
Tight Bounds for Collaborative PAC Learning via
Multiplicative Weights∗

Jiecao Chen
Computer Science Department

Indiana University at Bloomington
jiecchen@iu.edu

Qin Zhang
Computer Science Department

Indiana University at Bloomington
qzhangcs@indiana.edu

Yuan Zhou
Computer Science Department

Indiana University at Bloomington
and

Department of Industrial and Enterprise Systems Engineering
University of Illinois at Urbana-Champaign

yuanz@illinois.edu

Abstract

We study the collaborative PAC learning problem recently proposed in Blum
et al. [3], in which we have k players and they want to learn a target function
collaboratively, such that the learned function approximates the target function
well on all players’ distributions simultaneously. The quality of the collaborative
learning algorithm is measured by the ratio between the sample complexity of the
algorithm and that of the learning algorithm for a single distribution (called the
overhead). We obtain a collaborative learning algorithm with overhead O(ln k),
improving the one with overhead O(ln2 k) in [3]. We also show that an Ω(ln k)
overhead is inevitable when k is polynomial bounded by the VC dimension of the
hypothesis class. Finally, our experimental study has demonstrated the superiority
of our algorithm compared with the one in Blum et al. [3] on real-world datasets.

1 Introduction

In this paper we study the collaborative PAC learning problem recently proposed in Blum et al. [3].
In this problem we have an instance space X , a label space Y , and an unknown target function f∗ :
X → Y chosen from the hypothesis class F . We have k players with distributions D1, D2, . . . , Dk

labeled by the target function f∗. Our goal is to probably approximately correct (PAC) learn the
target function f∗ for every distribution Di. That is, for any given parameters ε, δ > 0, we need to
return a function f so that with probability 1− δ, f agrees with the target f∗ on instances of at least
1− ε probability mass in Di for every player i.

As a motivating example, consider a scenario of personalized medicine where a pharmaceutical
company wants to obtain a prediction model for dose-response relationship of a certain drug based
on the genomic profiles of individual patients. While existing machine learning methods are efficient
to learn the model with good accuracy for the whole population, for fairness consideration, it is
also desirable to ensure the model accuracies among demographic subgroups, e.g. defined by
gender, ethnicity, age, social-economic status and etc., where each of them is associated with a label
distribution.

∗A full version of this paper is available at https://arxiv.org/abs/1805.09217

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://arxiv.org/abs/1805.09217

We will be interested in the ratio between the sample complexity required by the best collaborative
learning algorithm and that of the learning algorithm for a single distribution, which is called the
overhead ratio. A naïve approach for collaborative learning is to allocate a uniform sample budget for
each player distribution, and learn the model using all collected samples. In this method, the players
do minimal collaboration with each other and it leads to an Ω(k) overhead for many hypothesis
classes (which is particularly true for the classes with fixed VC dimension – the ones we will focus
on in this paper). In this paper we aim to develop a collaborative learning algorithm with the optimal
overhead ratio.

Our Results. We will focus on the hypothesis class F = {f : X → Y} with VC dimension d. For
every ε, δ > 0, let Sε,δ be the sample complexity needed to (ε, δ)-PAC learn the class F . It is known
that there exists an (ε, δ)-PAC learning algorithm Lε,δ,F with Sε,δ = O

(
1
ε

(
d+ ln δ−1

))
[10]. We

remark that we will use the algorithm L as a blackbox, and therefore our algorithms can be easily
extended to other hypothesis classes given their single-distribution learning algorithms.

Given a function g and a set of samples T , let errT (g) = Pr(x,y)∈T [g(x) 6= y] be the error of g on
T . Given a distribution D over X × Y , define errD(g) = Pr(x,y)∼D[g(x) 6= y] to be the error of
g on D. The (ε, δ)-PAC k-player collaborative learning problem can be rephrased as follows: For
player distributions D1, D2, . . . , Dk and a target function f∗ ∈ F , our goal is to learn a function
g : X → Y so that Pr[∀i = 1, 2, . . . k, errDi(f

∗, g) ≤ ε] ≥ 1 − δ. Here we allow the learning
algorithm to be improper, that is, the learned function g does not have to be a member of F .

Blum et al. [3] showed an algorithm with sample complexity O
(

ln2 k
ε

(
(d+ k) ln ε−1 + k ln δ−1

))
.

When k = O(d), this leads to an overhead ratio of O(ln2 k) (assuming ε, δ are constants). In this
paper we propose an algorithm with sample complexity O

(
(ln k+ln δ−1)(d+k)

ε

)
(Theorem 4), which

gives an overhead ratio of O(ln k) when k = O(d) and for constant δ, matching the Ω(ln k) lower
bound proved in Blum et al. [3].

Similarly to the algorithm in Blum et al. [3], our algorithm runs in rounds and return the plurality
of the functions computed in each round as the learned function g. In each round, the algorithm
adaptively decides the number of samples to be taken from each player distribution, and calls L to
learn a function. While the algorithm in Blum et al. [3] uses a grouping idea and evenly takes samples
from the distribution in each group, our algorithm adopts the multiplicative weight method. In our
algorithm, each player distribution is associated with a weight which helps to direct the algorithm to
distribute the sample budget among all player distributions. After each round, the weight for a player
distribution increases if the function learned in the round is not accurate on the distribution, letting the
algorithm pay more attention to it in the future rounds. We will first present a direct application of the
multiplicative weight method which leads to a slightly worse sample complexity bound (Theorem 3),
and then prove Theorem 4 with more refined algorithmic ideas.

