
Snap ML: A Hierarchical Framework for Machine
Learning

Celestine Dünner∗1 Thomas Parnell∗1∗
Dimitrios Sarigiannis1 Nikolas Ioannou1 Andreea Anghel1 Gummadi Ravi2

Madhusudanan Kandasamy2 Haralampos Pozidis1
1IBM Research, Zurich, Switzerland

2IBM Systems, Bangalore, India
{cdu,tpa,rig,nio,aan}@zurich.ibm.com
{ravigumm,madhusudanan}@in.ibm.com

hap@zurich.ibm.com

Abstract

We describe a new software framework for fast training of generalized linear
models. The framework, named Snap Machine Learning (Snap ML), combines
recent advances in machine learning systems and algorithms in a nested manner
to reflect the hierarchical architecture of modern computing systems. We prove
theoretically that such a hierarchical system can accelerate training in distributed
environments where intra-node communication is cheaper than inter-node com-
munication. Additionally, we provide a review of the implementation of Snap ML
in terms of GPU acceleration, pipelining, communication patterns and software
architecture, highlighting aspects that were critical for achieving high performance.
We evaluate the performance of Snap ML in both single-node and multi-node envi-
ronments, quantifying the benefit of the hierarchical scheme and the data streaming
functionality, and comparing with other widely-used machine learning software
frameworks. Finally, we present a logistic regression benchmark on the Criteo
Terabyte Click Logs dataset and show that Snap ML achieves the same test loss
an order of magnitude faster than any of the previously reported results, including
those obtained using TensorFlow and scikit-learn.

1 Introduction

The widespread adoption of machine learning and artificial intelligence has been, in part, driven by
the ever-increasing availability of data. Large datasets can enable training of more expressive models,
thus leading to higher quality insights. However, when the size of such datasets grows to billions of
training examples and/or features, the training of even relatively simple models becomes prohibitively
time consuming. Training can also become a bottleneck in real-time or close-to-real-time applications,
in which one’s ability to react to events as they happen and adapt models accordingly can be critical
even when the data itself is relatively small.

A growing number of small and medium enterprises rely on machine learning as part of their everyday
business. Such companies often lack the on-premises infrastructure required to perform the compute-
intensive workloads that are characteristic of the field. As a result, they may turn to cloud providers in
order to gain access to such resources. Since cloud resources are typically billed by the hour, the time
required to train machine learning models is directly related to outgoing costs. For such an enterprise
cloud user, the ability to train faster can have an immediate effect on their profit margin.

∗equal contribution.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

The above examples illustrate the demand for fast, scalable, and resource-savvy machine learning
frameworks. Today there is an abundance of general-purpose environments, offering a broad class of
functions for machine learning model training, inference, and data manipulation. In the following
we will list some of the most prominent and broadly-used ones along with certain advantages and
limitations.

scikit-learn [16] is an open-source module for machine learning in Python. It is widely used due to
its user-friendly interface, comprehensive documentation and the wide range of functionality that it
offers. While scikit-learn does not natively provide GPU support, it can call lower-level native C++
libraries such as LIBLINEAR to achieve high-performance. A key limitation of scikit-learn is that it
does not scale to datasets that do not fit into the memory of a single machine.

Apache MLlib [10] is Apache Spark's scalable machine learning library. It provides distributed
training of a variety of machine learning models and provides easy-to-use APIs in Java, Scala and
Python. It does not natively support GPU acceleration, and while it can leverage underlying native
libraries such as BLAS, it tends to exhibit slower performance relative to the same distributed
algorithms implemented natively in C++ using high-performance computing frameworks such as
MPI [6].

TensorFlow [1] is an open-source software library for numerical computation using data flow graphs.
While TensorFlow can be used to implement algorithms at a lower-level as a series of mathematical
operations, it also provides a number of high-level APIs that can be used to train generalized linear
models (and deep neural networks) without needing to implement them oneself. It transparently
supports GPU acceleration, out-of-core operation, multi-threading and can scale across multiple nodes.
When it comes to training of large-scale linear models, a downside of TensorFlow is the relatively
limited support for sparse data structures, which are frequently important in such applications.

In this work we will describe a new software framework for training generalized linear models
(GLMs) that is designed to offer effective GPU-accelerated training in both single-node and multi-
node environments. In mathematical terms, the problems of interest can be expressed as the following
convex optimization problem:

min
α
f(Aα) +

∑
i

gi(αi) (1)

where α denotes the model to be learnt from the training data matrix A and f, gi are convex
functions specifying the loss and regularization term. This general setup covers many primal and
dual formulations of widely applied machine learning models such as logistic regression, support
vector machines and sparse models such as lasso and elastic-net.

Contributions. The contributions of this work can be summarized as follows:

• We propose a hierarchical version of the CoCoA framework [18] for training GLMs in distributed,
heterogeneous environments. We derive convergence rates for such a scheme which show that a
hierarchical communication pattern can accelerate training in distributed environments where
intra-node communication is cheaper that inter-node communication.

• We propose a novel pipeline for training on datasets that are too large to fit in GPU memory. The
pipeline is designed to maximize the utilization of the CPU, GPU and interconnect resources
when performing out-of-core stochastic coordinate descent.

• We review the implementation of the Snap ML framework, including its GPU-based local solver,
streaming CUDA operations, communication patterns and software architecture. We highlight
the aspects that are most critical in terms of performance, in the hope that some of these ideas may
be applicable to other machine learning software, including popular deep learning frameworks.

