A Proof of the main results
A.1 Proof of Lemmal[l

Proof. First, if we assume {vg, } is uniformly bounded by 2, we then have
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where Cs5 = supjj, <z, x|<c, [XX v — 0" XX Tov|| < 2C4. Thus, the jump vjy1 — vy is
bounded. Next, we show the boundedness assumption on v can be taken off. In fact, with an
initialization on S (the sphere of the unit ball), the algorithm is bounded in a much smaller ball of
radius 1 + O(n7).
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Let k = inf{i : ||v;y1|| > 1}, then
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In other words, when 7 is very small, and 75, < (1 — 11)?/(n'~7)), we cannot go far from S and the
assumption that ||v|| < 2 can be removed. O
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A.2 Proof of Lemmal[2

Proof. To prove the inequality, we decompose the error (left-hand) into two parts:

Iy = M) < Nlmi ey = M(vi_ I+ M (v, ) = M (v,

where the first term on the right is the error caused by the noise while the second term is that introduce
by the asynchrony. We first bound the second term. In fact, it can be easily bounded by the Lipschitz

continuity. Here the Lipschitz constant of M is A /(1 — p),then we have:
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Next we are going to bound the first term. Since this can be now viewed as no-delay case, we can
use the same method as in Appendix B.2 in|Liu et al.|(2018). Since ﬁ = Z;’io ', there exists

N(n) = log, (1 — u)n such that 3572 v u* < 1. When k > N(n), write mj and M (vy,) into

summations:
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For k < N(n), following the same approach, we can bound ||mg+1 — M (vy)|| by the same bound
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A.3 Proof of Theorem 3|

Proof. The proof technique is the fixed-state-chain method introduced by [Liu et al. (2018). Please
refer to our Arxiv version’| for more details. O

A.4 Proof of Lemma

Proof. Define Gj(h) = Ajh — h"Ajhh = Ah — hTAhh + X;X'h — h" X; X T hh, which is
smooth and bounded, thus Lipschitz. The Lipschitz constant is determined by A and the data X.

Since X is bounded by Assumptlonl 2] for any 5 > 0, we have
|G (R') = G (R")]] < (Ca + A)[| — B"||.
Then we have:
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Then from the definition of D(t), we know D(t) — 0, a.s. O

3/2).

A.5 Proof of Theorem

Proof. The proof method follows the proof of Theorem 4.1 in|Liu et al.|(2018). The detail proof is
very involved and out of our major concern. Please refer to the Arxiv version for more details. [

A.6  Proof of Proposition [6]

Proof. Since we restart our record time, we assume here the algorithm is initialized around the global
optimum e;. Thus, we have 3% (U(0))% = =162 < oo. Since U (t) approximates to U (¢)
in this neighborhood, and the second moment of U (*) (¢) is: For i # 1,
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3https://arxiv.org/abs/1806.01660
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To guarantee n%e (m +n716% exp [—2%]) < i we have:
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A.7 Proof of Proposition

Proof. Recall that Theorem@holds when u;} = (h]! — ez)/\/n is bounded. Thus, if (H7(,2)(T1))2 <

1— 62 holds at some time 77, the algorithm has successfully escaped the saddle point. We approximate
U™-1(t) by the limiting process approximation, which is normal distributed at time t. As  — 0, by
simple manipulation, we have
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We then prove P <|U"’1(T1)’ > n_%(5> > 1 —v. Attime t, U"!(¢) approximates to a normal
distribution with mean 0 and variance W&—/\z) [exp (2%) — 1} . Therefore, let ®(x)

be the CDF of N (0, 1), we have
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Solving the above inequality, we get
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A.8 Proof of Proposition

Proof. After Phase I, we restart our record time, i.e., H n,1 (0) = 0. Then we obtain
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Solving the above inequality, we get
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