On the lower bound side, the lower bound result in Blum et al. [3] is only for the special case when
k = d. We extend their result to every k and d. In particular, we show that the sample complexity for
collaborative learning has to be Ω(max{d ln k, k ln d}/ε) for constant δ (Theorem 6). Therefore, the
sample complexity of our algorithm is optimal when k = dO(1). 2

Finally, we have implemented our algorithms and compared with the one in Blum et al. [3] and the
naïve method on several real-world datasets. Our experimental results demonstrate the superiority of
our algorithm in terms of the sample complexity.

Related Work. As mentioned, collaborative PAC learning was first studied in Blum et al. [3].
Besides the problem of learning one hypothesis that is good for all players’ distributions (called
the centralized collaborative learning in [3]), the authors also studied the case in which we can use
different hypotheses for different distributions (called personalized collaborative learning). For the
personalized version they obtained an O(ln k) overhead in sample complexity. Our results show that

2We note that this is a stronger statement than the earlier one on the “the optimal overhead ratio of O(ln k)
for k = O(d)” in several aspects. First, the showing the optimal overhead ratio only needs a minimax lower
bound; while in the latter statement we claim the optimal sample complexity for every k and d in the range.
Second, our latter statement works for a much wider parameter range for k and d.

2

we can obtain the same overhead for the (more difficult) centralized version. In a concurrent work
[15], the authors showed the similar results as in our paper.

Both our algorithms and Adaboost [7] use the multiplicative weights method. While Adaboost places
weights on the samples in the prefixed training set, our algorithms place weights on the distributions
of data points, and adaptively acquire new samples to achieve better accuracy. Another important
feature of our improved algorithm is that it tolerates a few “failed rounds” in the multiplicative
weights method, which requires more efforts in its analysis and is crucial to shaving the extra ln k
factor when k = Θ(d).

Balcan et al. [1] studied the problem of finding a hypothesis that approximates the target function well
on the joint mixture of k distributions of k players. They focused on minimizing the communication
between the players, and allow players to exchange not only samples but also hypothesis and
other information. Daume et al. [11, 12] studied the problem of computing linear separators in a
similar distributed communication model. The communication complexity of distributed learning
has also been studied for a number of other problems, including principal component analysis [13],
clustering [2, 9], multi-task learning [16], etc.

Another related direction of research is the multi-source domain adaption problem [14], where we
have k distributions, and a hypothesis with error at most ε on each of the k distributions. The task
is to combine the k hypotheses to a single one which has error at most kε on any mixture of the k
distribution. This problem is different from our setting in that we want to learn the “global” hypothesis
from scratch instead of combine the existing ones.

2 The Basic Algorithm

In this section we propose an algorithm for collaborative learning using the multiplicative weight
method. The algorithm is described in Algorithm 1, using Algorithm 2 as a subroutine.

We briefly describe Algorithm 1 in words. We
start by giving a unit weight to each of the k
player. The algorithm runs in T = O(ln k)
rounds, and players’ weights will change at each
round. At round t, we take a set of samples S(t)

from the average distribution of the k players
weighted by their weights. We then learn a clas-
sifier g(t) for samples in S(t), and test for each
player i whether g(t) agrees with the target func-
tion f∗ with probability mass at least 1− ε/6 on
distribution Di. If yes then we keep the weight of
the i-th player; otherwise we multiply its weight
by a factor of 2, so that Di will attract more at-
tention in the future learning process. Finally, we
return a classifier g which takes the plurality vote3

of the T classifiers g(0), g(1), . . . , g(T−1) that we
have constructed. We note that we make no ef-
fort to optimize the constants in the algorithms
and their theoretical analysis; while in the experi-
ment section, we will tune the constants for better
empirical performance.

The following lemma shows that TEST returns,
with high probability, the desired set of players
where g is an accurate hypothesis for its own dis-
tribution. We say a call to TEST successful if
its returning set has the properties described in
Lemma 1. The omitted proofs in this section can
be found in Appendix B.

Algorithm 1 BASICMW

1: Let the initial weight w(0)
i ← 1 for each

player i ∈ {1, 2, . . . , k}.
2: Let T ← 10 ln k.
3: for t← 0 to T − 1 do
4: Let p(t)(i) ← w

(t)
i∑k

i=1 w
(t)
i

for each i ∈

{1, 2, . . . , k} so that p(t)(·) defines a prob-
ability distribution.

5: Let D(t) ←
∑K
i=1 p

(t)(i)Di.
6: Let S(t) be a set of S ε

120 ,
δ

4(t+1)2
samples

from D(t). Let g(t) ← L ε
120 ,

δ
4(t+1)2

,F (S(t)).

7: Let Z(t) ← TEST(g(t), k, t, ε, δ).
8: for each i ∈ {1, 2, . . . , k} do
9: if i ∈ Z(t) then

10: w
(t+1)
i ← w

(t)
i

11: else
12: w

(t+1)
i ← 2 · w(t)

i .
13: return g = Plurality(g(0), . . . , g(T−1)).

Algorithm 2 Accuracy Test (TEST(g, k, t, ε, δ))

1: for each i ∈ {1, 2, . . . , k} do Let Ti be a set
of 432

ε ln
(
k·4(t+1)2

δ

)
samples from Di.

2: return {i | errTi(g) ≤ ε
6}.

3I.e. the most frequent value, where ties broken arbitrarily.

3

Lemma 1 With probability at least 1 − δ
4(t+1)2 , TEST(g, k, t, ε, δ) returns a set of players that

includes 1) each i such that errDi(g) ≤ ε
12 , 2) none of the i such that errDi(g) > ε

4 .

Given a function g and a distribution D, we say that g is a good candidate for D if errD(g) ≤ ε
4 . The

following lemma shows that if we have a set of functions where most of them are good candidates for
D, then the plurality vote of these functions also has good accuracy for D.

Lemma 2 Let g1, g2, . . . , gm be a set of functions such that more than 70% of them are good
candidates for D. Let g = Plurality(g1, g2, . . . , gm), we have that errD(g) ≤ ε.