2 System Overview

We start with a high-level, conceptual description of the Snap ML architecture. The core innovation
of Snap ML is how multiple state-of-the-art algorithmic building blocks are nested to reflect the
hierarchical structure of a distributed systems. Our framework, as illustrated in Figure 1, implements
three hierarchical levels of data and compute parallelism in order to partition the workload among
different nodes in a cluster, taking full advantage of accelerator units and exploiting multi-core
parallelism on the individual compute units.

2

Level 1. The first level of parallelism spans across individual worker nodes in a cluster. The data is
distributed across the worker nodes that communicate via a network interface. This data-parallel
approach serves to increase the overall memory capacity of our system and enables the training of
large-scale datasets that exceed the memory capacity of a single machine.

Level 2. On the individual worker nodes we can leverage one or multiple GPU accelerators by
systematically splitting the workload between the host and the accelerator units. The different
workloads are then executed in parallel, enabling full utilization of the available hardware resources
on each worker node, thus achieving a second level of parallelism, across heterogeneous compute
units.

Level 3. To efficiently execute the workloads assigned to the individual compute units we leverage the
parallelism offered by their respective compute architecture. We use specially-designed solvers to take
full advantage of the massively parallel architecture of modern GPUs and implement multi-threaded
code for processing the workload on CPUs. This results in an additional, third level of parallelism
across cores.

Figure 1: Hierarchical structure of our distributed framework.

2.1 Hierarchical Optimization Framework

The distributed algorithmic framework underlying Snap ML is a hierarchical version of the popular
CoCoA method [18]. CoCoA is designed for communication-efficient distributed training of models
of the form (1) across K worker nodes in a data-parallel setting. It assumes that the data matrix A
is partitioned column-wise across the K workers and defines independent data-local optimization
tasks for each of them. These tasks only require access to the local partition of the training data and
a shared vector v. This shared vector v is periodically exchanged over the network to synchronize
the work between the different nodes. Now, assume in addition to the K worker nodes we have
L GPUs available on each node. A naive way to parallelize the work would be to setup CoCoA
with KL workers, define KL local subproblems and assign one subproblem to each GPU. This
approach, however, would require the synchronization of v between all GPUs in every round of the
algorithm and the performance would thus be limited be the slowest interconnect. To avoid this and
take advantage of the fast interconnect amongst the GPUs of the same node, we propose a nested
version of the CoCoA scheme which offers the possibility to perform multiple inner communication
rounds within one outer communication round over the network. The local subproblems in the nested
version are defined according to [18] where we recursively apply the separable approximation to
the respective objectives. For an explicit statement of the local subproblems we refer the reader to
the Appendix. To give convergence guarantees for our hierarchical scheme we refine the existing
convergence results of CoCoA and combine these with tight convergence guarantees for the inner
level of CoCoA derived by exploiting the specific structure of the subproblem objective.

Assume the local subtasks are solved θ-approximately according to the definition introduced in [18].
Then, we can bound the suboptimality ε := F(α)−minα F(α) after t1 iterations of CoCoA with

3

t2 inner iterations each as

E[ε] ≤

[
4R2KβcA

1−
(
1− (1− θ) 1

L

)t2
]

1

t1
(2)

where β denotes the smoothness parameter of f , R is a bound on the support of gi and cA := ‖A‖2.
For strongly convex gi a linear rate can be derived where we refer the reader to the appendix for
detailed proofs. For the special case where we choose to only do a single update in the inner level,
i.e., t2 = 1, we recover the classical CoCoA scheme with KL workers.

The benefit of the proposed hierarchical scheme becomes more significant if the discrepancy between
the costs of intra-node and inter-node communication is large such as often found in modern cloud
infrastructures. Let us assume there is a cost c1 associated with communicating the shared vector v
over the network and a cost c2 with communicating v between the GPUs within a node. Then, for a
given cost budget C, the right-hand side of (2) can be optimized for t1, t2 to achieve the best accuracy
under a cost constraint C ≤ t1t2ccomp + t1c1 + t1t2c2 where ccomp denotes the cost of computing a
θ-approximate solution on the subtasks.

3 Implementation Details

In this section we will describe implementation details of Snap ML starting with details of the
GPU-based local solver and working up to the high-level APIs. We have attempted to highlight the
components that are most critical in terms of performance, in the hope that some of these ideas may
be applicable to other machine learning software, including popular deep learning frameworks.

3.1 GPU Local Solver

To efficiently solve the optimization problem assigned to the GPU accelerators we implement the
twice-parallel asynchronous stochastic coordinate descent solver (TPA-SCD) [15, 14].

Extension for Logistic Regression. In the previous literature [15, 14], TPA-SCD has been applied to
ridge regression, lasso and support vector machines. These objectives have the desirable property
that coordinate descent updates have closed-form solutions. In Snap ML, we also support objective
functions for which this is not the case such as logistic regression. To address this issue, instead of
solving the coordinate-wise subproblem exactly, we make a single step of Newton’s method, using
the previous value of the model as the initial point [22]. We find that the computations required to
compute the Newton step (i.e, the first and second derivative) can also be expressed in terms of a
simple inner product and thus the same TPA-SCD machinery can be applied.

