
A Definition of Hölder Ball

In order to define the Hölder ball in the unit cube [0, 1]d, we first review the definition of Hölder ball
in Rd.

Definition 1 (Hölder ball in Rd) The Hölder ball Hsd(L;Rd) is specified by the parameters s > 0
(order of smoothness), d ∈ Z+ (dimension of the argument) and L > 0 (smoothness constant) and
is as follows. A positive real s can be uniquely represented as

s = m+ α, (74)

where m is a nonnegative integer and 0 < α ≤ 1. By definition, Hsd(L;Rd) is comprised of all m
times continuously differentiable functions

f : Rd 7→ R, (75)

with Hölder continuous, with exponent α and constant L, derivatives of order m:

‖Dmf(x)[δ1, . . . , δm]−Dmf(x′)[δ1, . . . , δm]‖ ≤ L‖x− x′‖α‖δ‖m, ∀x, x′ ∈ Rd, δ ∈ Rd. (76)

Here ‖ · ‖ is the Euclidean norm on Rd, and Dmf(x)[δ1, . . . , δm] is the m-th differential of f taken
as a point x along the directions δ1, . . . , δm:

Dmf(x)[δ1, . . . , δm] = ∂m

∂t1...∂tm

∣∣∣∣∣
t1=t2=...=tm=0

f(x+ t1δ1 + . . .+ tmδm). (77)

In this paper, we consider functions that lie in Hölder balls in [0, 1]d. The Hölder ball in the compact
set [0, 1]d is defined as follows.

Definition 2 (Hölder ball in the unit cube) A function f : [0, 1]d 7→ R is said to belong to the
Hölder ballHsd(L; [0, 1]d) if and only if there exists another function f1 ∈ Hsd(L;Rd) such that

f(x) = f1(x), x ∈ [0, 1], (78)

and f1(x) is a 1-periodic function in each variable. HereHsd(L; [0, 1]d) is introduced in Definition 1.
In other words,

f1(x+ ej) = f1(x), ∀x ∈ Rd, 1 ≤ j ≤ d, (79)

where {ej : 1 ≤ j ≤ d} is the standard basis in Rd.

Definition 2 has appeared in the literature [35]. It is motivated by the observations that sliding
window kernel methods usually can not deal with the boundary effects without additional assump-
tions [31]. Indeed, near the boundary the sliding window kernel density estimator may have a
significantly larger bias than that of the interior points. In the nonparametric statistics literature, it
is usually assumed that the density has its value and all the derivatives vanishing at the boundary,
which is stronger than our assumptions.

B Variance upper bound in Theorem 1

Our goal is to prove

Var
(
ĥn,k(X)

)
.d,k

1

n
. (80)

The proof is based on the analysis in [4, Section 7.2] which utilizes the Efron–Stein inequality. Let
X(i) = {X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn} be a set of sample where only Xi is replaced by X ′i .

Then Efron–Stein inequality [13] states

Var
(
ĥn,k(X)

)
≤ 1

2

n∑
i=1

E
[(
ĥn,k(X)− ĥn,k(X(i))

)2]
(81)
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Note that KL estimator is symmetric of sample indices, so ĥn,k(X) − ĥn,k(X(i)) has the same
distribution for any i. Furthermore, we bridge ĥn,k(X) and ĥn,k(X(i)) by introducing an estimator
from n− 1 samples. Precisely, for any i = 2, . . . , n, define R′i,k be the k-nearest neighbor distance
from Xi to {X2, . . . , Xn} (note that X1 is removed), under the distance d(x, y) = minm∈Zd ‖x −
y −m‖. Define

ĥn−1,k(X) = −ψ(k) +
1

n

n∑
i=2

ln(nλ(B(Xi, R
′
i,k))) . (82)

Notice that ĥn,k(X)− ĥn−1,k(X) has the same distribution as ĥn,k(X(1))− ĥn−1,k(X). Therefore,
the variance is bounded by

Var
(
ĥn.k(X)

)
≤ n

2
E
[(
ĥn,k(X)− ĥn,k(X(1))

)2]
= 2nE

[(
ĥn,k(X)− ĥn−1,k(X)

)2]
(83)

Now we deal with the term E
[(
ĥn,k(X)− ĥn−1,k(X)