We let the E be the event that every call of the learner L and TEST is successful. It is straightforward
to see that

Pr[E] ≥ 1−
+∞∑
t=0

δ

4(t+ 1)2
· 2 = 1− δ · π2

24
> 1− δ. (1)

Now we are ready to prove the main theorem for Algorithm 1.

Theorem 3 Algorithm 1 has the following properties.

1. With probability at least 1 − δ, it returns a function g such that errDi(g) ≤ ε for all
i ∈ {1, 2, . . . , k}.

2. Its sample complexity is O
(

ln k

ε
(d+ k ln δ−1 + k ln k)

)
.

Proof. While the sample complexity is easy to verify, we focus on the proof of the first property. In
particular, we show that when E happens (which is with probability at least 1− δ by (1)), we have
errDi(g) ≤ ε for all i ∈ {1, 2, . . . , k}.
For now till the end of the proof, we assume that E happens.

For each round t, we have that ε
120 ≥ errD(t)(g(t)) = Ei∼p(t)(·)[errDi(g

(t))] . Therefore, by Markov
inequality, we have that Pri∼p(t)(·)

[
errDi(g

(t)) > ε
12

]
≤ .1 . In other words,

.1 ≥
∑

i:errDi (g
(t))> ε

12

p(t)(i) =
1∑k

i=1 w
(t)
i

∑
i:errDi (g

(t))> ε
12

w
(t)
i . (2)

Now consider the total weight
∑k
i=1 w

(t+1)
i , we have

k∑
i=1

w
(t+1)
i =

k∑
i=1

w
(t)
i +

∑
i 6∈Z(t)

w
(t+1)
i . (3)

By Lemma 1 and E , we have that∑
i 6∈Z(t)

w
(t+1)
i ≤

∑
i:errDi (g

(t))> ε
12

w
(t+1)
i . (4)

Combining (2), (3), and (4), we have
∑k
i=1 w

(t+1)
i ≤ 1.1

∑k
i=1 w

(t)
i . Since

∑k
i=1 w

(0)
i = k, we

have the following inequality holds for every t = 0, 1, 2, . . . :
∑k
i=1 w

(t)
i ≤ 1.1t · k .

Now let us focus on an arbitrary player i. We will show that for at least 70% of the rounds t, we have
errDi(g

(t)) ≤ ε
4 , and this will conclude the proof of this theorem thanks to Lemma 2.

Suppose the contrary: for more than 30% of the rounds, we have errDi(g
(t)) > ε

4 . At each of such
round t, we have i 6∈ Z(t) because of Lemma 1 and E , and therefore w(t+1)

i = 2 · w(t)
i . Therefore,

we have w(T)
i ≥ 2.3T . Together with (4), we have 2.3T ≤ wTi ≤

∑k
i=1 w

(T)
i ≤ 1.1T · k, which is a

contradiction for T = 10 ln k. ut

4

3 The Quest for Optimality via Robust Multiplicative Weights

In this section we improve the result in Theorem 3 to get an optimal algorithm when k is polynomially
bounded by d (see Theorem 4; the optimality will be shown in Section 4). In fact, our improved
algorithm (Algorithm 3 using Algorithm 4 as a subroutine), is almost the same as Algorithm 1 (using
Algorithm 2 as a subroutine). We highlight the differences as follows.

1. The total number of iterations at Line 2 of Algorithm 1 is changed to T̃ = 2000 ln(k/δ).
2. The failure probability for the single-distribution learning algorithm L at Line 6 of Algo-

rithm 1 is increased to a constant 1/100.
3. The number of times that each distribution is sampled at Line 1 of Algorithm 2 is reduced to

432
ε ln(100).

Although these changes seem minor, it requires substantial technical efforts to establish Theorem 4.
We describe the challenge and sketch our solution as follows.

While the 2nd and 3rd items lead to the key reduction of the sample complexity, they make it
impossible to use the union bound and claim that with high probability “every call of L and TEST is
successful” (see Inequality (1) in the analysis for Algorithm 1).

To address this problem, we will make our multiplicative weight analysis robust against occasionally
failed rounds so that it works when “most calls of L and WEAKTEST are successful”.

In more details, we will first work on the total
weights W (t) =

∑k
i=1 w

(t)
i at the t-th round,

and show that conditioned on the t-th round,
E[W (t+1)] is upper bounded by 1.13W (t) (where
in contrast we had a stronger and determin-
istic statement

∑k
i=1 w

(t+1)
i ≤ 1.1

∑k
i=1 w

(t)
i

in the analysis for the basic algorithm). Us-
ing Jensen’s inequality we will be able to de-
rive that E[lnW (t+1)] is upper bounded by
(ln 1.13+lnW (t)). Then, using Azuma’s inequal-
ity for supermartingale random variables, we
will show that with high probability, lnW (T̃) ≤
T̃ (ln 1.18) + lnW (0), i.e. W (T̃) ≤ 1.18T̃ · k,
which corresponds to

∑k
i=1 w

(t)
i ≤ 1.1t · k in

the basic proof. On the other hand, recall that in
the basic proof we had to show that if for more
than 30% of the rounds, the g(t) function is not a
good candidate for a player distribution Di, then
we have w(T)

i ≥ 2.3T . In the analysis for the im-
proved algorithm, because the WEAKTEST pro-
cedure fails with much higher probability, we
need to use concentration inequalities and derive
a slightly weaker statement (w(T̃)

i ≥ 2.25T̃). Fi-
nally, we will put everything together using the
same proof via contradiction argument, and prove
the following theorem.