Adaptive Damping. A challenge arises when applying the asynchronous TPA-SCD algorithm to dense
datasets (or datasets which are globally sparse but locally dense in a few features) due to the fact
that a thread block on the GPU may have an inconsistent view of the shared vector v if it is reading
while another thread block has only partially written its updates to the same vector in memory. These
inconsistencies can lead to divergence in the coordinate descent algorithm. To alleviate this issue we
have implemented a damping heuristic, similar to that proposed in [23], to artificially slows down the
model updates leading to more robust convergence behavior. We initialize the algorithm with the
damping parameter set to 1 (i.e., no damping) and after every sub-epoch on the GPU, verify that the
value of the local subproblem has actually decreased. If it has not, we discard the current round of
model updates, halve the value of the damping parameter and proceed. We note that the damping
parameter may be adapted differently across data partitions. This adaptive scheme introduces the cost
needed to evaluate the value of the local subproblem within every sub-epoch, however this cost can
be mostly amortized into the TPA-SCD kernel and only requires an additional reduce operation, for
which we use the DeviceReduce operator provided by the CUB library [17].

3.2 Pipelining

Asynchronous Data Streaming. When the data partition of each node is too large to fit into the
aggregate GPU memory on that node, we must employ out-of-core techniques to move the data
in and out of GPU memory. One option is to split the data into batches and sequentially process
each batch on the local GPUs. Snap ML also provides the ability to use DuHL [7] to dynamically

4

Figure 2: Data streaming pipeline. Figure 3: Example of snap-ml-mpi API.

determine which set of data points that are most beneficial to move into the GPU memory as the
training progresses. Both of these schemes involve moving data over the CPU-GPU interconnect and
while, for sparse models, it has been shown that when using DuHL the amount of data that needs to
be copied reduces with the number of rounds, there can still be some significant overheads related to
data transfer for dense models. To alleviate these overheads we have developed an alternative, more
hardware-optimized approach. We partition the GPU memory into an active buffer and a swap buffer.
Then, using CUDA streams, we can perform TPA-SCD on the data in the active buffer while at the
same time copying the next batch of data into the swap buffer. As we shall show in Section 4, this
pipelined approach can allow one to completely hide the data transfer time behind the computation
time when using high-speed interconnects such as NVLINK.

Streaming Permutation Generation. In order to implement TPA-SCD, we must generate a permutation
of the coordinates in the active buffer. In order to fully utilize the available hardware, we introduce
a third pipeline stage to the training algorithm whereby the CPU is used to generate a set of 32-bit
pseudo-random numbers for the batch of data that is currently being transferred into the swap buffer.
At the start of the next round, we copy the random numbers onto the GPU device and use the
DeviceRadixSort operator provided by CUB to sort the integers by index thus resulting in the required
permutation in GPU memory. The sorting function templates provided by CUB have a significant
advantage over those provided by the Thrust library [12] in that they properly support CUDA streams.
Thrust’s sort by key internally allocates memory which is a blocking operation on the GPU, whereas
CUB explicitly requires that all memory be allocated upfront. The resulting 3-stage pipeline is
illustrated in Figure 2. In order to ensure that the pseudo-random number generator does not become
a bottleneck we implement a multi-threaded version of the highly efficient XORSHIFT algorithm [9].

3.3 Communication Patterns

Intra-node Communication. Within a single node, communication of the shared vector between the
GPUs is handled within a single process using multi-threading. A thread is spawned to manage
each GPU and within each local iteration, the updated shared vector is copied onto all devices using
asynchronous CUDA memcpy operations. The GPU performs its updates and the changes to the
shared vector are asynchronously copied back to the CPU and aggregated. After a number of local
iterations are completed, the local changes to the shared vector are aggregated over the network
interface. How exactly the updates to the shared vector are aggregated depends on whether the Spark
or MPI API to Snap ML is used, as described in the next section.

Inter-node Communication. When using Spark, each node is managed by a Spark executor and the
changes to the global shared vector are copied over the JNI from the underlying shared library into
the JVM memory space and aggregated using Spark’s reduce operator. The data is represented using
raw byte arrays in order to minimize serialization/deserialization cost. The updated value of the
shared vector is then communicated to each node using Spark’s broadcast operator. When using MPI,
an MPI process is spawned on each node and the global shared vector is updated in place using MPI’s
Allreduce operator.

NUMA Locality. In order to achieve the maximal bandwidth provided by the CPU-GPU interconnect
it is essential that the software framework is implemented in a NUMA-aware manner. Specifically, if

5

the software is deployed on a two-socket node in which two GPUs are attached to each socket, it is
critical that the threads that manage data transfer to those GPUs be pinned to the correct socket. This
can be easily enforced using the functionality provided in the MPI rankfile that assigns the cores to
each MPI process.

3.4 Software Architecture

C++ Template Library. The core functionality of Snap ML is implemented in C++/CUDA as a
header-only template library: libglm. It provides class templates for CPU, GPU and multi-GPU
local solvers that can be instantiated with arbitrary data formats (e.g. sparse, dense, compressed) and
arbitrary objective functions mapping (1).

Local API. We provide a Python module, snap-ml-local, that adheres to the scikit-learn API and
can be used to accelerate training of GLMs in a non-distributed setting. This API is targeted at
single-node users who wish to accelerate existing scikit-learn-based applications using one or more
GPUs that are attached locally. This module exploits the functionality offered by libglm while being
flexible in that it can be readily combined with additional functionality from scikit-learn such as data
loading, pre-processing and evaluation metrics.

MPI API. For users with larger data, who wish to perform training in a distributed environment we
provide an additional Python module: snap-ml-mpi. By importing this module, the users can describe
their application using high-level Python code and then submit an MPI job on their cluster using
mpirun specifying the nodes to be used for training. At run-time, the Python code makes calls to
libglm via an intermediate C++ layer that executes MPI operations to coordinate the training. The
module also provides functions for efficient distributed data loading and evaluation of performance
metrics. An illustrative example is given in Figure 3.

