
A Proof of the main results

A.1 Proof of Lemma 1

Proof. First, if we assume {vk} is uniformly bounded by 2, we then have
vk+1 � vk = µ(vk � vk�1) + ⌘{⌃kvk�⌧k � v>k�⌧k⌃kvk�⌧kvk�⌧k},

=)vk+1 � vk =
kX

i=0

µk�i⌘{⌃ivi�⌧i � v>i�⌧i⌃ivi�⌧ivi�⌧i},

=)kvk+1 � vkk2  C�
⌘

1 � µ
,

where C� = supkvk2,kXkCd
kXX>v � v>XX>vvk  2Cd. Thus, the jump vk+1 � vk is

bounded. Next, we show the boundedness assumption on v can be taken off. In fact, with an
initialization on S (the sphere of the unit ball), the algorithm is bounded in a much smaller ball of
radius 1 + O(⌘�).

Recall �k+1 = vk+1 � vk. Let’s consider the difference between the norm of two iterates,
�k = kvk+1k2 � kvkk2 = k�k+1k2 + 2v>k �k+1

�k+1 � �k = k�k+2k2 + 2v>k+1�k+2 � k�k+1k2 � 2v>k �k+1

= k�k+2k2 � k�k+1k2 + 2µv>k+1�k+1 + 2⌘v>k+1[⌃k+1vk+1�⌧k+1 � v>k+1�⌧k+1
⌃k+1vk+1�⌧k+1vk+1�⌧k+1] � 2v>k �k+1

= k�k+2k2 � k�k+1k2 + 2µv>k+1�k+1 + 2⌘v>k+1�⌧k+1
[⌃k+1vk+1�⌧k+1 � v>k+1�⌧k+1

⌃k+1vk+1�⌧k+1vk+1�⌧k+1]+

2⌘[vk+1 � vk+1�⌧k+1]
>[⌃k+1vk+1�⌧k+1 � v>k+1�⌧k+1

⌃k+1vk+1�⌧k+1vk+1�⌧k+1] � 2v>k �k+1

 k�k+2k2 � k�k+1k2 + 2µv>k �k+1 + 2µk�k+1k2 + 2⌘v>k+1�⌧k+1
⌃k+1vk+1�⌧k+1(1 � v>k+1�⌧k+1

vk+1�⌧k+1)

� 2v>k �k+1 +
C2

�

1 � µ
⌧k+1⌘

2

= |�k+2k2 + µk�k+1k2 � (1 � µ)(k�k+1k2 + 2v>k �k+1) +
C2

�

1 � µ
⌧k+1⌘

2

+ 2⌘v>k+1�⌧k+1
⌃k+1vk+1�⌧k+1(1 � v>k+1�⌧k+1

vk+1�⌧k+1)

= k�k+2k2 + µk�k+1k2 � (1 � µ)�k + 2⌘v>k+1�⌧k+1
⌃k+1vk+1�⌧k+1(1 � v>k+1�⌧k+1

vk+1�⌧k+1) +
C2

�

1 � µ
⌧k+1⌘

2

 k�k+2k2 + µk�k+1k2 � (1 � µ)�k +
C2

�

1 � µ
⌧k+1⌘

2, when 1  kvk+1�⌧k+1k  2.

Let  = inf{i : kvi+1k > 1}, then

�+1  (1 + µ)(
C�

1 � µ
)2⌘2 + µ� +

C�

1 � µ
⌧+1⌘

2.

Moreover, if 1 < kv+i�⌧k+ik  2 holds for i = 1, ..., n < t
⌘ , we have

�+i  (1 + µ)(
C�

1 � µ
)2⌘2 + µ�+i�1

 1 + µ

1 � µ
(

C�

1 � µ
)2⌘2 +

C�

(1 � µ)2
(max

k
⌧k)⌘

2 + µi�.

Thus,

kv+n+1k2 = kvk2 +
nX

i=0

�+i

 1 +
1

1 � µ
�k +

t

⌘

1 + µ

1 � µ
(

C�

1 � µ
)2⌘2 +

t

⌘

C�

(1 � µ)2
(max

k
⌧k)⌘

2

 1 + O(
(maxk ⌧k)⌘

(1 � µ)2
).

In other words, when ⌘ is very small, and ⌧k ⇣ (1 � µ)2/(⌘1��)), we cannot go far from S and the
assumption that kvk  2 can be removed.

