Exercise 2.9 in [BLM13])):

Fact A.2. Let X1,..., X be independent non-negative random variables, and X = 2521 X;.
Then, for any t > 0, it holds that Pr[X < E[X] —t] < exp (—t2/(2 Zle E[Xf])) .

Since Z(x) = > ,cq |pi — ©|Z; where the Z;’s are independent Bernoulli random variables with
E[Z?] =1 — e Pi™, an application of Factyields that
—¢2
Pr|Z(x) <E|Z(x —t<exp( : ) @)
[ ( ) [ ( )] ] 22169(1 _ e_p"m)(pi —33)2

Let Sy = {i € Q:p; < x/2} and S, = Q\ S;. By (3), we get that 3=, 5 pi + Xics, v — pil >
€/2 . Fori € S;, we have that (1 — e™P")|p; — x| > m - p; - [2/2| = Q(p;). Fori € Sy, we
have that (1 — e™?i") = Q(1) and therefore (1 — e~ ?i"™)|p;, — x| = Q(1)|p; — x|. We therefore get
that E[Z(z)] = Q(e). We now bound Y, (1 — e 7i™)(p; — x)? from above using the fact that
p; = O(logn/n), for all i € . This assumption and the range of = imply that

> (1= e ™) (pi —x)* < Ologn/n) - E[Z] .

i€
So, by setting ¢ = E[Z]/2 in (), we get that

Pr[Z(x) < BIZ(2)]/2] < exp (~Q(en/ logn)) = exp (—n?D)) |

where the last inequality follows from the range of e. Recalling that there are only O(1/n) many
allowable values of , Claim [A.T]follows by a union bound. [

Lemma|2.10|follows from noting that it suffices to show that Z (p(S)/|S|) = 2(e) when |S| = ©(n)
and p(S) > 1/3. In such a case, Z(x) takes a minimum when a = p; for some i. If z = ©(1/n), the
result follows from our claim. Otherwise, it is easy to see that Z(z) = (1) for all  not ©(1/n).
This completes the proof of our lemma.

To complete our analysis of the soundness case, we have that unless p assigns some bin probability
Q(log(n)/n), that with high probability over samples, either we are rejected by (ii), have p(S) <
1/3 or (p|S) is Q(€)-far from uniform. If p(S) < 1/3, most of our m’ samples lie outside of .S with
high probability. If (p|S) is far from uniform, our m’ samples from Step @ either mostly lie outside
of S (in which case we reject), or the first m’/2 of them are independent random samples from
(p|S). Since (p|S) is €/C’-far from uniform, our uniformity tester will reject with 99% probability.
This completes our proof.
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B Omitted Proofs from Section

We exhibit the relevant families D and D’. In both cases, we want to arrange p; := u({i}) to be
i.i.d. for different . We also want it to be the case that the first and second moments of y; are the
same for D and D’. Combining this with requirements on closeness to uniform, we are led to the
following definitions:

For p taken from D', we let

Lte | with probability 5%
pi = § =<, with probability 5%
0 , otherwise .

For p taken from D, we let

14-€2 : 13 n

. = , with pr.obablhty Nt
0 , otherwise .

Note that in both cases, the average total mass is 1, and it is easy to see by Chernoff bounds that the

actual mass of 1 is ©(1) with high probability. Additionally, in both cases the expected sizes of ||p||3

and ||p||3 are ©(n~!) and ©(n~?), respectively. Again, it is not hard to show by a Chernoff bound

that with high probability the actual second and third moments of p are within constant factors of
this. For y taken from D, all of the p; are either 0 or 1“ , and thus p/||g|l1 is uniform over its
support. For u taken from D’, with high probabﬂlty at least a third of the bins in its support have
Wi = 1;’6 and at least a third have p; = <. If this is the case, then at least a constant fraction
of the mass of 1 /||t||1 comes from bins with mass off from the average mass by at least a (1 + ¢)

factor, and this implies that /|| |1 is at least Q(e)-far from uniform.

We have thus verified 1-4. Property 5 will be somewhat more difficult to prove. For this, let X be a
random {0, 1} random variable with equal probabilities. Let x be chosen randomly from D if X = 0,
and randomly from D’ if X = 1. Let our Poisson process with intensity ku return A; samples
from bin 7. We note that, by the same arguments as in [DK16], it suffices to show that the shared
information I(X; Ay,..., Ax) = o(1). In order to prove this, we note that the A; are conditionally
independent on X, and thus we have that I(X; Aq,...,An) < Zfil I(X;A;) = NI(X; Ay).
Thus, we need to show that I(X; A1) = o(1/N). For notational simplicity, we drop the subscript in
A

This boils down to an elementary but tedious calculation. We begin by noting that we can bound

=tX =0) - Pr(A=t|X =1))?
ZO( Pr(A—1) )

(This calculation is standard. See Fact 81 in [CDKS17]| for a proof.) We seek to bound each of these
terms. The distribution of A conditioned on 1 is Poisson with parameter k1. Thus, the distribution
of A conditioned on X is a mixture of two or three Poisson distributions, one of which is the trivial
constant 0. We start by giving explicit expressions for these probabilities.