)2]
. Define the indicator function

E
(k)
i = I{X1 is in the k−nearest neighbor of Xi}. (84)

for i 6= 1. Note that R′i,k = Ri,k if E(k)
i 6= 1 and i 6= 1. As shown in [19, Lemma B.1], the set

S = {i : E
(k)
i = 1} has cardinality at most kβd for a constant βd only depends on d. Therefore, we

have

Var
(
ĥn,k(X)

)
≤ 2nE

[(
ĥn,k(X)− ĥn−1,k(X)

)2]
(85)

= 2nE

 1

n2

 ∑
i∈S∪{1}

ln(nλ(B(Xi, Ri,k)))−
∑
i∈S

ln(nλ(B(Xi, R
′
i,k)))

2
 (86)

≤ 2

n
E

(1 + 2|S|)

 ∑
i∈S∪{1}

ln2(nλ(B(Xi, Ri,k))) +
∑
i∈S

ln2(nλ(B(Xi, R
′
i,k)))

(87)

.d,k
1

n

(
E
[
ln2(nλ(B(X1, R1,k)))

]
+ E

[
ln2(nλ(B(X1, R

′
1,k)))

])
. (88)

Now we prove that E
[
ln2(nλ(B(X1, R1,k)))

]
.d,k 1 and E

[
ln2(nλ(B(X1, R

′
1,k)))

]
.d,k 1.

Using Cauchy-Schwarz inequality, we have

E
[
ln2(nλ(B(X1, R1,k)))

]
≤ 2

(
E
[
ln2(

λ(B(X1, R1,k))

µ(B(X1, R1,k))
)

]
+ E

[
ln2(nµ(B(X1, R1,k)))

])
, (89)

E
[
ln2(nλ(B(X1, R

′
1,k)))

]
≤ 3

(
E

[
ln2(

λ(B(X1, R
′
1,k))

µ(B(X1, R′1,k))
)

]
+ E

[
ln2((n− 1)µ(B(X1, R

′
1,k)))

]
+ ln2(

n

n− 1
)
)
.(90)

Since µ(B(X1, R1,k)) ∼ Beta(k, n+ 1− k) and µ(B(X1, R
′
1,k)) ∼ Beta(k, n− k), therefore we

know that both E
[
ln2(nµ(B(X1, R1,k)))

]
and E

[
ln2((n− 1)µ(B(X1, R

′
1,k)))

]
equal to certain

constants that only depends on k. ln2(n/(n− 1)) is smaller than ln2 2 for n ≥ 2. So we only need
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to prove that E
[
ln2(

λ(B(X1,R1,k))
µ(B(X1,R1,k))

)
]
.d,k 1 and E

[
ln2(

λ(B(X1,R
′
1,k))

µ(B(X1,R′1,k))
)
]
.d,k 1. Recall that we

have defined the maximal function as follows,

M(x) = sup
0≤r≤1/2

λ(B(x, r))

µ(B(x, r))
. (91)

Similarly, we define

m(x) = sup
0≤r≤1/2

µ(B(x, r))

λ(B(x, r))
. (92)

Therefore,

E
[
ln2(

λ(B(X1, R1,k))

µ(B(X1, R1,k))
)

]
≤ E

[
max{ln2(M(x)), ln2(m(x))}

]
(93)

≤ E
[
ln2(M(x) + 1) + ln2(m(x) + 1)

]
(94)

= E
[
ln2(M(x) + 1)

]
+ E

[
ln2(m(x) + 1)

]
. (95)

Similarly this inequality holds if we replace R1,k by R′1,k. By Lemma 3, we have

E
[
ln2(M(x) + 1)

]
=

∫
[0,1]d

ln2(M(x) + 1)dµ(x) (96)

=

∫ ∞
t=0

µ
({
x ∈ [0, 1]d : ln2(M(x) + 1) > t

})
dt (97)

=

∫ ∞
t=0

µ
({
x ∈ [0, 1]d : M(x) > e

√
t − 1

})
dt (98)

.d

∫ ∞
t=0

1

e
√
t − 1

dt .d 1. (99)

For E[ln2(m(x) + 1)], we rewrite the term as

E
[
ln2(m(x) + 1)

]
=

∫
[0,1]d

f(x) ln2(m(x) + 1)dλ(x) (100)

