
6 Supplementary Material for Proximal Graphical Event Models

6.1 Theorem Proofs

6.1.1 Proof for Theorem 1

The log likelihood of the data given a PGEM equals:∑
u

N(x;u) ln
N(x;u)

D(u)
−
∑
u

N(x;u) = (⇐ Replacing λ̂x|u =
N(x;u)

D(u)
)

∑
u

N(x;u) ln
N(x;u)

D(u)
−N(x) = (⇐ Since

∑
u

N(x;u) = N(x))

−N(x) +N(x)DKL((N(x;u)/N(x))||(D(u)/T ))

−N(x) lnN(x) +N(x) lnT

The last step is from the definition of KL divergence and after re-arranging constants. Maximizing
the log likelihood is therefore equivalent to maximizing the KL divergence in the final term.

6.1.2 Proof for Theorem 2

As presented in the discussion that immediately follows the presentation of Theorem 1 in the main
paper, any choice of windows wx for node X leads to a finite partition of [0, T ]. Each member in
this partition corresponds to some parental state u, and in general, it is a union of a collection of
non-intersecting half-open or closed time intervals that are subsets of [0, T ]. Each member thus has
a net total duration, which sums to T across the above partition, and similarly a net total count of
the number of arrivals of type X . (Note that each parental state u has a binary bit (active/absent) for
each parent under consideration. The marginal component of this parental state corresponding to any
specific parent simply refers to whether that specific parent is active or absent).

Consider any pair-wise window, say wzx for any parent Z and child X . As this window increases, it
changes the above partition in terms of which subsets of [0, T ] correspond to which parental state.
Recall that {t̂zz} and {t̂zx} denote inter-event times, and that the former includes time from the
last occurrence of Z to the final time T . Let t̂(k)

zz denote the N(z) ascending order statistics of the
inter-event times {t̂zz}, including the inter-event time between the last arrival of Z and T . We argue
that when wzx gets bigger than t̂(N(z))

zz , i.e. bigger than the biggest such inter-event time, it means
all times in [tz,1, T ] correspond to parent states whose marginal component for parent Z will be
active. Here tz,1 denotes the time of first occurrence of Z. (Note that all times in the complement,
namely all times in [0, tz,1), correspond to parent states whose marginal component for parent Z
is inactive by definition in PGEM, regardless of the value of wzx). Increasing wzx beyond t̂(N(z))

zz

cannot possibly change this marginal component in the resulting partition, since the entire relevant
subset of the horizon is already marked active from the perspective of component Z. This establishes
an upper bound for any wzx. We also note that T is a trivial upper bound regardless of any further
argument since the horizon under consideration, and hence all arrival epochs under consideration as
well as any inter-event windows of influence, are bounded by T . Theorem 2 provides a tighter upper
bound that we exploit in our algorithms.

6.1.3 Proof for Theorems 3 and 4

Both Theorem 3 and Theorem 4 pertain to univariate optimization of the window between parent
Z and node X . The optimal window lies in an interval [0, W̄ ] where W̄ = max{t̂zz} < T (see
Theorem 2).

For node X with parent Z, let w = wzx denote the univariate window that needs to be optimized.
Let t̂(k)

zz and t̂(k)
zx denote the ascending order statistics of these inter-event times respectively.

From their respective definitions, note that the count N(x; z) is a step function of the inter-event
times {tzx}, whereas the duration D(z) is piecewise linear in the inter-event times {tzz}. Formally,
N(x; z) =

∑N(x)
k=1 I(w ≥ t̂(k)

zx ) and D(z) =
∑N(z)
k=1 min(w, t̂

(k)
zz ).
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The log likelihood for node X with parent Z can be written as:

logLX = N(x; z) ln
N(x; z)

D(z)
+N(x; z̄) ln

N(x; z̄)

D(z̄)

Consider candidate window w between some w0 = t̂
(k)
zx and w′ = t̂

(k+1)
zx . Note that the counts

remain constant from w0 to the left limit of w′. Therefore, for w ∈ [w0, w
′), maximizing the log

likelihood is equivalent to minimizing:

g(w) = N(x; z) ln f(w) + (N(x)−N(x; z)) ln (T − f(w)),

where f(w) = D(z) is an increasing piecewise linear function and the count N(x; z) is constant in
the interval [w0, w

′). The derivative is:

g′(w) = f ′(w)

[
N(x; z)

f(w)
− (N(x)−N(x; z))

(T − f(w))

]
This derivative is negative at w = w0 if f(w0) > N(x;z)

N(x) × T . Since f(w) is an increasing function,
increasing the window will continue to keep the derivative negative, in which case the left limit of w′
is the window that minimizes g(w). Alternatively, the gradient is positive at w = w0 and either stays
positive as w is increased to w′ or switches sign when f(w) = N(x;z)

N(x) × T . The optimal window in
this interval must therefore either be w0 or the left limit of w′.

