A Definition of Holder Ball
In order to define the Holder ball in the unit cube [0, 1]%, we first review the definition of Holder ball
in R%.

Definition 1 (Holder ball in R?) The Holder ball H5(L; R?) is specified by the parameters s > 0
(order of smoothness), d € Z. (dimension of the argument) and L > 0 (smoothness constant) and
is as follows. A positive real s can be uniquely represented as

s=m+ q, (74)

where m is a nonnegative integer and 0 < o < 1. By definition, H}(L; R?) is comprised of all m
times continuously differentiable functions

f:RY =R, (75)
with Holder continuous, with exponent o and constant L, derivatives of order m:

| D™ f(2)[61, ..., 0m]) — D™ f(2)[b1,...,0m]|| < L|lz —2'||¥0]|™, Va,2’ € RY, 6 € R (76)

Here || - || is the Euclidean norm on R, and D™ f(z)[51, . . ., 6,,] is the m-th differential of f taken
as a point x along the directions 01, . .., 0p:
D™ f(@)[61,- ., 0m] = prgi fx+t100 4 . 4 tmlm). (77)
ti=ta=..=t, =0

In this paper, we consider functions that lie in Holder balls in [0, 1]¢. The Holder ball in the compact
set [0, 1]% is defined as follows.

Definition 2 (Hélder ball in the unit cube) A function f : [0,1]¢ — R is said to belong to the
Holder ball H3(L; [0,1]?) if and only if there exists another function f1 € HE(L; R?) such that

f@) = f@), =e[01], (78)
and fi(x) is a 1-periodic function in each variable. Here H3(L; [0, 1]¢) is introduced in Deﬁnition
In other words,

filz+e) = fi(x), VeeRL1<j<d, (79)
where {e; : 1 < j < d} is the standard basis in R4,

Definition [2] has appeared in the literature [35]. It is motivated by the observations that sliding
window kernel methods usually can not deal with the boundary effects without additional assump-
tions [31]. Indeed, near the boundary the sliding window kernel density estimator may have a
significantly larger bias than that of the interior points. In the nonparametric statistics literature, it
is usually assumed that the density has its value and all the derivatives vanishing at the boundary,
which is stronger than our assumptions.

B Variance upper bound in Theorem ]|

Our goal is to prove

- 1
Var (hn (X)) Sap (80)
n
The proof is based on the analysis in [4, Section 7.2] which utilizes the Efron—Stein inequality. Let
X® = {X1,..., X1, X}, Xit1,...,Xn} be a set of sample where only X; is replaced by X.
Then Efron—Stein inequality [13] states

SE [(ﬁn,k(X) - hn,k(x(“)ﬂ @81)
i=1

N =

Var (ﬁnyk(X)) <
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Note that KL estimator is symmetric of sample indices, s0 /i, x(X) — ki, x(X(®) has the same
distribution for any 4. Furthermore, we bridge ., .(X) and h,, ;,(X(¥) by introducing an estimator
from n — 1 samples. Precisely, for any ¢ = 2, ..., n, define R' be the k-nearest neighbor distance
from X; to {X3,..., X, } (note that X is removed) under the distance d(z,y) = min,,cza ||z —
y — m||. Define

. 1

hin—1.6(X) = = (k) + Zln(ﬂ/\(B(Xi,Ré,k))) : (82)

3|

Notice that ﬁnk(X) — fzn_Lk(X) has the same distribution as ﬁmk(X(l)) — ﬁn_ljk(X). Therefore,
the variance is bounded by

Var (iznk(X))

IN

- ZnE{(i} (X)—hnl’k(X))Q} (83)

. 2
Now we deal with the term E {(hnk(X) - hn_Lk(X)) ] . Define the indicator function

EZ.(k) = I{ X, is in the k—nearest neighbor of X,}. (84)

fori # 1. Note that R} ; = R; » 1fE ) % landi # 1. As shown in [19, Lemma B.1], the set

S={i: Ei(k) = 1} has cardinality at most k3, for a constant 34 only depends on d. Therefore, we
have

Var
2
< [ ~ - M(X)” (85)
2
= 2K % In(nA(B(Xi, Rix))) — Y In(nA(B(X;, R;;))) (86)
1eSu{1} €S
< ZEla+28) | Y WAeABXG, Ri) + 3 2mAB(X, RL)) | [67)
" ieSu{1} icS
1
Sar — (E[*(mABX, k)] +E [I0*(nAB(X1, Byk)]) - (88)