Algorithm 3 MWEIGHTS

1: Let the initial weight w(0)
i ← 1 for each

player i ∈ {1, 2, 3, . . . , k}.
2: Let T̃ ← 2000 ln(k/δ).
3: for t← 0 to T̃ − 1 do
4: Let p(t)(i) ← w

(t)
i∑k

i=1 w
(t)
i

for each i ∈

{1, 2, 3, . . . , k} so that p(t)(·) defines a prob-
ability distribution.

5: Let D(t) ←
∑K
i=1 p

(t)(i)Di.
6: Let S(t) be a set of S ε

120 ,
1

100
samples from

D(t). Let g(t) ← L ε
120 ,

1
100 ,F

(S(t)).
7: Let Z(t) ← WEAKTEST(k, g(t), ε, δ).
8: for each i ∈ {1, 2, 3, . . . , k} do
9: if i ∈ Z(t) then

10: w
(t+1)
i ← w

(t)
i

11: else
12: w

(t+1)
i ← 2 · w(t)

i .
13: return g = Plurality(g(0), . . . , g(T̃−1)).

Algorithm 4 Weak Accuracy Test
(WEAKTEST(g, k, ε, δ))

1: for each i ∈ {1, 2, 3, . . . , k} do Let Ti be a
set of 432

ε ln (100) samples from Di.
2: return {i | errTi(g) ≤ ε

6}.

Theorem 4 Algorithm 3 has the following properties.

1. With probability at least 1 − δ, it returns a function g such that errDi(g) ≤ ε for all
i ∈ {1, 2, . . . , k}.

2. Its sample complexity is O
(

(ln k + ln δ−1)(d+ k)

ε

)
.

5

Now we prove Theorem 4.

Similarly to Lemma 1, applying Proposition 7 (but without the union bound), we have the following
lemma for WEAKTEST.

Lemma 5 For each player i, with probability at least 1− 1
100 , the following hold, 1) if errDi(g) ≤ ε

12 ,
then i ∈ WEAKTEST(g, k, ε, δ); 2) if errDi(g) > ε

4 , then i 6∈ WEAKTEST(g, k, ε, δ).

Let the indicator variable ψ(t)
i = 1 if the desired event described in Lemma 5 for i and time t does

not happen; and let ψ(t)
i = 0 otherwise. By Lemma 5, we have E[ψ

(t)
i] ≤ 1

100 . By Proposition 7, for

each player i, we have Pr
[∑T̃−1

t=0 ψ
(t)
i > .05T̃

]
≤ exp

(
− 1

3 · 4
2 · T̃

100

)
≤ exp

(
− 5T̃

100

)
≤ δ

k5 .

Now let J1 be the event that
∑T̃−1
t=0 ψ

(t)
i ≤ .05T̃ for every i. Via a union bound, we have that

Pr[J1] ≥ 1− δ

k4
. (5)

Let the indicator variable χ(t) = 1 if the learner L fails at time t; and let χ(t) = 0 otherwise. We have

E
[
χ(t) | time 0, 1, . . . , t− 1

]
≤ 1

100
. (6)

Let W (t) =
∑k
i=1 w

(t)
i be the total weights at time t. For each t, similarly to (3), we have

W (t+1) = W (t) +
∑
i 6∈Z(t)

w
(t)
i . (7)

For each i such that errDi(g
(t)) ≤ ε

12 , by Lemma 5, we know that Pr[i 6∈ Z(t)] ≤ 1
100 . Therefore, if

we take the expectation over the randomness of WEAKTEST at time t, we have,

E

 ∑
i6∈Z(t)

w
(t)
i

 ≤
∑

i:errDi (g
(t))> ε

12

w
(t)
i + E

 ∑
i:errDi (g

(t))≤ ε
12

w
(t)
i

≤

∑
i:errDi (g

(t))> ε
12

w
(t)
i +

1

100
·
k∑
i=1

w
(t)
i . (8)

When χ(t) = 0, similarly to the proof of Theorem 3, we have Pri∼p(t)(·)
[
errDi(g

(t)) > ε
12

]
≤ .1,

and

.1 ≥
∑

i:errDi (g
(t))> ε

12

p(t)(i) =
1∑k

i=1 w
(t)
i

∑
i:errDi (g

(t))> ε
12

w
(t)
i . (9)

Combining (7), (8), and (9), we have (when χ(t) = 0)

E
[
W (t+1)

∣∣ χ(t) = 0 and W (0), . . . ,W (t)
]
≤ 1.11 ·W (t). (10)

Together with (6), we have E
[
W (t+1)

∣∣W (0), . . . ,W (t)
]

≤ 1.11 · W (t) =

ln
(
E
[
W (t+1)

∣∣ χ(t) = 0 and W (0), . . . ,W (t)
]
· Pr

[
χ(t) = 0 |W (0), . . . ,W (t)

]
+ 2W (t) ·

Pr
[
χ(t) = 1 |W (0), . . . ,W (t)

])
≤ (1.11 + 0.02)W (t) = 1.13W (t).

Let Q(t) = lnW (t+1)/W (t), and by Jensen’s inequality, we have E
[
Q(t)

∣∣W (0), . . . ,W (t)
]
≤

lnE
[
W (t+1)/W (t)

∣∣W (0), . . . ,W (t)
]
. Therefore, we have E

[
Q(t)

∣∣ Q(0), . . . , Q(t−1)
]

=

E
[
Q(t)

∣∣W (0), . . . ,W (t)
]
≤ lnE

[
W (t+1)/W (t)

∣∣W (0), . . . ,W (t)
]
≤ ln(1.11 + .02) = ln 1.13.