Firstly, for the ¢ = 0 term, note that

PrA=t[X=1)=1- =

N

(1 efk(ljte)/n +€k(16)/n>
— 5 ,

= = = —L — —k(1+62)/n
PrlA=tX=0)=1 N(1—|—62)(1 e ).

Note that Pr(A = 0) isatleast 1 —n/N > 1/2and Pr(A =¢t|X =1)—Pr(4A =tX =0) <n/N.

Thus, the contribution from this term, (Pr(AzolX:POr)(;irO(f:O‘X:l))?, is O(n/N)? = o(1/N).

For t > 1, there is no contribution from 1y = 0. We can compute the probabilities involved exactly

as
n (k(14¢)/n)te *1H+9/n 4 (k(1 - €)/n)te FO-/n
N 21! >

Pr(A=t/X =1) =
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n o (k(1+€)/n)te H0+)/n
N(1+¢€?) t! ’

A=t|X=0)—Pr(A=t|X=1))? .
Pr(A=t) 18

Pr(A=tX=0)=

and obtain that X

2
nl-tht ((1 + 6)te—k(1+e)/n +(1— 6)te—k(l—e)/n —2(1+ 62)t—1€—k(1+62)/n)
© ( 2Nt! ) (1+e)tekA+ea)/n 4 (1 —e)te=k1-)/n 4 (1 4 e2)t—le—k(1+e*)/n

Factoring out the e~*/™ terms and noting that, since ke/n = o(1), the denominator is Q(e~*/™)
yields that

nl=tkte—k/n P 2 2
t ,—k(1+e€)/n _ \t,—k(l—€e)/n _ 2\t—1 _—k(14+€%)/n
O(( SNl )((1+e)e +(1—e)e 2(1+¢) e ))

Noting that k/n = o(1), we can ignore this e~*" term and Taylor expanding the exponentials, we
have that
(Pr(A=tX =0) — Pr(A=tX =1))?
Pr(A=1t)

it
(0] ((2]\75) ((1 +e)'(1—k(14+e)/n)+ (1 —e) (1 +k(1—¢€)/n)

~ 914 @)1 — k(1 + €2)/n) + O((ke/n)2(1 + e)t))Q) .

We deal separately with the cases ¢t = 1,7 = 2 and ¢ > 2. For the { = 1 term, we have

ﬁ € — RE/N — € €/mn) — —€2TL €n22
O((N>((1+)(1 ke/n) + (1 —€)(1+ ke/n) —2(1 -k /)+0((k/)))>

o((y)otwsm?).

Since k = o(n?/3/e*/?) and € > n~Y4, ek/n = o(n=/3/e'/3) = o(n=1/*), and we find that this

1S
0 <<]’f[> 0(1/n)> = o(1/N) .

This appropriately bounds the contribution from this term.

When ¢t = 2, we have
0((£5) @+ =kt + o/ + (- Pa-k1-a/n
21+ €)1 — k(1 +€)/n) + 0((ke/n)2))2) .
Note that the terms without k/n factors cancel out, (1 + €)2 + (1 — €)% — 2(1 + €2) = 0, yielding

O(k?*/nN)(ke?/nto(n~1?))? = O(k*¢* /n® N)+o(k? /n®N) = o(k*¢* /n*N)+o(1/N) = o(1/N) ,
using both k = o(n*/3/e*/?) and k = o(n).

For t > 2, we let fy(x) = (1 + x)!(1 — kx/n). In terms of f;, we have that
(Pr(A=t|X=0)—Pr(A=t|X=1))? is:
Pr(A=t) '
nlft t
O (("sar ) (el + F-)/2 = F0) = (ha(@) = ia(0) + o2

Using the Taylor expansion of f; in terms of its first two derivatives and f;_; in terms of its first, we

see that
(fe(e) + fe(=€))/2 = f:(0) = € f{'(€)
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and
fra(€®) = fi1(0) = E {4 (¢)
for some £ € [—¢, €] and &' € [0, €%]. However, the derivatives are
file) = 1 +2)7 1t = 1+ + to)k/n)

nd
: () = (1 + o)t — 1) —t(t + 1)ak/n) ,
and so | f'(&)| < O(t?(1 + €)'=1) and f;_, (&) < O(t(1 + €2)'=2). Hence, the term
(Pr(A =X =0) — Pr(A = t|X =1))*
Pr(A =1¢)

is at most
O(n* 'kt Nt (M (1 + €)*72) + o(1/n))
= O ((K*e*/n®)(t* (14 €)*/N)(k(1 + €)*/n) =2 /t1) + o ((k/n)"/(N1))
=o(1/N)t*/t! ,
using both & = o(n?/3/e*/3) and k = o(n). Since (t + 1)*/(t + 1)! < t*/2t! for all t > 4, even
summing the above over all ¢ > 3 still leaves o(1/N).

Thus, we have that I(X; A) = o(1/N), and therefore that [(X : A;,...,Ay) = o(1). This
proves that X = 0 and X = 1 cannot be reliably distinguished given Ay, ..., Ay, and thus proves
property 5, completing the proof of our lower bound.
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