12

A.2 Proof of Lemma 2

Proof. To prove the inequality, we decompose the error (left-hand) into two parts:
km⌘

k+1 � fM(v⌘k)k  ||m⌘
k+1 � fM(v⌘k�⌧k

)|| + ||fM(v⌘k�⌧k
) � fM(v⌘k)||,

where the first term on the right is the error caused by the noise while the second term is that introduce
by the asynchrony. We first bound the second term. In fact, it can be easily bounded by the Lipschitz
continuity. Here the Lipschitz constant of fM is �1/(1 � µ),then we have:

||fM(v⌘k�⌧k
) � fM(v⌘k)||  �1

1 � µ
||v⌘k�⌧k

� v⌘k ||

 �1

1 � µ
⌧kC⌘/(1 � µ)

= O(⌧k�1⌘/(1 � µ)2).
Next we are going to bound the first term. Since this can be now viewed as no-delay case, we can
use the same method as in Appendix B.2 in Liu et al. (2018). Since 1

1�µ =
P1

i=0 µi, there exists

N(⌘) = logµ(1 � µ)⌘ such that
P1

i=N(⌘) µi < ⌘. When k > N(⌘), write mk and fM(vk) into
summations:

mk+1 =
kX

i=0

µi[⌃vk�i�⌧k�i � v>k�i�⌧k�i
⌃vk�i�⌧k�ivk�i�⌧k�i]

=

N(�)X

i=0

µi[⌃vk�i�⌧k�i � v>k�i�⌧k�i
⌃vk�i�⌧k�ivk�i�⌧k�i]

+
kX

i=N(�)+1

µi[⌃vk�i�⌧k�i � v>k�i�⌧k�i
⌃vk�i�⌧k�ivk�i�⌧k�i],

and
fM(vk � ⌧k) =

1

1 � µ
[⌃vk�⌧k � v>k�⌧k⌃vk�⌧kvk�⌧k]

=

N(�)X

i=0

µi[⌃vk�⌧k � v>k�⌧k⌃vk�⌧kvk�⌧k] +
1X

i=N(�)+1

µi[⌃vk�⌧k � v>k�⌧k⌃vk�⌧kvk�⌧k].

Note that kvk+1 � vkk  C⌘, where C = C�
1�µ is a constant. Then we have

max
i=0,1,...,N(⌘)

kvk�i�⌧k�i � vk�⌧kk  C�

1 � µ
N(⌘)⌘ + 2

C�

1 � µ
max

i
⌧i⌘.

They by Lipschitz continuity, for i = 0, 1, ..., N(�), we have
k⌃vk�⌧k � v>k�⌧k⌃vk�⌧kvk�⌧k � ⌃vk�i�⌧k�i + v>k�i�⌧k�i

⌃vk�i�⌧k�ivk�i�⌧k�ik

 �1C�

1 � µ
N(⌘)⌘ + 2

�1C�

1 � µ
max

i
⌧i⌘.

Then ������

N(�)X

i=0

µi{[⌃vk�i � v>k�i⌃vk�ivk�i] � [⌃vk � v>k ⌃vkvk]}

������
 KCN(⌘)⌘

1 � µ

 C�

(1 � µ)2
N(⌘)⌘ + 2

C�

(1 � µ)2
max

i
⌧i⌘.

Since ⌃vk � v>k ⌃vkvk is uniformly bounded by C w.p.1, both
Pk

i=N(�)+1 µi[⌃vk�i�⌧k�i �
v>k�i�⌧k�i

⌃vk�i�⌧k�ivk�i�⌧k�i] and
P1

i=N(�)+1 µi[⌃vk�tauk � v>k�tauk
⌃vk�taukvk�tauk] are

bounded by C⌘. Thus,

kmk+1 � fM(vk�tauk)k  C�

(1 � µ)2
N(⌘)⌘ + 2

C�

(1 � µ)2
max

i
⌧i⌘ + 2C⌘

= O(⌘ log
1

⌘
) + O(⌧k�1⌘/(1 � µ)2) w.p.1.

For k < N(⌘), following the same approach, we can bound kmk+1 � fM(vk)k by the same bound
.

13

A.3 Proof of Theorem 3

Proof. The proof technique is the fixed-state-chain method introduced by Liu et al. (2018). Please
refer to our Arxiv version3 for more details.

A.4 Proof of Lemma 4

Proof. Define Gj(h) = ⇤jh � h>⇤jhh = ⇤h � h>⇤hh + XjX>
j h � h>XjX>

j hh, which is
smooth and bounded, thus Lipschitz. The Lipschitz constant is determined by ⇤ and the data X .
Since X is bounded by Assumption 2, for any j > 0, we have

||Gj(h
0) � Gj(h

00)||  (Cd + �1)||h0 � h00||.
Then we have:

||Dk|| = ⌘||
kX

j=0

µk�i(Gj(Hj) � Gj(Hj�s))||

 ⌘
kX

j=0

µk�iLd||Hj � Hj�⌧j ||


kX

j=0

µk�iLd⌧jC�
⌘2

1 � µ

 C�
Ld maxj ⌧j⌘2

(1 � µ)2
= o(⌘3/2).

Then from the definition of D(t), we know D(t) ! 0, a.s.

A.5 Proof of Theorem 5

Proof. The proof method follows the proof of Theorem 4.1 in Liu et al. (2018). The detail proof is
very involved and out of our major concern. Please refer to the Arxiv version for more details.