Spark API. Finally, for users who wish to perform distributed training on Apache Spark-managed
infrastructure we provide snap-ml-spark. This module is essentially a lightweight Py4J [5] wrapper
around an underlying jar package that interacts with libglm via the Java Native Interface. Local data
partitions are managed by libglm and reside in memory outside of the JVM, thus enabling efficient
GPU acceleration. Apache Spark introduces a number of additional layers into the software stack and
thus a number of associated overheads. For this reason, we typically observe that the performance of
the Spark-based deployments of Snap ML are slower than those using MPI [6].

4 Experimental Results

In the following we will evaluate the performance of Snap ML and compare with some widely-used
ML frameworks in a single-node environment and a multi-node environment. Additionally, we will
provide an in-depth analysis of two key aspects: pipelining and hierarchical training.

Application and Datasets. We will focus on the application of click-through rate prediction (CTR),
which is a binary classification task. For our multi-node experiments we will use the Terabyte Click
Logs dataset (criteo-tb) released by Criteo Labs [3]. It consists of 4.2 billion examples with 1 million
feature values. We use the data collected during the first 23 days for the training of our models
and the last day for testing. The training data is 2.3TB in SVM Light format and is thus one of the
largest publicly available datasets, making it ideal for evaluating the performance of distributed ML
frameworks. For our single-node experiments we use the smaller dataset released by Criteo Labs as
part of their 2014 Kaggle competition (criteo-kaggle); the dataset has 45 million training examples
and 1 million features. We perform a random 75%/25% train/test split. We obtained the preprocessed
data for both datasets from [2].

Infrastructure. The results in this section were obtained using a cluster of 4 IBM Power Systems*
AC922 servers. Each server has 4 NVIDIA Tesla V100 GPUs attached via the NVLINK 2.0 interface.
The nodes are connected via both an InfiniBand network as well as a slower 1Gbit Ethernet interface.
For evaluation of the pipeline performance we also used an Intel x86-based machine (Xeon** Gold
6150 CPU@2.70GHz) with a single NVIDIA Tesla V100 GPU attached using the PCI Gen3 interface.

6

Figure 4: Single node benchmark (criteo-kaggle). Figure 5: Performance of hierachical CoCoA.

4.1 Single-Node Performance

We benchmark the single node performance of Snap ML for the training of a logistic regression
classifier against an equivalent solution in scikit-learn and TensorFlow. The same value of the
regularization parameter was used in all cases. The different frameworks are used as follows:

scikit-learn. We load a pickled version of the dataset and train a logistic regression classifier in
scikit-learn, with the option to solve the dual formulation enabled which allows faster training for this
application. Under the hood, scikit-learn is calling the LIBLINEAR library [8] to solve the resulting
optimization problem. It operates in single-threaded mode and can not leverage any available GPU
resources.

TensorFlow. For the TensorFlow experiment, we first convert the svmlight data into the native binary
format for TensorFlow (TFRecord) using a custom parser. We then feed the TFRecord to a TensorFlow
binary classifier (tf.contrib.learn.LinearClassifier), treating the TFRecord features as sparse columns
with integerized features. We use the stochastic dual coordinated ascent optimizer provided by
TensorFlow, using the optimizer and train input function options suggested by Google [11]. We use a
batch size of 1M, and a number of IO threads equal to the number of physical processors – settings
which we have experimentally found to perform the best. The implementation is multi-threaded and
can leverage GPU resources (for the classifier training and evaluation) if available. In this case we let
TensorFlow use a single V100 GPU since we found it was faster than using all four.

Snap ML. We load a pickled version of the dataset and train a logistic regression classifier in Snap
ML using the snap-ml-local API. To compare with TensorFlow, we only allow Snap ML to use a
single GPU. Since the criteo-kaggle dataset fits into GPU memory, the streaming functionality of
Snap ML is not active in this experiment.

In Figure 4, we compare the performance of the three aforementioned solutions. TensorFlow
converges in approximately 500 seconds whereas scikit-learn takes around 200 seconds. This
difference may be explained by the highly optimized C++ backend of scikit-learn for workloads that
fit in memory, whereas TensorFlow processes data in batches 2. Finally, we can see that Snap ML
converges in around 20 seconds, an order of magnitude faster than the other frameworks.

4.2 Out-of-core Performance

In order to evaluate the streaming performance of Snap ML we train a logistic regression model
using a single GPU for the first 200 million training examples of the criteo-tb dataset. We profile the
execution on a machine that uses the PCI Gen 3 interconnect and a machine that uses the NVLINK
2.0 interconnect. In Figure 6a, we show the profiling results for the PCI-based setup. On stream
S1, the random numbers for the next batch are copied (Init) and then the sorting and TPA-SCD are
performed (Train chunk) - this takes around 90ms. In stream S2 we copy the next data chunk onto
the GPU which takes around 318ms and is thus the bottleneck. In Figure 6b, for the NVLINK-based
setup we observe that the copy time is reduced to 55ms (almost a factor of 6), due to the faster
bandwidth provided by NVLINK 2.0. This speed-up hides the data copy time behind the kernel
execution, effectively removing the copy time from the critical path and resulting in a 3.5x speed-up.

2We did try to load the whole dataset in TensorFlow and not use batching, but there seems to be a known
issue with TensorFlow for datasets that are bigger than 2GB [13].

7

(a) PCIe Gen 3 Interconnect. (b) NVLINK 2.0 Interconnect.

Figure 6: Pipelined performance ‘out-of-core’.