Now let Q̃(t) =
∑t−1
z=0Q

(z) − t · ln 1.13 for all t = 0, 1, 2, We have that {Q̃(t)} is a super-
martingale and |Q̃(t+1) − Q̃(t)| ≤ ln 2 for all t = 0, 1, 2, By Proposition 9 and noticing that

6

ln 1.18 − ln 1.13 > .04, we have Pr
[∑T̃−1

t=0 Q(t) > (ln 1.18)T̃
]
≤ Pr

[
Q̃(T̃) − Q̃(0) > .04T̃

]
≤

exp
(
− .042·T̃

2·(ln 2)2

)
≤ δ

k2 . Let J2 be the event that W (T̃) ≤ 1.18T̃ · k ⇔
∑T̃−1
t=0 Q(t) ≤ (ln 1.18)T̃ ,

we have that

Pr[J2] ≥ 1− δ

k2
. (11)

Now let J = J1 ∩ J2, combining (5) and (11), for k ≥ 2, we have

Pr[J] ≥ 1− δ

k
. (12)

Now we are ready to prove Theorem 4 for Algorithm 3.

Proof. [of Theorem 4] While the sample complexity is easy to verify, we focus on the proof of the
first property. In particular, we show that when J happens (which is with probability at least 1− δ
by (12)), we have errDi(g) ≤ ε for all i ∈ {1, 2, 3, . . . , k}.
Let us consider an arbitrary player i. We will show that when J happens, for at least 70% the times t,
we have errDi(g

(t)) ≤ ε
4 , and this will conclude the proof of this theorem thanks to Lemma 2.

Suppose the contrary: for more than 30% of the times, we have errDi(g
(t)) > ε

4 . Because of J1, for

more than 30%− 5% = 25% of the times t, we have i 6∈ Z(t). Therefore, we have w(T̃)
i ≥ 2.25T̃ . On

the other hand, byJ2 we haveW (T̃) ≤ 1.2T̃ . Therefore, we reach 2.25T̃ ≤ w(T̃)
i ≤W (T̃) ≤ 1.18T̃ ·k,

which is a contradiction to T̃ = 2000 ln(k/δ). ut

4 Lower Bound

We show the following lower bound result, which matches our upper bound (Theorem 3) when
k = (1/δ)Ω(1) and k = dO(1).

Theorem 6 In collaborative PAC learning with k players and a hypothesis class of VC-dimension d,
for any ε, δ ∈ (0, 0.01), there exists a hard input distribution on which any (ε, δ)-learning algorithm
A needs Ω(max{d ln k, k ln d}/ε) samples in expectation, where the expectation is taken over the
randomness used in obtaining the samples and the randomness used in drawing the input from the
input distribution.

The proof of Theorem 6 is similar to that for the lower bound result in [3]; however, we need to
generalize the hard instance provided in [3] in two different cases. We briefly discuss the high level
ideas of our generalization here, and leave the full proof to Appendix C due to space constraints.

The lower bound proof in [3] (for k = d) performs a reduction from a simple player problem to a
k-player problem, such that if we can (ε, δ)-PAC learn the k-party problem using m samples in total,
then we can (ε, 10δ/(9k))-PAC learn the single player problem using O(m/k) samples. Now for the
case when d > k, we need to change the single player problem used in [3] whose hypothesis class
is of VC-dimension Θ(1) to one whose hypothesis class is of VC-dimension Θ(d/k). For the case
when d ≤ k, we essentially duplicate the hard instance for a d-player problem k/d times, getting a
hard instance for a k-player problem, and then perform the random embedding reduction from the
single player problem to the k-player problem. See Appendix C for details.

5 Experiments

We present in this section a set of experimental results which demonstrate the effectiveness of our
proposed algorithms.

Our algorithms are based on the assumption that given a hypothesis class, we are able to compute its
VC dimension d and access an oracle to compute an (ε, δ)-classifier with sample complexity Sε,δ . In
practice, however, it is usually computationally difficult to compute the exact VC dimension for a

7

given hypothesis class. Also, the VC dimension usually only proves to be a very loose upper bound
for the sample complexity needed for an (ε, δ)-classifier.

To address these practical difficulties, in our experiment, we treat the VC dimension d as a parameter
to control the sample budget. More specifically, we will first choose a concrete model as the oracle;
in our implementation, we choose the decision tree. We then set the parameter δ = 0.9 and gradually
increase d to determine the sample budget. For each fixed sample budget (i.e., each fixed d), we run
the algorithm for 100 times and test whether the following happens,

P̂r[max
i

errDi(g) ≤ ε for all i] ≥ 0.9. (13)

Here ε is a parameter we choose and g is the classifier returned by the collaborative learning algorithm
to be tested. The empirical probability P̂r[·] in (13) is calculated over the 100 runs. We finally report
the minimum number of samples consumed by the algorithm to achieve (13).

Note that in our theoretical analysis, we did not try to optimize the constants. Instead, we tune
the constants for both CENLEARN and MWEIGHTS for better performance. Please find more
implementation details in the appendix.

Datasets. We will test the collaborative learning algorithms using the following data sets.

MAGIC-EVEN [4]. This data set is generated to simulate registration of high energy gamma particles
in an atmospheric Cherenkov telescope. There are 19, 020 instances and each belongs to one of the
two classes (gamma and hadron). There are 11 attributes in each data point. We randomly partition
this data set into k = 10 subsets (namely, D1, . . . , Dk).

MAGIC-1. The raw data set is the same as we have in MAGIC-EVEN. Instead of random partitioning,
we partition the data set into D1 and D2 based on the two different classes, and make k − 2 more
copies of D2 so that D2, D3, . . . , Dk are identical. In our case we set k = 10.

MAGIC-2. This data set differs from MAGIC-1 in the way of constructing D1 and D2: we partition
the original data set into D1 and D2 based on the first dimension of the feature vectors; we then make
duplicates for D2. Here we again set k = 10.