A.6 Proof of Proposition 6

Proof. Since we restart our record time, we assume here the algorithm is initialized around the global
optimum e1. Thus, we have

Pd
i=2(U

⌘,i(0))2 = ⌘�1�2 < 1. Since U⌘,i(t) approximates to U (i)(t)
in this neighborhood, and the second moment of U (i)(t) is: For i 6= 1,

E
⇣
U (i)(t)

⌘2
=

↵2
i1

2(1 � µ)(�1 � �i)
+

✓⇣
U (i)(0)

⌘2
� ↵2

i1

2(1 � µ)(�1 � �i)

◆
exp


�2

(�1 � �i)t

1 � µ

�
,

by Markov inequality, we have:

P

dX

i=2

⇣
H(i)

⌘ (T3)
⌘2

> ✏

!


E
✓Pd

i=2

⇣
H(i)

⌘ (T3)
⌘2
◆

✏
=

E
⇣Pd

i=2

�
U⌘,i(T3)

�2⌘

⌘�1✏

⇡ 1

⌘�1✏

dX

i=2

↵2
i1

2(1 � µ)(�1 � �i)

⇣
1 � exp

�
� 2

(�1 � �i)T3

1 � µ

�⌘

+
�
U⌘,i(0)

�2
exp


�2

(�1 � �i)T3

1 � µ

�

 1

⌘�1✏

⇣ �

2(1 � µ)(�1 � �2)

⇣
1 � exp

�
� 2

(�1 � �d)T3

1 � µ

�⌘

+ ⌘�1�2 exp


�2

(�1 � �2)T3

1 � µ

�⌘

 1

⌘�1✏

✓
�

2(1 � µ)(�1 � �2)
+ ⌘�1�2 exp


�2

(�1 � �2)T3

1 � µ

�◆
.

3https://arxiv.org/abs/1806.01660

14

To guarantee 1
⌘�1✏

⇣
�

2(1�µ)(�1��2)
+ ⌘�1�2 exp

h
�2 (�1��2)T3

1�µ

i⌘
 1

4 , we have:

T3 =
1 � µ

2(�1 � �2)
log

✓
(1 � µ)(�1 � �2)�2

(1 � µ)(�1 � �2)✏ � 2⌘�

◆
.

A.7 Proof of Proposition 10

Proof. Recall that Theorem 9 holds when u⌘
k = (h⌘

k � e2)/
p

⌘ is bounded. Thus, if (H(2)
⌘ (T1))2 

1��2 holds at some time T1, the algorithm has successfully escaped the saddle point. We approximate
U⌘,1(t) by the limiting process approximation, which is normal distributed at time t. As ⌘ ! 0, by
simple manipulation, we have

P
�
(H⌘,2(T1))

2  1 � �2
�

= P
�
(U⌘,2(T1))

2  ⌘�1(1 � �2)
�
.

We then prove P
⇣��U⌘,1(T1)

�� � ⌘� 1
2 �
⌘

� 1 � ⌫. At time t, U⌘,1(t) approximates to a normal

distribution with mean 0 and variance ↵2
12

2(1�µ)(�1��2)

h
exp

�
2 (�1��2)T1

1�µ

�
� 1
i
. Therefore, let �(x)

be the CDF of N(0, 1), we have

P

0

BB@

��U⌘,1(T1)
��

r
↵2

12
2(1�µ)(�1��2)

h
exp

�
2 (�1��2)T1

1�µ

�
� 1
i � ��1

✓
1 + ⌫

2

◆
1

CCA ⇡ 1 � ⌫,

which requires

⌘� 1
2 �  ��1

✓
1 + ⌫

2

◆
·

s
↵2

12

2(1 � µ)(�1 � �2)


exp

�
2
(�1 � �2)T1

1 � µ

�
� 1

�
.

Solving the above inequality, we get

T1 =
(1 � µ)

2(�1 � �2)
log

2⌘�1�2(1 � µ)(�1 � �2)

��1
�

1+⌫
2

�2
↵2

12

+ 1

!
.

A.8 Proof of Proposition 8

Proof. After Phase I, we restart our record time, i.e., H⌘,1(0) = �. Then we obtain

�
H⌘,1(T2)

�2 ⇡
⇣
H(1)(T2)

⌘2
=

0

@
dX

j=1

✓⇣
H(j)(0)

⌘2
exp (2

�j

1 � µ
T2)

◆1

A
�1
⇣
H(1)(0)

⌘2
exp (2

�1

1 � µ
T2)

�
✓

�2 exp(2
�1

1 � µ
T2) + (1 � �2) exp(2

�2

1 � µ
T2)

◆�1

�2 exp(2
�2

1 � µ
T2),

which requires
✓

�2 exp(2
�1

1 � µ
T2) + (1 � �2) exp(2

�2

1 � µ
T2)

◆�1

�2 exp(2
�1

1 � µ
T2) � ⌘�1(1 � �2).

Solving the above inequality, we get

T2 =
1 � µ

2(�1 � �2)
log

1 � �2

�2
.

15

	Introduction
	Async-MSGD and Optimization Landscape of Streaming PCA
	Convergence Analysis
	Global Convergence
	Local Algorithmic Dynamics

	Numerical Experiments
	Streaming PCA
	Deep Neural Networks

	Discussions
	Proof of the main results
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 3
	 Proof of Lemma 4
	Proof of Theorem 5
	Proof of Proposition 6
	Proof of Proposition 10
	Proof of Proposition 8