Now we prove that E [In*(nA(B(X1, Rix)))] Sax 1and E [ln2(n/\(B(X1,R’17k)))} <ar L
Using Cauchy-Schwarz inequality, we have

E [In*(nA(B(X1, Ryx)))]

2, M B(X1,R11)) 2

&)
E [ln*(nA(B(X1, Ry 1)))]
ANB n
< 3(E 1n2<M> +E[1n2<(nf1>u(B(X1,R’1,k>>>]+ln2(m>) .(90)

Since pu(B(X1, R1,x)) ~ Beta(k,n + 1 — k) and u(B(X1, R} ;,)) ~ Beta(k,n — k), therefore we
know that both E [In®(nu(B(X1, Ry 4)))] and E [1n2((n — )u(B(Xy, ’Lk)))} equal to certain

constants that only depends on k. In*(n/(n — 1)) is smaller than In? 2 for n > 2. So we only need
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A(B(X1,R] 1))
w(B(X1,R1 1)) w(B(X1,R] )

have defined the maximal function as follows,

to prove that E [lnz(w)} Sak 1and E [lnz( )} Sk 1. Recall that we

— s MB@r)
M) = ogrgli/z u(B(z,r)) oD

Similarly, we define

w(B(z,r))
= s . 92
m(@) 0;}2/2 )\(B(mﬂ")) ©2)
Therefore,
o AMB(X1, R 1)) 2 2
E |In (m } < E [max{In*(M(z)),In*(m(z))}] 93)
< E[W*(M(z)+ 1) + In*(m(z) + 1)] (94)
= E[*(M(z) +1)] +E [In®(m(z) + 1)] . (95)
Similarly this inequality holds if we replace R; j by R’lyk. By Lemma we have
E[*(M(z)+1)] = / In?(M (z) + 1)du(zx) (96)
[0,1]¢
— /OO i ({z €0,1]%: n*(M(z) +1) > t})dt (97)
t=0
- [T 0,1]%: M Vi1l dt 98
| n(feepntar@ > -1} ©8)
< 1
<da /t:O ex/ffldtsd 1. 99)
For E[In?(m(x) + 1)], we rewrite the term as
E [In*(m(z) +1)] = / f(x) In®(m(z) + 1)d\(x) (100)
[0,1]4

= /oo A({z€(0,1]": f(x)In*(m(z) +1) > t})dt. (101

=0
For t < 100, simply we use A ({z € [0,1]?: f(z)In*(m(z) + 1) > ¢}) < 1. Fort > 100,
f(x)In*(m(z) + 1) > t implies either m(z) > 2 or f(x) > t/In*(t*> + 1). Moreover, if
f(z) > t/In*(t? + 1) then
2 2
flz)In® f(z) > Hint 1n221(;121rit1)+ DINSS 10800
since (Int — 2In1n(¢? + 1))2/In*(#? + 1) > 1/10000 for any ¢ > 100. So for ¢t > 100,
A({z € [0,1]%: f(z)In*(m(z) + 1) > t})
< AM{ze[0,1)%:m(z) > }) + A ({z €[0,1]": f(z)In® f(z) >¢/10000}) .(103)

Therefore,

(102)

/OO A({z € [0,1)%: f(z)In®*(m(x) + 1) > t})dt (104)
t=0
100 0

< / 1dt—|—/ A ({z €0, 114 - m(x) > 7)) dt

t=0 t=100

+/ A({z €(0,1])": f(z)In® f(z) > t/10000}) dt (105)

t=100
<4 100+ /oo lzdt + 10000/ f(z)In? f(z)da (106)
t=100 t [0,1)4

< L (107)

~

Hence, the proof is completed.
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C Proof of lemmas

In this section we provide proofs of lemmas used in the paper.

C.1 Proof of Lemmalll

We consider the cases s € (0,1] and s € (1, 2] separately. For s € (0, 1], following the definition of
Holder smoothness, we have,

1
1) = 5@1 = [ [ i g (108
1 <
—_— — d 109
< g [ @ sl (109
1
< = L|lu — z||*du . 110
< g Ml (110

By denoting p = |lu — z|| and considering # € S9! on the unit d-dimensional sphere, we rewrite
the above integral using polar coordinate system and obtain,

1 t

f0) = f@] < g [ [ Lot dpas a
Vat® J =0 Joega—

1 t

= A / dVyLp*tidp (112)
p=0
o dVgLett dLe 113
 (s+d)Vatd  s+d”
Now we consider the case s € (1, 2]. Now we rewrite the difference as
1