WINE [5]. This data set contains physicochemical tests for white wine, and the scores of the wine
range from 0 to 10. There are 4, 898 instances and there are 12 attributes in the feature vectors. We
partition the data set into D1, . . . , D4 based on the first two dimensions.

EYE. This data set consists of 14 EEG values and a value indicating the eye state. There are 14, 980
instances in this data set. We partition it into D1, . . . , D4 based on the first two dimensions.

LETTER [8]. This data set has 20, 000 instances, each in R16. There are 26 classes, each representing
one of 26 capital letters. We partition this data set into k = 12 subsets based on the first 4 dimensions
of the feature vectors.

Tested Algorithms. We compare our algorithms with the following two baseline algorithms,

NAIVE. In this algorithm we treat all distributions D1, . . . , Dk equally. That is, given a budget z,
we sample z training samples from D = 1

k

∑k
i=1Di. We then train a classifier (decision tree) using

those samples.

CENLEARN, this is the implementation of the algorithm proposed by Blum et al. [3].

Since our Algorithm 1 and Algorithm 3 are very similar, and Algorithm 3 has better theoretical
guarantee, we will only test Algorithm 3, denoted as MWEIGHTS, in our experiments.

Experimental Results and Discussion. The experimental results are presented in Figure 1. We
test the algorithms for each data set using multiple values of the error threshold ε, and report the
sample complexity for NAIVE, MWEIGHTS and CENLEARN.

In Figure 1a, we notice that NAIVE uses less samples than its competitors. This phenomenon is
predictable because in MAGIC-EVEN, D1, . . . , Dk are constructed via random partitioning, which is
the easiest case for NAIVE. Since MWEIGHTS and CENLEARN need to train multiple classifiers,
each classifier will get fewer training samples than NAIVE when the total budgets are the same.

8

(a) MAGIC-EVEN (b) MAGIC-1 (c) MAGIC-2

(d) WINE (e) EYE (f) LETTER

Figure 1: Sample complexity versus error threshold ε.

In Figure 1b and Figure 1c, D1, . . . , Dk are constructed in a way that D2, D3, . . . , Dk are identical,
and D1 is very different from other distributions. Thus the overall distribution (i.e., D = 1

k

∑k
i=1Di)

used to train NAIVE is quite different from the original data set. One can observe from those two
figures that MWEIGHTS still works quite well while NAIVE suffers.

In Figure 1b-Figure 1f, one can observe that MWEIGHTS uses fewer samples than its competitors in
almost all cases, which shows the superiority of our proposed algorithm. CENLEARN outperforms
NAIVE in general. However, NAIVE uses slightly fewer samples than CENLEARN in some cases
(e.g., Figure 1d). This may due to the fact that the distributions D1, . . . , Dk in those cases are not
hard enough to show the superiority of CENLEARN over NAIVE.

To summarize, our experimental results show that MWEIGHTS and CENLEARN need fewer samples
than NAIVE when the input distributions D1, . . . , Dk are sufficiently different. MWEIGHTS consis-
tently outperforms CENLEARN, which may due to the facts that MWEIGHTS has better theoretical
guarantees and is more straightforward to implement.

6 Conclusion

In this paper we consider the collaborative PAC learning problem. We have proved the optimal
overhead ratio and sample complexity, and conducted experimental studies to show the superior
performance of our proposed algorithms.

One open question is to consider the balance of the numbers of queries made to each player, which
can be measured by the ratio between the largest number of queries made to a player and the average
number of queries made to the k players. The proposed algorithms in this paper may attain a balance
ratio of Ω(k) in the worst case. It will be interesting to investigate:

1. Whether there is an algorithm with the same sample complexity but better balance ratio?
2. What is the optimal trade-off between sample complexity and balance ratio?

9

Acknowledgments

Jiecao Chen and Qin Zhang are supported in part by NSF CCF-1525024, CCF-1844234 and IIS-
1633215. Part of the work was done when Yuan Zhou was visiting the Shanghai University of Finance
and Economics.

References
[1] M. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed learning, communication complexity

and privacy. In COLT, pages 26.1–26.22, 2012.

[2] M. Balcan, S. Ehrlich, and Y. Liang. Distributed k-means and k-median clustering on general
communication topologies. In NIPS, pages 1995–2003, 2013.

[3] A. Blum, N. Haghtalab, A. D. Procaccia, and M. Qiao. Collaborative PAC learning. In NIPS,
pages 2389–2398, 2017.

[4] R. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jirina, J. Klaschka, E. Kotrc,
P. Savickỳ, S. Towers, et al. Methods for multidimensional event classification: a case study. as
Internal Note in CERN, 2003.

[5] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine preferences by data
mining from physicochemical properties. Decision Support Systems, 47(4):547–553, 2009.

[6] A. Ehrenfeucht, D. Haussler, M. J. Kearns, and L. G. Valiant. A general lower bound on the
number of examples needed for learning. Inf. Comput., 82(3):247–261, 1989.

[7] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[8] P. W. Frey and D. J. Slate. Letter recognition using holland-style adaptive classifiers. Machine
Learning, 6:161–182, 1991.

[9] S. Guha, Y. Li, and Q. Zhang. Distributed partial clustering. In SPAA, pages 143–152, 2017.

[10] S. Hanneke. The optimal sample complexity of pac learning. The Journal of Machine Learning
Research, 17(1):1319–1333, 2016.

[11] H. D. III, J. M. Phillips, A. Saha, and S. Venkatasubramanian. Efficient protocols for distributed
classification and optimization. In ALT, pages 154–168, 2012.

[12] H. D. III, J. M. Phillips, A. Saha, and S. Venkatasubramanian. Protocols for learning classifiers
on distributed data. In AISTATS, pages 282–290, 2012.