4.3 Hierarchical Scheme

To evaluate the effect of the hierarchical application of CoCoA, we train the first billion examples
of the criteo-tb dataset using all 16 GPUs of the cluster. We train a logistic regression model from
snap-ml-mpi and evaluate the time to reach a target training suboptimality ε as a function of the
number of inner CoCoA iterations performed (t2) using both a fast network (InfiniBand) and a slow
network (1Gbit Ethernet). The scheme where t2 = 1 corresponds to the standard non-hierarchical
CoCoA approach. The results, as plotted in Figure 5, show that there is only little benefit to setting
t2 > 1 when using the fast network since communication cost only accounts for a small fraction of
the overall training time, but when using the slow network it is possible to approach the fast network
performance by increasing t2. Such a scheme is therefore suitable for use in cloud-based deployments
where high-performance networking is not normally available.

4.4 Tera-Scale Benchmark

To evaluate the performance of Snap ML on criteo-tb, we use the snap-ml-mpi interface to train a
logistic regression classifier using all 16 GPUs in the cluster. Because the data does not fit into the
aggregated memory of the GPUs the streaming functionality of Snap ML are active in this experiment.
We obtain a logarithmic loss on the test set of 0.1292 in 1.53 minutes. This is the total runtime
including data loading, initialization and training time.

There have been a number of previously-published results on this same benchmark, using different
machine learning software frameworks, as well as different hardware resources. We will briefly
review these results:

• LIBLINEAR. In an experimental log posted in the libsvm datasets repository [2], the authors report
using LIBLINEAR-CDBLOCK [21] to perform training on a single machine with 128GB of RAM.

• Vowpal Wabbit. In [19], the authors evaluated the performance of Vowpal Wabbit, a fast out-of-core
learning system. Training was performed on a 12 core (24 thread) machine with 128GB of memory
using Vowpal Wabbit 8.3.0 using the first 3 billion training examples of criteo-tb.

• Spark MLlib. In the same benchmark [19], the authors also measured the performance of the
logistic regression provided by Spark MLlib. They deploy Spark 2.1.0 a cluster with total 512 cores
and 2TB of memory. Each executor is giving 4 cores and 16TB of memory.

• TensorFlow. Google have also published results where they use Google Cloud Platform to scale out
the training of a logistic regression classifier from TensorFlow [20]. They report using 60 workers
machines and 29 parameter machines for the training of the full dataset.

• TensorFlow on Spark. Criteo have published code [4] to train a logistic regression model that
uses Tensorflow together with Spark for distributing the training across multiples node. They also
provide results that were obtained using 12 Spark executors.

In Figure 7, we provide a visual summary of these results. We can observe that Snap ML on 16
GPUs is capable of training such a model to a similar level of accuracy, 46x faster than the best
previously reported results, which was obtained using TensorFlow. In addition to the previously

8

LIBLINEAR
[1 core]

Vowpal Wabbit
[12 cores]

Spark Mllib
[512 cores]

TensorFlow
[60 worker machines,

29 parameter machines]
Snap ML

[16 V100 GPUs]

TensorFlow
[16 V100 GPUs]

TensorFlow on Spark
[12 executors]

0.128

0.129

0.130

0.131

0.132

0.133

1 10 100 1000 10000

Lo
gL

os
s

(T
es

t)

Training Time (minutes)

Figure 7: Previously-published results for logistic regression on the Terabyte Click Logs dataset.

published results, we have also reproduced the TensorFlow results on our infrastructure, using the
optimizer and train input function options suggested by Google [11] (similar to 4.1). We tuned the
batch size used by TensorFlow and found that Snap ML can train the logistic regression classifier
over 500× faster than TensoFlow on exactly the same hardware.

5 Conclusions

In this work we have described Snap ML, a new framework for fast training of generalized linear
models. Snap ML can exploit modern computing infrastructure consisting of multiple machines
that contain both CPUs and GPUs. The framework is hierarchical in nature, allowing it to adapt to
cloud-based deployments where the cost of communication between nodes may be relatively high. It
is also able to effectively leverage modern high-speed interconnects to hide the cost of transferring
data between CPU and GPU when training on datasets that are too large to fit into GPU memory. We
have shown that Snap ML can provide significantly faster training than existing frameworks in both
single-node and multi-node benchmarks. On one of the largest publicly available datasets, we have
shown that Snap ML can be used to train a logistic regression classifier in 1.5 minutes: more than an
order of magnitude faster than any of the previously reported results.

Acknowledgement

The authors would like to thank Martin Jaggi for valuable input regarding the algorithmic structure
of our system, Michael Kaufmann and Adrian Schüpbach for testing and bug fixes, Kubilay Atasu
for contributing code for load balancing, and Manolis Sifalakis and Urs Egger for setting up vital
infrastructure. We would also like to thank our colleagues Christoph Hagleitner and Cristiano Malossi
for providing access to heterogeneous compute resources and providing valuable support when
scheduling large-scale jobs. Finally, we would also like to thank Hillery Hunter, Paul Crumley and I-
Hsin Chung for providing access to the servers that were used to perform the tera-scale benchmarking,
and Bill Armstrong for his guidance and support of this project.

*Trademark, service mark, registered trademark of International Business Machines Corporation in the United
States, other countries, or both.

** Intel Xeon is a trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries. Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle and/or its affiliates. TensorFlow, the TensorFlow logo and any related marks are trademarks of Google
Inc. The Apache Software Foundation (ASF) owns all Apache-related trademarks, service marks, and graphic
logos on behalf of our Apache project communities, and the names of all Apache projects are trademarks of the
ASF.

9

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
https://www.tensorflow.org/.

[2] Chih-Chung Chang and Chih-Jen Lin. LIBSVM : a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2011. Software available at http://www.csie.ntu.edu.tw/
~cjlin/libsvm.