=

∫ ∞
t=0

λ
({
x ∈ [0, 1]d : f(x) ln2(m(x) + 1) > t

})
dt . (101)

For t ≤ 100, simply we use λ
({
x ∈ [0, 1]d : f(x) ln2(m(x) + 1) > t

})
≤ 1. For t > 100,

f(x) ln2(m(x) + 1) > t implies either m(x) > t2 or f(x) > t/ ln2(t2 + 1). Moreover, if
f(x) > t/ ln2(t2 + 1) then

f(x) ln2 f(x) >
t(ln t− 2 ln ln(t2 + 1))2

ln2(t2 + 1)
>

t

10000
(102)

since (ln t− 2 ln ln(t2 + 1))2/ ln2(t2 + 1) > 1/10000 for any t > 100. So for t > 100,

λ
({
x ∈ [0, 1]d : f(x) ln2(m(x) + 1) > t

})
≤ λ

({
x ∈ [0, 1]d : m(x) > t2

})
+ λ

({
x ∈ [0, 1]d : f(x) ln2 f(x) > t/10000

})
. (103)

Therefore, ∫ ∞
t=0

λ
({
x ∈ [0, 1]d : f(x) ln2(m(x) + 1) > t

})
dt (104)

≤
∫ 100

t=0

1 dt+

∫ ∞
t=100

λ
({
x ∈ [0, 1]d : m(x) > t2

})
dt

+

∫ ∞
t=100

λ
({
x ∈ [0, 1]d : f(x) ln2 f(x) > t/10000

})
dt (105)

.d 100 +

∫ ∞
t=100

1

t2
dt+ 10000

∫
[0,1]d

f(x) ln2 f(x)dx (106)

. 1. (107)
Hence, the proof is completed.
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C Proof of lemmas

In this section we provide proofs of lemmas used in the paper.

C.1 Proof of Lemma 1

We consider the cases s ∈ (0, 1] and s ∈ (1, 2] separately. For s ∈ (0, 1], following the definition of
Hölder smoothness, we have,

| ft(x)− f(x) | =
∣∣∣ 1

Vdtd

∫
u:||u−x||≤t

f(u)du− f(x)
∣∣∣ (108)

≤ 1

Vdtd

∫
u:‖u−x‖≤t

|f(u)− f(x)|du (109)

≤ 1

Vdtd

∫
u:‖u−x‖≤t

L‖u− x‖sdu . (110)

By denoting ρ = ‖u − x‖ and considering θ ∈ Sd−1 on the unit d-dimensional sphere, we rewrite
the above integral using polar coordinate system and obtain,

| ft(x)− f(x) | ≤ 1

Vdtd

∫ t

ρ=0

∫
θ∈Sd−1

Lρsρd−1dρdθ (111)

=
1

Vdtd

∫ t

ρ=0

dVdLρ
s+d−1dρ (112)

=
dVdLt

s+d

(s+ d)Vdtd
=
dLts

s+ d
. (113)

Now we consider the case s ∈ (1, 2]. Now we rewrite the difference as

| ft(x)− f(x) | =
∣∣∣ 1

Vdtd

∫
u:‖u−x‖≤t

f(u)du− f(x)
∣∣∣ (114)

=
∣∣∣ 1

2Vdtd

∫
v:‖v‖≤t

( f(x+ v) + f(x− v) ) dv − f(x)
∣∣∣ (115)

≤ 1

2Vdtd

∫
v:‖v‖≤t

∣∣∣ f(x+ v) + f(x− v)− 2f(x)
∣∣∣dv . (116)

For fixed v, we bound |f(x+v) +f(x−v)−2f(x)| using the Gradient Theorem and the definition
of Hölder smoothness as follows,

|f(x+ v) + f(x− v)− 2f(x)| (117)

=
∣∣∣ ( f(x+ v)− f(x) ) + ( f(x− v)− f(x) )

∣∣∣ (118)

=
∣∣∣ ∫ 1

α=0

∇f(x+ αv) · d(x+ αv) +

∫ −1
α=0

∇f(x+ αv) · d(x+ αv)
∣∣∣ (119)

=
∣∣∣ ∫ 1

α=0

(∇f(x+ αv) · v ) dα−
∫ 1

α=0

(∇f(x− αv) · v ) dα
∣∣∣ (120)

