
A Supplementary material

A.1 Sampling from the posterior distribution

A.1.1 Case I: ⇧tr known

First, consider the case where ⇧tr is known; i.e., ✓ = {A,B}. From Bayes’ rule, we have
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express the likelihood p(D|✓) in a form equivalent to an (un-normalized) Gaussian distribution over ✓, i.e.,
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i0 ]. This implies that ⇡(✓) = N (µ,⌃) p(✓). Therefore, when the prior p(✓) is non-informative (p(✓) / 1)
or Gaussian (self-conjugate), the posterior is also Gaussian.

A.1.2 Case II: ⇧tr unknown

Next, consider the generic case in which all parameters are unknown. Then ✓ = {A,B,⇧}. One approach to
sampling from the posterior involves Gibbs sampling [12], i.e., alternating between the following two sampling
steps:

{Ak, Bk} ⇠ p(A,B|⇧k�1,D), (14)
⇧k ⇠ p(⇧|Ak, Bk,D) (15)

to form the Markov Chain {Ak, Bk,⇧k}1k=1. As demonstrated in A.1.1, the distribution p(A,B|⇧k�1,D) is
Gaussian, so sampling is straightforward. To sample from p(⇧|Ak, Bk,D), first note

p(⇧|A,B,D) / p(D|A,B,⇧)p(⇧). (16)
Observe that
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where W�1(·, ·) denotes the inverse Wishart distribution. Note, if N  nx + 1 then ⌫ is not valid. However,
we may consider a prior p(⇧) such as p(⇧) / det(⇧)�

nx+1
2 (Jeffreys’ noninformative prior) which means
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where ⌫ = N > 0. This is a well-defined inverse Wishart distribution, sampling from which is straightforward.

A.2 Proofs

A.2.1 Proof of Lemma 4.1

Lemma. T (S, S0) � S
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of S
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Proof. Let D = S � S0 = L
0
L, i.e, L is the Cholesky factorization of D. Then,
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where the penultimate implication invokes the Woodbury matrix inversion identity [37, eq. 159].

A.2.2 Proof of Theorem 4.1
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c
M (K, K̄) be defined as in (11), with K̄ such that J

c
M (K̄) is finite. Then Ĵ
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Ĵ(K, K̄|✓i) is defined as the supremum over an infinite family of convex functions over a compact convex set,
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satisfies (10b) also satisfies (9b). This means the feasible set of (10) is a subset of the feasible set of (9), hence
Ĵ(K, K̄|✓i) � J(K|✓i). Finally, we prove tightness. As we have already proved Ĵ(K, K̄|✓i) � J(K|✓i), it
suffices to prove that X̄i is a feasible solution to (10b). As T (X̄i, X̄i) = X̄

�1
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is equivalent to (9b), which is feasible by definition of X̄i. Hence, X̄i is a feasible solution of (10), that achieves
tr X̄iGiG

0
i = J(K̄|✓i), by definition of X̄i.

A.2.3 Proof of Theorem 4.2

Theorem. Suppose there exists K 2 Rnx⇥nu such that (Ai + BiK)0X(Ai + BiK) � X � 0 for X � 0
and all ⇥ = {Ai, Bi}Ni=1. Then (A + BK)0X(A + BK) �X � 0 for all {A,B} 2 conv⇥, where conv⇥
denotes the convex hull of ⇥.

Proof. It is sufficient to show that (A+BK)0X(A+BK)�X � 0 defines a convex set in terms of (A,B).
By the Schur complement,
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which is convex in A,B for given (i.e. fixed) K and X .

A.3 Additional material for experiments on the rotary inverted pendulum

A.3.1 System description

The Quanser QUBE-Servo 2 inverted pendulum is depicted in Figure 4. The system consists of an actuated arm
that rotates in the horizontal plane; actuation is provided by an electrical motor. Attached to the end of the rotary
arm is an un-actuated pendulum, which is free to rotate. The voltage applied to the electric motor constitutes
the control input u for the LQR problem. Rotary encoders record the angular position of the rotary arm and
pendulum, denoted ↵a and ↵p, respectively. These angular positions are fed through a high-pass-filter to provide
angular velocity estimates, (↵̇a, ↵̇p). The observed state is then given by x = [↵a,↵p, ↵̇a, ↵̇p]

0.

A.3.2 Experimental procedure

To generate one rollout of problem data, we first swing-up the pendulum to the inverted position, stabilized
by an LQR designed using a physics-based model of the system. Then we apply the voltage signal vt =
Kxt + sin(!t) +wt and record the resulting state evolution (sampled at 100Hz), until the pendulum angle |↵p|
exceeds 20�, or the rotary arm angle |↵a| exceeds 50�. Here K = [1,�10, 1,�3] constitutes a state feedback
policy that does not stabilize the system, but does keep the pendulum upright from slightly longer than if it were
absent. This extends the typical rollout duration to around 3-5 seconds, before the pendulum angle exceeds
20�. The angular frequency ! is randomly sampled each rollout, ! ⇠ U [20, 35], where U [a, b] denotes the
uniform distribution over the interval [a, b]. Finally, wt denotes band-limited white noise, with a sampling time
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of Ts = 0.01, and a gain of 0.05. wt represents additional exogenous disturbances that we artificially introduce
to the system.

Training data then consists of {xt, ut}Tt=0, where xt denotes the recorded state sequence, and ut = Kxt +
sin(!t), i.e., the disturbance wt is not observed for learning. T is truncated to 500 (i.e. 5 seconds) in the event
that the rollout lasts this long. A typical rollout is depicted in Figure 5.

Figure 4: The Quanser QUBE-Servo 2 rotary pendulum, in the inverted position. Photo:
www.quanser.com/products/qube-servo-2.

A.3.3 Bounds for robust methods

The robust synthesis methods worst-case, H2/H1, and alternate-r require bounds on the error of the least
squares estimate, i.e., ✏A � kAls � Atrk2 and ✏B � kBls � Btrk2. In [17], these bounds are estimated, with
a specific confidence level, via a Boostrap algorithm, assuming that the covariance is known. In our setting,
we estimate these bounds as described in Section 5.2, i.e., by sampling from a 95% confidence region of the
posterior distribution. This ensures a fair comparison between the methods, as they are, in essence, required
to stabilize the same region of the parameter space. We observed, however, that these bounds on the least
squares error were too conservative; the magnitude of the uncertainty was too large, and the control synthesis
optimization problems were infeasible. The experiments presented in Figure 3 were attained by scaling down
these error bounds by a factor of 100. A number of scaling factors were tested, but 100 was found to achieve a
reasonable trade-off between robustness and feasibility. It is worth emphasizing that the proposed method used
the samples from a 95% confidence region without any such scaling.
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Figure 5: A typical rollout from the experimental procedure in A.3.2.
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