[3] Criteo Labs. Criteo releases industry’s largest-ever dataset for machine learning to aca-
demic community, 2015. https://www.criteo.com/news/press-releases/2015/07/
criteo-releases-industrys-largest-ever-dataset/.

[4] Criteo Labs. Learning Click-Through Rate at Scale with Tensorflow on Spark, 2018. https://github.
com/criteo/CriteoDisplayCTR-TFOnSpark.

[5] Barthelemy Dagenais. Py4j: A bridge between python and java, 2018. Software available at https:
//www.py4j.org.

[6] Celestine Dünner, Thomas Parnell, Kubilay Atasu, Manolis Sifalakis, and Haris Pozidis. Understanding
optimizing distributed machine learning applications on apache spark. In Proceedings of the IEEE
International Conference on Big Data, IEEEBigData’17, pages 99–100, Boston, MA, December 2017.

[7] Celestine Dünner, Thomas Parnell, and Martin Jaggi. Efficient use of limited memory accelerators for
linear learning on heterogeneous systems. In Advances in Neural Information Processing Systems 30,
NIPS’17, pages 4261–4270, Long Beach, CA, December 2017.

[8] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library
for large linear classification. Journal of machine learning research, 9(Aug):1871–1874, 2008.

[9] George Marsaglia. Xorshift rngs. Journal of Statistical Software, Articles, 8(14), 2003.

[10] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu, Jeremy
Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh,
Matei Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache spark. J. Mach. Learn. Res.,
17(1):1235–1241, January 2016.

[11] Gonzalo Gasca Meza. Samples for google cloud machine learning engine, 2017. https://github.com/
GoogleCloudPlatform/cloudml-samples.

[12] NVIDIA. Thrust, 2018. Software available at https://developer.nvidia.com/thrust.

[13] Stack Overflow. Use large dataset in tensorflow, 2016. https://stackoverflow.com/questions/
38087342/use-large-dataset-in-tensorflow.

[14] Thomas Parnell, Celestine Dünner, Kubilay Atasu, Manolis Sifalakis, and Haralampous Pozidis. Tera-scale
coordinate descent on gpus. Future Generation Computer Systems, 0(0):0, 2018.

[15] Thomas Parnell, Celestine Dünner, Kubilay Atasu, Manolis Sifalakis, and Haris Pozidis. Large-scale
stochastic learning using gpus. In Proceedings of the IEEE International Parallel and Distributed Process-
ing Symposium Workshops, IPDPS’17, pages 419–428, Orlando, FL, May 2017.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[17] NVIDIA Research. Cub, 2018. https://github.com/NVlabs/cub.

[18] Virginia Smith, Simone Forte, Chenxin Ma, Martin Takáč, Michael I Jordan, and Martin Jaggi. CoCoA: A
General Framework for Communication-Efficient Distributed Optimization. JMLR, 18:1–49, 2018.

[19] Rambler Digital Solutions. criteo-1tb-benchmark, 2017. https://github.com/
rambler-digital-solutions/criteo-1tb-benchmark.

10

https://www.tensorflow.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/
https://github.com/criteo/CriteoDisplayCTR-TFOnSpark
https://github.com/criteo/CriteoDisplayCTR-TFOnSpark
https://www.py4j.org
https://www.py4j.org
https://github.com/GoogleCloudPlatform/cloudml-samples
https://github.com/GoogleCloudPlatform/cloudml-samples
https://developer.nvidia.com/thrust
https://stackoverflow.com/questions/38087342/use-large-dataset-in-tensorflow
https://stackoverflow.com/questions/38087342/use-large-dataset-in-tensorflow
https://github.com/NVlabs/cub
https://github.com/rambler-digital-solutions/criteo-1tb-benchmark
https://github.com/rambler-digital-solutions/criteo-1tb-benchmark

[20] Andreas Sterbenz. Using google cloud machine learning to predict clicks
at scale, 2017. https://cloud.google.com/blog/big-data/2017/02/
using-google-cloud-machine-learning-to-predict-clicks-at-scale.

[21] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large linear classification when data
cannot fit in memory. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(4):23, 2012.

[22] Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin. Dual coordinate descent methods for logistic regression
and maximum entropy models. Machine Learning, 85(1):41–75, Oct 2011.

[23] Huan Zhang and Cho-Jui Hsieh. Fixing the convergence problems in parallel asynchronous dual coordinate
descent. In Data Mining (ICDM), 2016 IEEE 16th International Conference on, pages 619–628. IEEE,
2016.

11

https://cloud.google.com/blog/big-data/2017/02/using-google-cloud-machine-learning-to-predict-clicks-at-scale
https://cloud.google.com/blog/big-data/2017/02/using-google-cloud-machine-learning-to-predict-clicks-at-scale

A Convergence Analysis

In this section we derive the convergence result presented in (2) for the hierarchical CoCoA scheme proposed in
this paper. Therefore we first give some background on the classical CoCoA scheme, its convergence guarantees,
and then derive a new convergence rate for our hierarchical method.

A.1 CoCoA

The CoCoA framework has been proposed in [18]. It is designed to solve generalized linear models of the form
(1) distributedly across K worker nodes where each worker has access to its local partition of the training data.
In particular, each worker has access to a subset Ik of the columns of the data matrix A where Ik are disjoint
index sets such that ⋃

k
Ik = [n], Ii ∩ Ij = ∅ ∀i 6= j

and nk := |Ik| denotes the size of partition k. Hence, each machine stores in its memory the submatrix
A(k) ∈ Rd×nk corresponding to its partition Ik.