The resulting candidate set W ∗ follows from recognizing that w = 0 cannot be the optimal window
and that the optimal window is either at a point or a left limit of where the counts change, as shown
by the analysis above, or at the maximum window W̄ = max{t̂zz}.
Theorem 4 involves the situation where node X has parents Y and we are considering adding a
new parent Z in addition. The proof is similar, except that along with the candidate windows where
the counts change, one also needs to consider the additional changepoints in the piecewise linear
description in any of the various duration functions, each of which is perturbed by changing the
univariate w = wzx under question. In this situation, the log likelihood for node X is:

logLX =
∑
y

N(x;y, z) ln
N(x;y, z)

D(y, z)
+
∑
y

N(x;y, z̄) ln
N(x;y, z̄)

D(y, z̄)

As before, if we consider w between some w0 = t̂
(k)
zx and w′ = t̂

(k+1)
zx , then since the counts remain

constant for w ∈ [w0, w
′), maximizing the log likelihood is equivalent to minimizing:

g(w) =
∑
y

N(x;y, z) ln fy(w) +
∑
y

(N(x;y)−N(x;y, z)) ln (D(y)− fy(w)),

where fy(w) = D(y, z) is a piecewise linear function in w. Performing similar analysis as conducted
earlier, if we restrict attention to intervals between points where either the counts change, such as w0

and w′, but also the points where the durations D(y, z) change for all y, then the optimal window
must either lie at the beginning of the interval or is a left limit of the end of the interval. Algorithm 1
constructively identifies in linear time all such changepoints without trying to identify which of the
several duration functions (upper bounded in count by min(2|U|, 2N)) any specific changepoint
corresponds to.

6.1.4 Proof for Lemma 5

Proof. The proofs are practically the same as in non-event DAG learning. Take a graph G that differs
from G∗ only on the parent set of X , where it has U instead of U′. Then s(G) =

∑
j 6=X sj(U

′
j) +

sX(U) >
∑
j 6=X sj(U

′
j) + sX(U′) = s(G′). Since G′ with U for X has a subgraph G with a better

score, U′ is not the optimal parent set of X in G∗.

6.1.5 Proof for Theorem 6

Proof. Since U′ is a proper superset, then U′ ⊇ U ∪ Xe and Xe 6∈ U. Because U ⊂ U′,
LX(U′) ≥ LX(U) and tX(U′) > tX(U). Then the difference in scores is sX(U′)−sX(U), which
equals:
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max
θ′

LX(U′)− tX(U′)− (max
θX

LX(U)− tX(U)) ≤ (⇐ from BIC definition)

−max
θX

LX(U)− ti(U
′) + tX(U) = (⇐ as LX(U′) < 0)

N(x)−
2|U|∑
u=1

N(x;u) ln
N(x;u)

Du
− tX(U′) + tX(U) = (⇐ by definition ofLX(U))

N(x)−N(x)

2|U|∑
u=1

N(x;u)

N(x)
ln
N(x;u)/N(x)

Du/T
−N(x) lnN(x)+

N(x) lnT − tX(U′) + tX(U) = (⇐ by adding zeros)
N(x)−NXDkl((N(x;u)/N(x))||(Du/T ))

−N(x) lnN(x) +N(x) lnT − tX(U′) + tX(U) ≤ (⇐ by KL-div definition)

N(x)−N(x) lnN(x) +N(x) lnT − (2|U|2|Xe|| − 2|U|) lnT = (⇐ by KL-div property)

N(x)−N(x) lnN(x) +N(x) lnT − 2|U|(2|Xe| − 1) lnT ≤ (⇐ by factorization)

N(x)−N(x) lnN(x) +N(x) lnT − 2|U| lnT

Finally,N(x)−N(x) lnN(x)+N(x) lnT −2|U| lnT < 0 ifN(x)−N(x) lnN(x)+N(x) lnT <

2|U| lnT ,⇒ 2|U| > N(x)(1−lnN(x))
lnT +N(x). Hence, sX(U′) < sX(U) if the condition holds, and

Lemma 5 guarantees that U′ cannot be the parent set of Xi in the optimal structure.

6.1.6 Proof for Corollary 7

Proof. Assuming T > 2 and N(x) > 2, hence lnT > 1 and lnN(x) > 1, ⇒ 1 − lnN(x) <

0 ⇒ (1−lnN(x))
lnT + 1 < 1, ⇒ N(x)(1−lnN(x))

lnT + N(x) < N(x). Take a variable X with a parent
set U with exactly log2N(x) elements. Since each variable has two states, then 2|U| ≥ N(x) >
N(x)(1−lnN(x))

lnT +N(x). By Theorem 6, we know no proper superset of U can be optimal parent set,
hence the maximal set size is bounded by log2N(x).