[13] Y. Liang, M. Balcan, V. Kanchanapally, and D. P. Woodruff. Improved distributed principal
component analysis. In NIPS, pages 3113–3121, 2014.

[14] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation with multiple sources. In
NIPS, pages 1041–1048, 2008.

[15] H. L. Nguyen and L. Zakynthinou. Improved Algorithms for Collaborative PAC Learning.
arXiv preprint arXiv:1805.08356, 2018.

[16] J. Wang, M. Kolar, and N. Srebro. Distributed multi-task learning. In AISTATS, pages 751–760,
2016.

10

A Concentration Bounds

Proposition 7 (Multiplicative Chernoff bound) Let Xi(1 ≤ i ≤ n) be independent random vari-
ables with values in [0, 1]. Let X = 1

n

∑n
i=1Xi. For every 0 ≤ ε ≤ 1, we have that

Pr
[
X < (1− ε)E[X]

]
< exp

(
−ε

2nE[X]

2

)
,

Pr
[
X > (1 + ε)E[X]

]
< exp

(
−ε

2nE[X]

3

)
.

Definition 8 (Supermartingale Random Variables) A discrete-time supermartingale is a sequence
of random variables X0, X1, X2, . . . that satisfies for any time t,

E |Xt| <∞, and E[Xt+1|X0, . . . , Xt] ≤ Xt.

Proposition 9 (Azuma’s inequality for supermartingale random variables) Suppose {Xk : k =
0, 1, 2, . . . } is a supermartingale and |Xk −Xk+1| ≤ ck almost surely. Then for all positive integers
T and all positive reals θ,

Pr[XT −X0 ≥ θ] ≤ exp

(
−θ2

2
∑T−1
k=0 c

2
k

)
.

B Omitted Proofs in Section 2

Proof. [of Lemma 1] For each i such that errDi(g) ≤ ε
12 , by Proposition 7, we have that

Pr
[
errTi(g) >

ε

2

]
≤ exp

(
−432

ε
ln

(
k · 4(t+ 1)2

δ

)
· ε

122 · 3

)
=

δ

k · 4(t+ 1)2
.

Therefore, with probability at least 1− δ
k·4(t+1)2 , i is included in the output of TEST.

Similarly, for each i such that errDi(g) > ε
4 , by Proposition 7, we have that

Pr
[
errTi(g) ≤ ε

2

]
≤ exp

(
−432

ε
ln

(
k · 4(t+ 1)2

δ

)
· ε

122 · 2

)
≤ δ

k · 4(t+ 1)2
.

Therefore, with probability at least 1− δ
k·4(t+1)2 , i is not included in the output of TEST.

The lemma is now proved by a union bound over at most k players. ut

Proof. [of Lemma 2] Suppose for contradiction that errD(g) > ε. Given a sample (x, y) ∼ D, when
g(x) 6= y, we know that for more than half of the gi’s, we have gi(x) 6= y. Therefore, we have

m∑
i=1

Pr(x,y)∼D[g(x) 6= y and gi(x) 6= y] >
εm

2
. (14)

On the other hand, by discussing whether gi is a good candidate for D, we have
m∑
i=1

Pr(x,y)∼D[g(x) 6= y and gi(x) 6= y]

≤
∑

i:gi good

Pr(x,y)∼D[gi(x) 6= y] +
∑

i:gi not good

Pr(x,y)∼D[g(x) 6= y]

≤
∑

i:gi good

ε

4
+

∑
i:gi not good

ε ≤ .7m · ε
4

+ .3m · ε < .5mε,

which contradicts (14). ut

11

C Proof of Theorem 6

Before proving Theorem 6 we need a result from [6]. Let φd be the following input distribution.

• Instance space Yd = {0, 1, . . . , d− 1,⊥}.
• Hypothesis class: Gd is the collection of all binary functions on Yd that map ⊥ to 0.

• Target function: g∗ is chosen uniformly at random from Gd.

• Player’s distribution: Pr[⊥] = 1− 8ε, and Pr[0] = . . .Pr[d− 1] = 8ε/k.

Lemma 10 ([6]) For any ε, δ ∈ (0, 0.01), any (ε, δ)-learning algorithm A on φd needs Ω(d/ε)
samples in expectation, where the expectation is taken over the randomness used in obtaining the
samples and the randomness used in drawing the input from φd.

We prove Theorem 6 in two cases: d > k and d ≤ k.

The case d > k. Let σ(i, j) = (i− 1) · d/k + j. We create the following hard input distribution,
denoted by Φk,d.

• Instance space: Xd = {0, 1, . . . , d− 1,⊥}.
• Hypothesis class: Fd is the collection of all binary functions on Xd that map ⊥ to 0.

• Target function: f∗ is chosen uniformly at random from Fd.

• Player i’s distribution Di (for each i ∈ [k]): Assigns weights to items in
{σ(i, 0), σ(i, 1), . . . , σ(i, d − 1),⊥} as follows: Pr[⊥] = 1 − 8ε, and Pr[σ(i, 0)] =
. . .Pr[σ(i, d/k − 1)] = 8ε/k. For any other item x ∈ Xd, Pr[x] = 0.

Note that the induced input distribution for the i-th player is the same as φd/k for any i ∈ [k].

We have the following lemma. It is easy to see that Lemma 11 and Lemma 10 imply a sample
complexity Ω(d ln k/ε) for any (ε, δ)-learning algorithm on input distribution Φk,d in expectation.

Lemma 11 If there exists an (ε, δ)-learning algorithm A′ that uses m samples in expectation on
input distribution Φk,d, then there exists an (ε, 10

9k · δ)-learning algorithm A that uses 10
9k ·m samples

in expectation on input distribution φd/k.

Proof. We construct A′ for input distribution φd/k using A for input distribution Φk,d as follows.