The CoCoA algorithm is an iterative procedure where in every round an update ∆α to the model is computed
in a distributed manner. The computation of ∆α is split across the K workers where each worker computes
an update to its dedicated set of cordinates Ik. To compensate for possible correlations between partitions and
guarantee convergence the parameter σ is introduced

σ ≥ σmax := max
x∈Rn

‖Ax‖2∑
k ‖Ax[k]‖2

where we use x[k] to denote a vector x with non-zero elements only for i ∈ Ik.

Local Subproblems Worker k ∈ [K] is assigned the following local subproblem:

arg min
∆α[k]

F (k)
σ (∆α[k];α,v) (3)

with

F (k)
σ (∆α[k];α,v) :=

1

K
f(v) +∇f(v)A∆α[k] +

σβ

2
‖A∆α[k]‖2 +

∑
i∈Ik

gi((α + ∆α[k])i). (4)

where β denotes the smoothness parameter of f . The local subproblems (4) are independent for every k ∈ [K]
and can thus be solved in parallel. Furthermore, solving (3) only requires access to the local partition of the
training data A[k] and the vector v := Aα which is updated and shared among all workers during the algorithm.
To analyze the convergence of our scheme we will use the following notion:

Definition 1 (θ-approximate [18]). For some θ ∈ [0, 1) the update ∆α[k] is a θ-approximate solution to the
local suproblem (3) iff

F (k)
σ (∆α[k];α,v)−F (k)

σ (∆α?[k];α,v) ≤ θ
[
F (k)
σ (0;α,v)−F (k)

σ (∆α?[k];α,v)
]

where ∆α?[k] = arg min∆α[k]
F (k)
σ (∆α[k];α,v)

Algorithm 1 CoCoA [18]

1: Input: Data matrix A distributed column-wise according to partition {Ik}Kk=1. parameter σ for
the local subproblems F (k)

σ .
Starting point α(0) := 0 ∈ Rn, v(0) := 0 ∈ Rd.

2: for t = 0, 1, 2, . . . do
3: for k ∈ {1, 2, . . . ,K} in parallel over workers do
4: ∆α[k] ← θ-approximate solution to the local subproblem (3).
5: update local variables α(t+1)

[k] := α
(t)
[k] + ∆α[k]

6: return updates to shared state ∆vk := A∆α[k]

7: end for
8: reduce v(t+1) := v(t) +

∑K
k=1 ∆vk

9: end for

12

A.2 Convergence Guarantees

The following two theorems define the convergence behavior of CoCoA for strongly convex and non-strongly
convex gi. We define the suboptimality of (1) as ε(t) := F(α(t))−F(α?)

Theorem 1 (based on [18](Theorem 3)). Consider the CoCoA Algorithm as defined in Algorithm 1. Let θ be
the approximation quality of the local solver according to Definition 1. Let f be β-smooth and gi µ-strongly
convex. Then the suboptimality after t iterations can be bounded as

ε(t) ≤
(

1− (1− θ) µ

µ+ σβcA

)t
ε(0).

Theorem 2 (based on [18](Theorem 2)). Consider the CoCoA Algorithm as defined in Algorithm 1. Let θ be
the approximation quality of the local solver according to Definition 1. Let f be β-smooth and gi be a convex
function with R-bounded support. Then the suboptimality after t ≥ 1 iterations can be bounded as

E
[
ε(t)] ≤ 4R2cAσβ

(1− θ)
1

t

Proof. For the proof of Theorem 1 see [18]. For the proof Theorem 2 we follow the proof of Theorem 9 in [18]
but when choosing the free parameter s we use the explicit minimizer which simplifies the final rate.

B Hierarchical CoCoA

We introduce a second level of CoCoA, where the local subproblems (3) are solved distributedly across L
compute units, e.g., across multiple GPUs within one node. Let us without loss of generality focus on a particular
worker k ∈ [K] and for reasons of readability we denote the local data partition as B := A[k] ∈ Rd×nk . Then,
with a change of variables the local subproblem (4) can be rewritten as

arg min
d

G(d;α,v) :=
1

K
f(v) +∇f(v)>Bd +

σβ

2
‖Bd‖2 +

∑
i∈Ik

gi(αi + dj(i)) (5)

where j(.) enumerates the elements in Ik. In order to apply a nested CoCoA to this problem we map (5) to
the general framework (1). Therefore we choose f̄(Bd) := 1

K
f(v) +∇f(v)>Bd + σβ

2
‖Bd‖2, ḡi(di) =

gi(αIki
+ di) such that our local optimization task becomes

arg min
d

f̄(Bd) +
∑
i

ḡi(di).

Note that f̄ is β̄ = βσ-smooth and ḡi is µ̄ = µ-strongly convex. We introduce the separability parameter σ̄ on
the local data partition, i.e.,

σ̄ ≥ σ̄max := max
x∈Rnk

‖A[k]x‖2∑
` ‖A[k]x[`]‖2

.