6.1.7 Proof for Theorem 8

Proof. The proof follows Theorem 4 of [Campos and Ji, 2011]. If tX(U′) + sX(U) > 0, then
⇒ −tX(U′)− sX(U) < 0. Therefore:

LX(U′)− tX(U′)− sX(U) < 0⇒ sX(U′)− sX(U) < 0

.

Using Lemma 5, U′ is not the optimal parent set forX . Similarly, the result follows for any U′′ ⊃ U′

as tX(U′′) > tX(U′).

6.1.8 Proof for Theorem 9

Theorem 7 and 9 in Gunawardana and Meek [2016] show consistency of the BIC score and forward-
backward search in a more general GEM model, specifically the recursive timescale GEM (RTGEM).
RTGEM relies on four operators on edges to guarantee the parameter and structure learning consis-
tency: add edge, delete edge, split the time interval, or extend the time interval. If we assume the
underlying true model is a PGEM, which only has one time interval (a recent/proximal time interval),
then two of the four operators – the split and extend operators – are not needed. Hence, by using the
add and delete edge operators, PGEM can learn the same models as RTGEM, assuming that PGEM
learns the ground truth windows and conditional intensity functions. Therefore, the consistency of
our algorithm directly follows Theorem 7 and 9 in Gunawardana and Meek [2016].
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6.1.9 Proof for Theorem 10

Inter-event times can be obtained in time O(MN). Also, one can divide the dataset into datasets
with only pairs of event labels in O(MN). For the FBS-IW algorithm, one can pre-compute optimal
windows for all pairs Z to X . If labels occur in around the same proportion, the sizes of the candidate
window set as well as pairwise datasets are O(N/M). Finding optimal windows for all pairs is
therefore M2 ∗ (N/M)2 = O(N2). In the forward search, when there are K parents for node X , the
dataset can be filtered (in O(N)) to a size of O(KN/M). To compute the score for a node X with a
given graph and windows, one needs to compute the log likelihood from the summary statistics. This
can be done in O(K) time for each point in the dataset. In the worst case, all nodes are added, in time
O(
∑M
K=1K

2N/M) = O(M2N). Running this for all nodes is therefore O(M3N). The backward
search has similar time complexity.

For the FBS-CW algorithm, one cannot pre-compute windows; they are obtained conditionally,
given existing parents and windows. Recall that for a node X with K parents, the dataset can be
filtered (in O(N)) to a size of O(KN/M); in this case, O(KN/M) is also the size of the number of
candidate windows. In the worst case, all nodes are added, and O(K) work is done for all candidate
windows and for all points in the dataset, in time O(

∑M
K=1K

3N2/M2) = O(M2N2). Running
this for all nodes is therefore O(M3N2). The backward search is more efficient as windows are not
re-computed.

6.2 PGEMs for Synthetic Datasets

The 6 PGEMs that generated the synthetic datasets were constructed using the following model
building parameters:

PGEM #1: Graph: M = 5, Kmin = 0, Kmax = 5; Windows: wmin = 15, wmax = 30, ∆w = 5;
Lambdas: r = 1, KA = 5, LA = {2, 3, 4}, γA = 2, γD = 0.25.

PGEM #2: Graph: M = 5, Kmin = 0, Kmax = 5; Windows: wmin = 30, wmax = 60,
∆w = 10; lambdas: r = 1, KA = 5, LA = {1, 3, 4}, γA = 2, γD = 0.25.

PGEM #3: Graph: M = 5, Kmin = 0, Kmax = 5; Windows: wmin = 15, wmax = 30, ∆w = 5;
Lambdas: r = 1, KA = 5, LA = {1, 2, 3}, γA = 3, γD = 0.2.

PGEM #4: Graph: M = 10, Kmin = 0, Kmax = 5; Windows: wmin = 15, wmax = 30,
∆w = 5; Lambdas: r = 1, KA = 5, LA = {1, 2, 3, 5, 10}, γA = 2, γD = 0.25.

PGEM #5: Graph: M = 10, Kmin = 0, Kmax = 5; Windows: wmin = 30, wmax = 60,
∆w = 10; lambdas: r = 1, KA = 5, LA = {2, 3, 5, 6, 9}, γA = 2, γD = 0.25.

PGEM #6: Graph: M = 10, Kmin = 0, Kmax = 5; Windows: wmin = 15, wmax = 30,
∆w = 5; Lambdas: r = 1, KA = 5, LA = {2, 5, 6, 7, 9}, γA = 3, γD = 0.2.

14


	Supplementary Material for Proximal Graphical Event Models
	Theorem Proofs
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Theorems 3 and  4
	Proof for Lemma 5
	Proof for Theorem 6 
	Proof for Corollary 7
	Proof for Theorem 8
	Proof for Theorem 9
	Proof for Theorem 10

	PGEMs for Synthetic Datasets