1. A′ draws an input instance (Fd, f∗, {Di}i∈[k]) from Φk,d, and samples ` uniformly at
random from [k].

2. A′ simulates A on instance (Fd, f∗, {Di}i∈[k]) with the input distribution of the `-th player
replaced by φd/k. Every timeA draws a sample from player i 6= `,A′ does the same (which
is free since A′ already knows (Fd, f∗, {Di}i∈[k])), and passes the sample (and its label) to
A. Every time A draws a sample from player `, A′ samples from distribution φd/k instead.
Let (u, v) (u ∈ {0, 1, . . . , d/k − 1,⊥}, v ∈ {0, 1}) be the sample. If u =⊥ then A′ passes
(⊥, 0) to A, otherwise A′ passes (σ(`, u), v) to A.

3. When A terminates and returns a function f on Xd, A′ checks whether the error of f on
each Di (i 6= `) is no more than ε. If yes, A′ returns f ′ defined as f ′(⊥) = f(⊥), and
f ′(u) = f(σ(`, u)). Otherwise A′ repeats the simulation on a new input instance from
Φk,d.

We have the following claims, whose proofs can be found in [3] for a similar reduction. The two
claims finish the proof of Lemma 11.

Claim 12 A′ is an (ε, 10
9k · δ)-learning algorithm on φd/k, where δ is failure probability of A.

Claim 13 A′ uses at most 10
9k ·m samples in expectation, where m is the sample complexity of A.

12

The case d ≤ k. We againt start by constructing a hard input distribution for the k players, denoted
by Ψk,d. We first construct a hard input distribution for the first d players. The construction is the
same as the one used in [3] for the case k = d.

• Instance space: Xd = {1, 2, . . . , d,⊥}.
• Hypothesis class: Fd is the collection of all binary functions on Xd that map ⊥ to 0.
• Target function: f∗ is chosen uniformly at random from Fd.
• Player’s distribution Di (i ∈ [d]): with probability 1/2, the i-th player assigns weights

to items in {1, 2, . . . ,⊥} as Pr[⊥] = 1 and Pr[x] = 0 for all other items x ∈ Xd; with
probability 1/2, it assigns weights as Pr[⊥] = 1− 2ε, Pr[i] = 2ε, and Pr[x] = 0 for all
other items x ∈ Xd.

We then assign the same input distribution for the next d players, the next next d players, and so on.
In other words, we duplicate the input distribution of the first d players for k/d times. Finally we
randomly permute the k players.

Let ψ denote the input distribution of Ψ1,1. We have the following lemma.

Lemma 14 ([3]) For any ε, δ ∈ (0, 0.01), any (ε, δ)-learning algorithmA on ψ needs Ω(log(1/δ)/ε)
samples in expectation, where the expectation is taken over the randomness used in obtaining the
samples and the randomness used in drawing the input from ψ.

We use the following reduction.

1. A′ draws an input instance (Fd, f∗, {Di}i∈[k]) from Ψk,d, and samples ` uniformly at
random from [k].

2. A′ simulates A on instance (Fd, f∗, {Di}i∈[k]) with the input distribution of the `-th player
replaced by ψ. Every time A draws a sample from player i 6= `, A′ does the same (which
is free since A′ already knows (Fd, f∗, {Di}i∈[k])), and passes the sample (and its label)
to A. Every time A draws a sample from player `, A′ samples from distribution ψ instead.
Let (u, v) (u ∈ {1,⊥}, v ∈ {0, 1}) be the sample. If u =⊥ then A′ passes (⊥, 0) to A,
otherwise A′ passes (`, v) to A.

3. When A terminates and returns a function f on Xd, A′ checks whether the error of f on
each Di (i 6= `) is no more than ε. If yes, A′ returns f ′ defined as f ′(⊥) = f(⊥), and
f ′(1) = f(`). Otherwise A′ repeats the simulation on a new input instance from Ψk,d.

Claim 13 still holds for the above reduction. While Claim 12 changes slightly to the following (by
replacing k in Claim 12 to d).

Claim 15 A′ is an (ε, 10
9d · δ)-learning algorithm for the primitive problem, where δ is the failure

probability of A.

The proof is very similar to that for Claim 12. The only difference is the following: Let pi be the
probability that on a random input instance sampled from Ψk,d, the function f returned byA satisfies
errD`(f) > ε and errDi(f) ≤ ε for any i 6= `. We now have

∑
i∈[k] pi ≤ k/d · δ (due to the k/d

times of duplication of the input distribution for the first d players), instead of
∑
i∈[k] pi ≤ δ as

the case for Claim 12. This difference makes the final failure bound to be 10
9d · δ instead of 10

9k · δ
compared with Claim 12.

The Ω(k ln d log(1/δ)/ε) lower bound follows from Lemma 14, Lemma 13 and Lemma 15. ut

D Experiment Implementation Details

As mentioned, we did not try to optimize constants in our theoretical analysis. In our experiment, we
tuned several parameters for both CENLEARN and MWEIGHTS for better empirical performance. In
particular, we made the following changes.

• We set Sε,δ = d+log δ−1

10ε .

13

• In both MWEIGHTS and CENLEARN, we set the number of iterations (T̃ in MWEIGHTS and
t in CENLEARN) to d10 log ke.

• In WEAKTEST (Algorithm 4) of MWEIGHTS and the TEST process in CENLEARN, we
only drew 30/ε samples from Di and returned {i | errTi(g) ≤ ε

2}.

14

	Introduction
	The Basic Algorithm
	The Quest for Optimality via Robust Multiplicative Weights
	Lower Bound
	Experiments
	Conclusion
	Concentration Bounds
	Omitted Proofs in Section 2
	Proof of Theorem 6
	Experiment Implementation Details