Thus we can define local subtasks according to (3): Let v̄ := Bd be the local shared vector and the local
subtasks are defined as

arg min
∆d[`]

G(`)
σ̄ (∆d[`];d, v̄)

where

G(`)
σ̄ (∆d[`];d, v̄) :=

1

L
f̄(v̄) +∇f̄(v̄)>B∆d[`] +

β̄σ̄

2
‖B∆d[`]‖2 +

∑
i∈Ik,`

ḡi((d[`] + ∆d[`])i)

=
1

L

[
1

K
f(v) +∇f(v)v̄ +

βσ

2
‖v̄‖2

]
+
[
∇f(v) + βσv̄

]>
B∆d[`]

+
σ̄β̄

2
‖B∆d[`]‖2 +

∑
i∈Ik,`

ḡi((d[`] + ∆d[`])i) (6)

13

B.1 Convergence

Let us denote ε̄ the suboptimality of the local subproblem (3), i.e., ε̄ := G(d;α,v) − G? where G? =
mind G(d;α,v). Assume the subtasks (6) are solved θ̄-approximately ∀`. Then, we can prove the following
convergence guarantee for the inner level of CoCoA, i.e., CoCoA running on (3):

ε̄ ≤
(

1− (1− θ̄)βσcA + µ

σ̄β̄cA + µ

)t
ε̄(0) (7)

Remark 1. Note that this rate improves over the classical CoCoA rate of Theorem 1 since it exploits the
quadratic structure of the objective given by the local subproblem (5).

Proof. We first recall that by the definition of the CoCoA local subtasks they upper bound the objective as
follows:

G(d + ∆d) ≤
∑
`

G(`)
σ̄ (∆d[`];d) (8)

Note that we dropped the implicit dependence of the objectives G and G(`)
σ̄ on v,α for reasons of readability.

Now we exploit that the individual subtasks G(`)
σ̄ are solved θ̄-approximately which yields

G(d + ∆d)− G? ≤
∑
`

G(`)
σ̄ (∆d[`];d)− G?

= G(d)− G? −

(
G(d)−

∑
`

G(`)
σ̄ (∆d[`];d)

)
≤ G(d)− G? − (1− θ̄)

(
G(d)− min

∆d[`]

∑
`

G(`)
σ̄ (∆d[`];d)

)
︸ ︷︷ ︸

Λ

(9)

where G? := min∆d G(∆d;d). Plugging in the definitions of G and G(`)
σ̄ we find

Λ := min
∆d
∇f(v)>B∆d + βσv̄>B∆d +

σ̄β̄

2

∑
`

‖B∆d[`]‖2 +
∑
i∈Ik,`

ḡi((d[`] + ∆d[`])i)− ḡi((d[`])i)

We proceed by bounding the term Λ. Therefore we consider a not necessarily optimal update ∆d = λ(x− d)
where x ∈ Rnk will be specified favorably in the course of the proof. Thus, the following inequality holds for
every λ ∈ (0, 1] and every x ∈ Rnk :

Λ ≤ min
λ
λ∇f(v)>B(x− d) + λβσv̄>B(x− d) +

σ̄β̄λ2

2

∑
k

‖B(x− d)[k]‖2

+
∑
i

ḡi((1− λ)di + λxi)− ḡi(di) (10)

Now using µ-strong-convexity of gi we have∑
i

ḡi((1− λ)di + λxi)− ḡi(di) ≤
∑
i

−λḡi(di) + λḡi(xi)−
µ̄λ(1− λ)

2
‖x− d‖2

Further augmenting the first term in (10) to extract the subproblem objective we find

Λ ≤ min
λ
λ
[
G(x)− G(d)

]
− λβσ

2
‖Bx‖2 + λ

βσ

2
‖Bd‖2

+λβσv̄>B(x− d) +
σ̄β̄λ2

2

∑
k

‖B(x− d)k‖2 −
µ̄λ(1− λ)

2
‖x− d‖2

Now note that v̄ = Bd and completing the square we find

Λ ≤ min
λ
λ (G(x)− G(d)) +

[
σ̄β̄λ2cA

2
− λβσcA

2
− µ̄λ(1− λ)

2

]
‖x− d‖2

where we define cA such that ‖Bd‖2 ≤ cA‖d‖2. To finalize the proof we let x = arg mind G(d), choose
λ = βσcA+µ

σ̄β̄cA+µ
and combe this with (9) which yields the following recursion:

G(d + ∆d)− G? ≤
(

1− (1− θ̄)βσcA + µ

σ̄β̄cA + µ

)t̄
(G(0)− G?)

14

End-to-End Rate. Recall the definition of θ-approximate solutions from Definition 1. Let us denote the
number of outer iterations by t1 and the number of inner iterations between two outer iterations by t2. Then,
from (7) we know that after t2 inner iterations the local subproblems (3) are solved with an accuracy

θ =

(
1− (1− θ̄) βσcA + µ

σ̄σβcA + µ

)t2
.

Thus, combining this with Theorem 1 we can bound the suboptimality ε after t1 outer with t2 inner iterations for
strongly convex gi as

ε ≤

(
1−

[
1−

(
1− (1− θ̄) βσcA + µ

σ̄σβcA + µ

)t2] µ

σβcA + µ

)t1
ε(0)

and similarly we can bound the suboptimality for general non-strongly convex gi as

E
[
ε
]
≤ 4R2cAσβ(

1−
(
1− (1− θ̄) 1

σ̄

)t2) 1

t1

with R such that ‖α‖ ≤ R for every iterate.

Remark 2. To obtain the rate (2) we note that σmax ≤ K and σ̄max ≤ L.

Remark 3. For the special case where t2 = 1 we can recover the rate of single-level CoCoA from Theorem 1
and 2 with KL workers.

15

	Introduction
	System Overview
	Hierarchical Optimization Framework

	 Implementation Details
	GPU Local Solver
	Pipelining
	Communication Patterns
	Software Architecture

	Experimental Results
	Single-Node Performance
	Out-of-core Performance
	Hierarchical Scheme
	Tera-Scale Benchmark

	Conclusions
	Convergence Analysis
	CoCoA
	Convergence Guarantees

	Hierarchical CoCoA
	Convergence