@ =@ = |y [ fwde- 1) (114)

Vat® Jusjju—aj <t

1
‘2thd/v:|v|gt(f(w+v)+f(x_”))d”_f(=’f)’ (115)

i
2Vt o o)<t

For fixed v, we bound | f(x 4+ v) + f(x — v) — 2f ()| using the Gradient Theorem and the definition
of Holder smoothness as follows,

dv . (116)

f@+v)+ [z —v) = 2f(2)

[f(x+v) + f(z —v) = 2f(2)] (117)
= | (fa+v) = f@) + (fla—v) = f@) | (118)
1 -1
= / Vf(x+av)~d(z+ow)+/ Vf(x+ow)~d(x+om)’ (119)
a=0 a=0
1 1
= / (Vf(x—i—ow)-v)da—/ (Vf(x—av)w)da‘ (120)
a=0 a=0
1
= / (Vf(x—i—cw)—Vf(x—av))wda’ (121)
a=0
1
< [ Vs av) - Vi - a)lfolda (122)
(11—0 1
L 5= d 23
< [ zlzeo)foldo (123)
R e
= vl|® a)* lda = .
= Lol [ (2071 g (124)
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Plug it into (T16) and using the similar method in the s € (0, 1] case, we have

1 L5251
fi(z) = f(z)] < 7/ ——dv (125)
& ) Wat? Jojo<e 8
1 ! Lp2°t 4
= — =L i ldpde (126)
2thd /p_O /GGSdl S P P
1 t dVdes+d—12s—1
= d (127)
1 dVyL2s—! ¢std qLes
- d < (128)

2V, td s s+d~ s+d’
where the last inequality uses the fact that s € (1, 2].

C.2 Proof of Lemmal[2|

We consider the following two cases. If f(z) > 2dLt*/(s + d), then by Lemma([l] we have

dLt* (@)

flz) < fi(z) + s+ d < fi(x) + 9

Hence, f(x) < 2fi(x) in this case. If f(z) < 2dLt®/(s + d), then define tg = (f(x)(s +
d)/2dL)"/* < t. By the nonnegativity of f, we have

(129)

fil@vat! (130)

= / f(x)dx 2/ f(z)dz = fto(ﬂc)thg (131)
B(z,t) B(w,to)
dLt}
- (f( )73 +t(c)l> Vaf§ (132)
_ f@)(s+d)\"*  dL F@)(s +d) \ CTO7
A (QdL) N s+dVd< 2dL ) (133)
d/s

= f(x)(s+d)/svd ( S;rLd> (2,d/5 _ 27(s+d)/s> . (134)

Therefore, we have f(z) Ss.z.a (fi(x)Vat?)®/(5T9) in this case. We obtain the desired statement by
combining the two cases. Furthermore, by taking ¢ = 1/2, we have Vyt¢ f;(z) < 1,50 f(%) Ss.n.a
1. By applying this lemma immediately we obtain f(z) <Ss 1.4 1.

~

C.3 Proof of Lemma

We first introduce the Besicovitch covering lemma, which plays a crucial role in the analysis of
nearest neighbor methods.

Lemma 4 [[I5| Theorem 1.27][Besicovitch covering lemma] Let A C RY and suppose that
{By}zca is a collection of balls such that B, = B(x,r;),r, > 0. Assume that A is bounded
or that sup,c 4 7 < oo. Then there exist an at most countable collection of balls {B;} and a
constant Cy depending only on the dimension d such that

AclJBj, and ) xs(z) <Ca (135)
J J

Here xg(z) = 1(x € B).

Now we are ready to prove the lemma. Let

M(z) = sup < (136)

0<p<D

uz(B(w,p))>
p(B(z,p)) )
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Let O, = {& € A: M(x) > t}. Hence, for all x € Oy, there exists B, = B(z,r,) such that
o (Bz) > tui(By),0 < r, < D. It follows from the Besicovitch lemma applying to the set O; that
there exists a set £ C Oy, which has at most countable cardinality, such that

O; C U B;, and ZXBJ' (z) < Cy. (137)

JEE JEE
Let Ap = {z: 3y € A, |y — z| < D}, therefore B; C Ap for every j. Then,

p0) < Y m(B) <Y e (By)

JEE jJEE
— Z/A XB;dpz = ;/A > xsydps < TdMQ(AD). (138)
JEE D D jeE
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