=
∣∣∣ ∫ 1

α=0

(∇f(x+ αv)−∇f(x− αv) ) · vdα
∣∣∣ (121)

≤
∫ 1

α=0

‖∇f(x+ αv)−∇f(x− αv)‖‖v‖dα (122)

≤
∫ 1

α=0

L‖2αv‖s−1‖v‖dα (123)

= L‖v‖s
∫ 1

0

(2α)s−1dα =
L‖v‖s2s−1

s
. (124)
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Plug it into (116) and using the similar method in the s ∈ (0, 1] case, we have

| ft(x)− f(x) | ≤ 1

2Vdtd

∫
v:‖v‖≤t

L‖v‖s2s−1

s
dv (125)

=
1

2Vdtd

∫ t

ρ=0

∫
θ∈Sd−1

Lρs2s−1

s
ρd−1dρdθ (126)

=
1

2Vdtd

∫ t

ρ=0

dVdLρ
s+d−12s−1

s
dρ (127)

=
1

2Vdtd
dVdL2s−1

s

ts+d

s+ d
≤ dLts

s+ d
, (128)

where the last inequality uses the fact that s ∈ (1, 2].

C.2 Proof of Lemma 2

We consider the following two cases. If f(x) ≥ 2dLts/(s+ d), then by Lemma 1, we have

f(x) ≤ ft(x) +
dLts

s+ d
≤ ft(x) +

f(x)

2
. (129)

Hence, f(x) ≤ 2ft(x) in this case. If f(x) < 2dLts/(s + d), then define t0 = (f(x)(s +
d)/2dL)1/s < t. By the nonnegativity of f , we have

ft(x)Vdt
d (130)

=

∫
B(x,t)

f(x)dx ≥
∫
B(x,t0)

f(x)dx = ft0(x)Vdt
d
0 (131)

≥
(
f(x)− dLts0

s+ d

)
Vdt

d
0 (132)

= f(x)Vd

(
f(x)(s+ d)

2dL

)d/s
− dL

s+ d
Vd

(
f(x)(s+ d)

2dL

)(s+d)/s

(133)

= f(x)(s+d)/sVd

(
s+ d

dL

)d/s (
2−d/s − 2−(s+d)/s

)
. (134)

Therefore, we have f(x) .s,L,d (ft(x)Vdt
d)s/(s+d) in this case. We obtain the desired statement by

combining the two cases. Furthermore, by taking t = 1/2, we have Vdtdft(x) < 1, so ft(x) .s,L,d
1. By applying this lemma immediately we obtain f(x) .s,L,d 1.

C.3 Proof of Lemma 3

We first introduce the Besicovitch covering lemma, which plays a crucial role in the analysis of
nearest neighbor methods.

Lemma 4 [15, Theorem 1.27][Besicovitch covering lemma] Let A ⊂ Rd, and suppose that
{Bx}x∈A is a collection of balls such that Bx = B(x, rx), rx > 0. Assume that A is bounded
or that supx∈A rx < ∞. Then there exist an at most countable collection of balls {Bj} and a
constant Cd depending only on the dimension d such that

A ⊂
⋃
j

Bj , and
∑
j

χBj (x) ≤ Cd. (135)

Here χB(x) = 1(x ∈ B).

Now we are ready to prove the lemma. Let

M(x) = sup
0<ρ≤D

(
µ2(B(x, ρ))

µ1(B(x, ρ))

)
. (136)
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Let Ot = {x ∈ A : M(x) > t}. Hence, for all x ∈ Ot, there exists Bx = B(x, rx) such that
µ2(Bx) > tµ1(Bx), 0 < rx ≤ D. It follows from the Besicovitch lemma applying to the set Ot that
there exists a set E ⊂ Ot, which has at most countable cardinality, such that

Ot ⊂
⋃
j∈E

Bj , and
∑
j∈E

χBj (x) ≤ Cd. (137)

Let AD = {x : ∃y ∈ A, |y − x| ≤ D}, therefore Bj ⊂ AD for every j. Then,

µ1 (Ot) ≤
∑
j∈E

µ1 (Bj) <
1

t

∑
j∈E

µ2 (Bj)

=
1

t

∑
j∈E

∫
AD

χBjdµ2 =
1

t

∫
AD

∑
j∈E

χBjdµ2 ≤
Cd
t
µ2(AD). (138)
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